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Abstract

A triple Roman dominating function (TRDF) on a graph G with vertex
set V is a function f : V → {0, 1, 2, 3, 4} such that for any vertex v ∈ V
with f(v) < 3,

∑

x∈N(v)∪{v} f(x) ≥ |{x ∈ N(v) : f(x) ≥ 1}| + 3, where

N(v) is the open neighborhood of v. The weight of a TRDF f is the value
∑

v∈V f(v). A global triple Roman dominating function (GTRDF) on G is
a TRDF on both G and its complement. The minimum weight of a GTRDF
on G is called the global triple Roman domination number γg[3R](G) of G.
We first show that for any tree T on n ≥ 5 vertices, γg[3R](T ) ≤ 7n/4 and
characterize all extremal trees. We also show that for any graph G on n
vertices, γg[3R](G) 6= 3n − 3, and further characterize all graphs G with
γg[3R](G) = 3n− k for each k ∈ {4, 5, 6, 7}, which improves the results given
by Nahani Pour et al. (2022).
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1. Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E(G). For
v ∈ V (G), the open neighborhood of v is the set N(v) = NG(v) = {u ∈ V (G) :
uv ∈ E(G)} and its closed neighborhood is the set N [v] = NG[v] = N(v) ∪ {v}.
We denote the degree of a vertex v in G by d(v) = dG(v) = |N(v)|. The minimum
degree among all vertices of G is denoted by δ. For u, v ∈ V (G), the length of a
shortest (u, v)-path in G is the distance d(u, v) between u and v. The diameter

diam(G) of G is the maximum distance among all pairs of vertices. A shortest
path whose length equals diam(G) is called a diametral path of G.

We write G[S] for the subgraph induced by a subset S of V (G). A clique of
a graph G is a complete subgraph of G. The maximum order of a clique of G is
called the clique number of G and denoted by ω(G). A vertex of degree one is
called a leaf and a vertex adjacent to (exactly) one leaf is called a (weak) support
vertex. For r, s ≥ 1, a double star S(r, s) is a tree with exactly two adjacent
vertices that are not leaves, one of which is adjacent to r leaves and the other is
adjacent to s leaves. As usual, the path, cycle and complete graph with n vertices
are denoted by Pn, Cn and Kn, respectively. We denote by Kr,s the complete
bipartite graph having partite sets of cardinality r and s.

We denote by G− e the graph obtained from G by deleting one edge e. The
complement of a graph G is the graph G, where V (G) = V (G) and uv ∈ E(G) if
and only if uv /∈ E(G). The union H1∪H2 of two graphs H1 and H2 is the graph
with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). We denote by kG
a disjoint union of k copies of a graph G. The weight of a real-valued function
h : V (G) → R is the value ω(h) =

∑

x∈V (G) h(x).

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF)
on a graph G if any vertex assigned 0 under f is adjacent to at least one vertex
assigned 2. The minimum weight of an RDF on G is called the Roman domination

number of G. The literature on Roman domination and its variations have been
surveyed and detailed in two book chapters and three surveys [4–8].

Beeler et al. [3] introduced a stronger version of Roman domination, namely,
double Roman domination. A function f : V (G) → {0, 1, 2, 3} is a double Roman

dominating function (DRDF) on a graph G if any vertex assigned 0 under f is
adjacent to at least one vertex assigned 3 or two vertices assigned 2, and any
vertex assigned 1 under f is adjacent to at least one vertex assigned at least 2.
The minimum weight of a DRDF on G is called the double Roman domination

number of G. The double Roman domination, with its many variations, is now
well studied [2, 9, 11–13,15, 17–19].

Recently, Abdollahzadeh Ahangar et al. [1] proposed a generalization of the
Roman domination and double Roman domination, namely, [k]-Roman domina-
tion. Let k be a positive integer. A [k]-Roman dominating function ([k]-RDF)
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on a graph G is a function f : V (G) → {0, 1, . . . , k + 1} such that for any
vertex v ∈ V (G) with f(v) < k,

∑

x∈AN(v)∪{v} f(x) ≥ |AN(v)| + k, where
AN(v) = {x ∈ N(v) : f(x) ≥ 1} is the active neighbourhood of a vertex v in
G. The [k]-Roman domination number of a graph G equals the minimum weight
of a [k]-RDF on G. It is worth pointing out that [1]-Roman domination is the
Roman domination and [2]-Roman domination is the double Roman domination.

In [1], [3]-Roman domination was also called triple Roman domination, which
can be stated in the following equivalent but more explicit form. A triple Roman

dominating function (TRDF) on a graph G is a function f : V (G) → {0, 1, 2, 3, 4}
such that

(1) any vertex assigned 0 under f must be adjacent to one vertex assigned 4, or
two vertices assigned 3, or one vertex assigned 2 and one vertex assigned 3,
or three vertices assigned 2;

(2) any vertex assigned 1 under f must be adjacent to one vertex assigned at
least 3, or two vertices assigned 2;

(3) Any vertex assigned 2 under f must be adjacent to one vertex assigned at
least 2.

The minimum weight of a TRDF on a graph G is called the triple Roman dom-

ination number of G, denoted by γ[3R](G). Triple Roman domination has been
studied by several authors (see for instance [10, 16]).

A global triple Roman dominating function (GTRDF) on a graph G is a
TRDF on both G and its complement G. The global triple Roman domination

number γg[3R](G) of G is the minimum weight of a GTRDF on G. A GTRDF on G
with weight γg[3R](G) is called a γg[3R](G)-function. For a sake of simplicity, any

γg[3R](G)-function f will be represented by the ordered partition (V f
0 , V f

1 , . . . , V f
4 )

of V (G) induced by f , where V f
i = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, . . . , 4}.

Nahani Pour et al. [14] introduced the global triple Roman domination and de-
rived some results as follows.

Proposition A [14]. For any connected graph G on n ≥ 3 vertices, γg[3R](G) ≤
3n with equality if and only if G = Kn.

Proposition B [14]. There are no connected graphs G on n ≥ 3 vertices such

that γg[3R](G) = 3n− 1.

Proposition C [14]. For any connected graph G on n ≥ 3 vertices, γg[3R](G)
= 3n− 2 if and only if G = Kn − e.

Our purpose in this paper is to continue the study of the global triple Roman
domination in graphs. We give an upper bound on this domination parameter
for trees and characterize the extremal trees attaining this bound. Moreover,
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we improve the results presented in [14] and prove that for any graph G on
n vertices, γg[3R](G) 6= 3n − 3 and characterize all graphs G with γg[3R](G) ∈
{3n− 4, 3n− 5, 3n− 6, 3n− 7}.

2. An Upper Bound for Trees

In this section we present an upper bound on the global triple Roman domination
number of trees and characterize all extremal trees. For this purpose, we first
give some needed results.

Observation 1. Let T be the tree obtained from a disjoint union of two trees

T1 and T2 by joining exactly one vertex of T1 to exactly one vertex of T2. Then
γg[3R](T ) ≤ γg[3R](T1) + γg[3R](T2).

Proof. For each i ∈ {1, 2}, let gi be a γg[3R](Ti)-function. One can check that
the function h defined by h(x) = g1(x) for each x ∈ V (T1) and h(x) = g2(x) for
each x ∈ V (T2), is a GTRDF on T and so γg[3R](T ) ≤ ω(h) = ω(g1) + ω(g2) =
γg[3R](T1) + γg[3R](T2), as desired.

If at least one of T1 and T2 is a path on three or four vertices, then the upper
bound of Observation 1 can be improved slightly.

Observation 2. Let T be the tree obtained from a tree T ′ on at least two vertices

by adding a path P3 and joining exactly one vertex of T ′ to exactly one leaf of P3.

Then γg[3R](T ) ≤ γg[3R](T
′) + 4.

Proof. Let u be a vertex of T ′, P3 = u1u2u3 and let uu1 ∈ E(T ). Now let
g be a γg[3R](T

′)-function and let Vi = {x ∈ V (T ′)\{u} : g(x) = i} for each
i ∈ {0, 1, 2, 3, 4}. If |V2| ≥ 3, or if |V2| ≥ 1 and |V3| ≥ 1, or if |V3| ≥ 2, or if
|V4| ≥ 1, then the function h defined by h(u1) = h(u3) = 0, h(u2) = 4 and
h(x) = g(x) for each x ∈ V (T ′), is a GTRDF on T and so γg[3R](T ) ≤ ω(h) =
ω(g) + 4 = γg[3R](T

′) + 4, as desired. Hence we may assume that V4 = ∅ and one
of the following holds.

(1) |V2| ∈ {0, 1, 2} and |V3| = 0.

(2) |V2| = 0 and |V3| = 1.

First, suppose that (1) holds. Note that |V (T ′)\{u}| ≥ 1 and V3 = V4 = ∅.
Thus if |V2| ∈ {0, 1}, then it is a contradiction to our assumption that g is a
γg[3R](T

′)-function. This forces |V2| = 2 and hence we conclude from the definition
of γg[3R](T

′)-function that g(u) ≥ 3. Then the function f defined by f(u1) = 0,
f(u2) = f(u3) = 2 and f(x) = g(x) for each x ∈ V (T ′), is a GTRDF on T,
implying that γg[3R](T ) ≤ ω(f) = ω(g) + 4 = γg[3R](T

′) + 4, as desired.
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Second, suppose that (2) holds. It is clear that V (T ′)\{u} = V0 ∪ V1 ∪ V3.
Moreover, since |V3| = 1, it follows from the definition of γg[3R](T

′)-function that
g(u) ≥ 3 and hence the function f defined earlier is a GTRDF on T, implying
that γg[3R](T ) ≤ ω(f) = ω(g) + 4 = γg[3R](T

′) + 4, as desired.

Observation 3. Let T be the tree obtained from a tree T ′ by adding a path P4

and joining exactly one vertex of T ′ to exactly one vertex of P4. Then γg[3R](T ) ≤
γg[3R](T

′) + 7.

Proof. Let u be a vertex of T ′ and let P4 = u1u2u3u4. Without loss of generality,
assume that uui ∈ E(T ) for some i ∈ {1, 2}. Let g be a γg[3R](T

′)-function and
for each i ∈ {2, 3, 4}, let Vi = {x ∈ V (T ′) : g(x) = i}. If |V4| = |V3| = 0 and
|V2| ≤ 1, then it is a contradiction to our assumption that g is a γg[3R](T

′)-
function. Hence we may assume that |V4| ≥ 1, or |V3| ≥ 1, or |V2| ≥ 2. Then it
is easy to check that the function h defined by h(u1) = h(u2) = 2, h(u3) = 0,
h(u4) = 3 and h(x) = g(x) for each x ∈ V (T ′), is a GTRDF on T and so
γg[3R](T ) ≤ ω(h) = ω(g) + 7 = γg[3R](T

′) + 7, as desired.

For the global triple Roman domination number of paths, Nahani Pour et

al. [14] showed the following result.

Proposition 4 [14]. For n ≥ 6,

γg[3R](Pn) =







4⌊n/3⌋, if n ≡ 0 (mod 3),
4⌊n/3⌋+ 3, if n ≡ 1 (mod 3),
4⌊n/3⌋+ 4, if n ≡ 2 (mod 3).

Theorem 5. For any tree T on n ≥ 5 vertices, γg[3R](T ) ≤ 7n/4.

Proof. We proceed by induction on n. Let P = u0u1 · · ·udiam(T ) be a diametral
path of T. If diam(T ) = i ∈ {2, 3}, then the function h defined by h(ui−2) =
h(ui−1) = 4 and h(x) = 0 otherwise, is a GTRDF on T and hence γg[3R](T ) =
8 < 7n/4. Hence we may assume that diam(T ) ≥ 4. If n = 5, then T = P5 and
hence the function g defined by g(u1) = g(u4) = 4 and g(u0) = g(u2) = g(u3) = 0,
is a GTRDF on P5, implying that γg[3R](P5) ≤ 8 < 7n/4. Assume, then, that
n ≥ 6 and that for any tree T ′ with 5 ≤ |V (T ′)| < n, γg[3R](T

′) ≤ 7|V (T ′)|/4.
Let T be a tree on n ≥ 6 vertices with diam(T ) ≥ 4.

If T = P, that is, if T is a path on n vertices, then by Proposition 4, we
have γg[3R](T ) < 7n/4. So in the following we may assume that T 6= P. This
forces that there must exist some vertex of P = u0u1 · · ·udiam(T ) with degree at
least three. Let ut be the first vertex of P with degree at least three. Without
loss of generality, we choose the path P satisfying that t is as small as possible.
According to the values of t, we now consider the following four cases.
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Case 1. t = 1. Let T ′ be the connected component of T −u1u2 that contains
u2. Since diam(T ) ≥ 4, we have |V (T ′)| ≥ 3. If |V (T ′)| = 3, then diam(T ) = 4
and so the function h defined by h(u1) = h(u4) = 4 and h(x) = 0 otherwise, is a
GTRDF on T, implying that

γg[3R](T ) ≤ ω(h) = 8 < 7n/4.

Now let |V (T ′)| = 4. Moreover, since diam(T ) ≥ 4, it is clear that diam(T ) ∈
{4, 5}. If diam(T ) = 4, then either T ′ = K1,3 or T ′ = uu2u3u4 is a path on four
vertices (where u is the unique leaf adjacent to u2 in T ), and hence the function
h defined by h(u1) = h(u2) = h(u3) = 4 and h(x) = 0 otherwise, is a GTRDF on
T ; and if diam(T ) = 5, then T ′ = u2u3u4u5 is a path on four vertices and hence
the function h defined by h(u1) = h(u2) = h(u5) = 4 and h(x) = 0 otherwise, is
a GTRDF on T. In either case, we have

γg[3R](T ) ≤ ω(h) = 12 < 7n/4.

Suppose next that |V (T ′)| ≥ 5. Let g = (V g
0 , V

g
1 , . . . , V

g
4 ) be a γg[3R](T

′)-function.
By considering the case when V g

0 6= ∅, (respectively, V g
0 = ∅ and V g

1 6= ∅,
V g
0 = V g

1 = ∅) it follows from the definition of γg[3R](T
′)-function that one of

the following holds. (1) |V g
4 | ≥ 1; (2) |V g

3 | ≥ 1 and |V g
3 |+ |V g

2 | ≥ 2; (3) |V g
2 | ≥ 3.

Thus one can check that the function h defined by h(u1) = 4, h(x) = 0 for each
x ∈ N(u1)\{u2} and h(x) = g(x) for each x ∈ V (T ′), is a GTRDF on T and so
by the induction hypothesis, we have

γg[3R](T ) ≤ ω(h) = ω(g) + 4 ≤ 7|V (T ′)|/4 + 4 ≤ 7(n− 3)/4 + 4 < 7n/4.

In the following, we may assume that t ≥ 2. Before going further, we let
T1 (respectively, T2) be the connected component of T − u2u3 that contains u2
(respectively, u3). Since diam(T ) ≥ 4, we have |V (T2)| ≥ 2. Moreover, it follows
from the choice of the diametral path P that d(udiam(T )−1) = 2.

Case 2. t = 2 and |V (T1)| = 4. In this case, u2 is a weak support vertex
of T and T1 is a path on four vertices. Note that |V (T2)| ≥ 2. If |V (T2)| = 2,
then diam(T ) = 4 and T2 = u3u4 is a path on two vertices, implying that the
function h1 defined by h1(u0) = h1(u4) = 3, h1(u1) = h1(u3) = 0 and h1(x) = 2
otherwise, is a GTRDF on T and hence

γg[3R](T ) ≤ ω(h1) = 10 < 7n/4.

If |V (T2)| = 3, then since d(udiam(T )−1) = 2, we have that diam(T ) = 5 and
T2 = u3u4u5 is a path on three vertices, implying that the function h2 defined by
h2(u1) = h2(u2) = h2(u5) = 4 and h2(x) = 0 otherwise, is a GTRDF on T and
hence

γg[3R](T ) ≤ ω(h2) = 12 < 7n/4.



Some Results on the Global Triple Roman Domination... 731

If |V (T2)| ≥ 5, then by Observation 3 and the induction hypothesis, we have

γg[3R](T ) ≤ γg[3R](T2) + 7 ≤ 7|V (T2)|/4 + 7 = 7(n− 4)/4 + 7 = 7n/4.

Now we consider the last case that |V (T2)| = 4. Since d(udiam(T )−1) = 2, it
is clear that either diam(T ) = 6 and T2 = u3u4u5u6 is a path on four vertices or
diam(T ) = 5 and T2 = uu3u4u5 is a path on four vertices (where u is the unique
leaf adjacent to u3 in T ). If the former holds, then the function h2 defined earlier
is a GTRDF on T , implying that

γg[3R](T ) ≤ ω(h2) = 12 < 7n/4.

If the latter holds, then the function h3 defined by h3(u0) = h3(u5) = 3, h3(u2) =
h3(u3) = 4 and h3(x) = 0 otherwise, is a GTRDF on T , implying that

γg[3R](T ) ≤ ω(h3) = 14 = 7n/4.

Case 3. t = 2 and |V (T1)| ≥ 5. Since |V (T1)| ≥ 5, we conclude from the
induction hypothesis that

γg[3R](T1) ≤ 7|V (T1)|/4.(1)

Note that |V (T2)| ≥ 2. According to the values of |V (T2)|, we distinguish the
following two subcases.

Subcase 3.1. |V (T2)| ∈ {2, 3}. If |V (T2)| = 3, then since d(udiam(T )−1) = 2,
we have that diam(T ) = 5 and T2 = u3u4u5 is a path on three vertices and hence
by Observation 2 and (1),

γg[3R](T ) ≤ γg[3R](T1) + 4 ≤ 7|V (T1)|/4 + 4 = 7(n− 3)/4 + 4 < 7n/4.

Now we assume that |V (T2)| = 2. This forces that diam(T ) = 4 and T2 = u3u4
is a path on two vertices. If every vertex of N(u2)\{u1, u3} is a leaf, then the
function h defined by h(u1) = h(u2) = 4, h(u4) = 3 and h(x) = 0 otherwise, is a
GTRDF on T and hence

γg[3R](T ) ≤ ω(h) = 11 < 7n/4.

So in the following we may assume that N(u2)\{u1, u3} has a support vertex.
Moreover, since t = 2, it follows from the choice of the diametral path P that
every support vertex in N(u2)\{u1, u3} is a weak support vertex. Thus if u2 is
a support vertex, then the function h defined by h(u2) = 4, h(x) = 0 for each
x ∈ N(u2) and h(x) = 3 otherwise, is a GTRDF on T and so

γg[3R](T ) ≤ ω(h) ≤ 3(n− 2)/2 + 4 < 7n/4;
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and if u2 is not a support vertex, then every vertex in N(u2) is a weak support
vertex and so the function h defined by h(x) = 0 for each x ∈ N(u2) and h(x) = 3
otherwise, is a GTRDF on T , implying that

γg[3R](T ) ≤ ω(h) = 3(n− 1)/2 + 3 < 7n/4.

Subcase 3.2. |V (T2)| ≥ 4. If |V (T2)| = 4, then since d(udiam(T )−1) = 2, we
have that either diam(T ) = 6 and T2 = u3u4u5u6 is a path on four vertices or
diam(T ) = 5 and T2 = uu3u4u5 is a path on four vertices (where u is the unique
leaf adjacent to u3 in T ). In either case, it follows from Observation 3 and (1)
that

γg[3R](T ) ≤ γg[3R](T1) + 7 ≤ 7|V (T1)|/4 + 7 = 7(n− 4)/4 + 7 = 7n/4.

If |V (T2)| ≥ 5, then by the induction hypothesis, γg[3R](T2) ≤ 7|V (T2)|/4 and
hence by Observation 1 and (1),

γg[3R](T ) ≤ γg[3R](T1) + γg[3R](T2) ≤ 7|V (T1)|/4 + 7|V (T2)|/4 = 7n/4.

Case 4. t ≥ 3. In this case, we conclude from the choice of the diametral
path P that diam(T ) ≥ 6 and so |V (T2)| ≥ 5. Note that T1 = u0u1u2 is a path
on three vertices. Then by Observation 2 and the induction hypothesis, we have

γg[3R](T ) ≤ γg[3R](T2) + 4 ≤ 7|V (T2)|/4 + 4 = 7(n− 3)/4 + 4 < 7n/4.

This completes the proof.

Next, we shall characterize the trees attaining the upper bound of Theorem
5. In order to state the characterization, let T be the family of trees obtained
from the disjoint union of l ≥ 2 paths P i

4 = ui1u
i
2u

i
3u

i
4 (1 ≤ i ≤ l) by adding l− 1

edges incident with ui2’s such that the resulting graph is a tree (for l = 5, a tree
in the family T is shown in Figure 1).
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Figure 1. A tree in the family T .
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Proposition 6. For any tree T ∈ T on n vertices, γg[3R](T ) = 7n/4.

Proof. Let T ∈ T be the tree obtained as described above and let g be a
γg[3R](T )-function. By the definition of γg[3R](T )-function, it is easy to check
that g(ui1) + g(ui2) ≥ 3 and g(ui3) + g(ui4) ≥ 3 for each i ∈ {1, 2, . . . , l}. Moreover,
it is not possible that there exists some i ∈ {1, 2, . . . , l} such that g(ui1)+g(ui2) =
g(ui3)+g(ui4) = 3 (for otherwise, g(ui1) = g(ui4) = 3 and g(ui2) = g(ui3) = 0, a con-
tradiction to our assumption that g is a γg[3R](T )-function). Thus we have that
for each i ∈ {1, 2, . . . , l}, g(ui1) + g(ui2) ≥ 4 or g(ui3) + g(ui4) ≥ 4, implying that
g(ui1) + g(ui2) + g(ui3) + g(ui4) ≥ 7 and so γg[3R](T ) = ω(g) ≥ 7n/4. On the other
hand, the function h defined by h(ui1) = h(ui3) = 0, h(ui2) = 4 and h(ui4) = 3 for
each i ∈ {1, 2, . . . , l}, is a GTRDF on T and so γg[3R](T ) ≤ ω(h) = 7n/4. As a
result, we obtain γg[3R](T ) = 7n/4.

Theorem 7. For any tree T on n ≥ 5 vertices, γg[3R](T ) = 7n/4 if and only if

T ∈ T .

Proof. By Proposition 6, the sufficiency is trivial. To show the necessity, we
demand to the proof of Theorem 5. Let γg[3R](T ) = 7n/4. Clearly n ≡ 0 (mod 4).
The proof is by induction on n. Now let n = 8. From the proof of Theorem
5, there is only one case, namely, a subcase of Case 2, where it is possible to
achieve equality. Using the terminology from this proof, we have t = 2, |V (T1)| =
|V (T2)| = 4, diam(T ) = 5 and T2 = uu3u4u5 is a path on four vertices (where u
is the unique leaf adjacent to u3 in T ). This forces T ∈ T . Assume, then, that
n > 8 and that for any tree T ′ with 5 ≤ |V (T ′)| < n, if γg[3R](T

′) = 7|V (T ′)|/4,
then T ′ ∈ T . Let T be a tree on n > 8 vertices. From the proof of Theorem 5,
there are only two cases, namely, a subcase of Case 2 and Subcase 3.2 of Case 3,
where they are possible to achieve equality.

First, suppose that the tree T satisfies the conditions of the subcase of Case
2. Using the terminology from the proof of Theorem 5, we have that T is the
tree satisfying that t = 2, |V (T1)| = 4 and |V (T2)| ≥ 5. Note that that u2
is a weak support vertex of degree 3 in T and T1 is a path on four vertices.
Then by Observation 3 and Theorem 5, 7n/4 = γg[3R](T ) ≤ γg[3R](T2) + 7 ≤
7|V (T2)|/4+7 = 7(n−4)/4+7 = 7n/4 and so we must have equality throughout
this inequality chain. In particular, γg[3R](T2) = 7|V (T2)|/4 and hence by the
induction hypothesis, T2 ∈ T . Thus if dT2

(u3) ≥ 3, then since u2 is a weak
support vertex of degree 3 in T and T1 is a path on four vertices, it is easy to
check that T ∈ T . So in the following we may assume that dT2

(u3) ∈ {1, 2}. Now
let T ′

1 (respectively, T ′
2) be the connected component of T − u3u4 that contains

u3 (respectively, u4). Since T2 ∈ T , we have |V (T2)| ≥ 8. If dT2
(u3) = 1, then

|V (T ′
1)| = |V (T1)|+1 = 5 and |V (T ′

2)| = |V (T2)| − 1 ≥ 7 and if dT2
(u3) = 2, then

|V (T ′
1)| = |V (T1)|+ 2 = 6 and |V (T ′

2)| = |V (T2)| − 2 ≥ 6. In either case, T ′
i /∈ T
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for i ∈ {1, 2}. Moreover, by Observation 1 and Theorem 5,

7n/4 = γg[3R](T ) ≤ γg[3R](T
′
1) + γg[3R](T

′
2) ≤ 7|V (T ′

1)|/4 + 7|V (T ′
2)|/4 = 7n/4

and so we must have equality throughout this inequality chain. In particular,
γg[3R](T

′
i ) = 7|V (T ′

i )|/4 for each i ∈ {1, 2} and hence by the induction hypothesis,
we have T ′

i ∈ T , which is a contradiction to the fact that T ′
i /∈ T .

Second, suppose that the tree T satisfies the conditions of Subcase 3.2 of
Case 3. Using the terminology from the proof of Theorem 5, we have that T is
the tree satisfying that t = 2, |V (T1)| ≥ 5 and |V (T2)| ≥ 4. By the choice of
the diametral path P , we have diam(T1) ∈ {3, 4} and hence T1 /∈ T . Then by
Theorem 5 and the induction hypothesis,

γg[3R](T1) < 7|V (T1)|/4.(2)

Recall that d(udiam(T )−1) = 2. Thus if |V (T2)| = 4, then either diam(T ) = 6 and
T2 = u3u4u5u6 is a path on four vertices or diam(T ) = 5 and T2 = uu3u4u5 is a
path on four vertices (where u is the unique leaf adjacent to u3 in T ). In either
case, it follows from Observation 3 and (2) that

γg[3R](T ) ≤ γg[3R](T1) + 7 < 7|V (T1)|/4 + 7 = 7(n− 4)/4 + 7 = 7n/4,

a contradiction. If |V (T2)| ≥ 5, then by Theorem 5, γg[3R](T2) ≤ 7|V (T2)|/4 and
hence by Observation 1 and (2),

γg[3R](T ) ≤ γg[3R](T1) + γg[3R](T2) < 7|V (T1)|/4 + 7|V (T2)|/4 = 7n/4,

a contradiction. This completes the proof.

3. Graphs with Large Global Triple Roman Domination Number

In this section, we shall improve the results of Propositions A, B and C by
characterizing graphs with large global triple Roman domination number.

Lemma 8. For any graph G on n vertices with diam(G) ≥ 4, γg[3R](G) ≤ 3n− 7
with equality if and only if G = P5.

Proof. Let P = u0u1 · · ·udiam(G) be a diametral path of G. If diam(G) ≥ 5, then
the function h1 defined by h1(u0) = h1(u2) = h1(u3) = h1(u5) = 0, h1(u1) =
h1(u4) = 4 and h1(x) = 3 otherwise, is a GTRDF on G and hence γg[3R](G) ≤
ω(h1) = 3(n− 6) + 8 = 3n− 10. Next, assume that diam(G) = 4.

If d(u4) ≥ 2 (the case d(u0) ≥ 2 is similar), then assume, without loss of
generality, that u5 ∈ N(u4)\{u3} and therefore the function h1 defined earlier



Some Results on the Global Triple Roman Domination... 735

is a GTRDF on G, implying that γg[3R](G) ≤ ω(h1) = 3n − 10. If d(u3) ≥ 3
(the case d(u1) ≥ 3 is similar), then assume, without loss of generality, that
u5 ∈ N(u3)\{u2, u4} and therefore the function h2 defined by h2(u1) = h2(u2) =
h2(u4) = h2(u5) = 0, h2(u0) = h2(u3) = 4 and h2(x) = 3 otherwise, is a GTRDF
on G, implying that γg[3R](G) ≤ ω(h2) = 3(n− 6) + 8 = 3n− 10. Hence we may
assume that d(u0) = d(u4) = 1 and d(u1) = d(u3) = 2. If d(u2) ≥ 3, then assume,
without loss of generality, that u5 ∈ N(u2)\{u1, u3} and therefore the function
h3 defined by h3(u1) = h3(u3) = 0, h3(u2) = h3(u5) = 2 and h3(x) = 3 otherwise,
is a GTRDF on G, implying that γg[3R](G) ≤ ω(h3) = 3(n−4)+4 = 3n−8. Now
let d(u2) = 2. Clearly G = P5. Let h be a γg[3R](P5)-function. By the definition of
γg[3R](P5)-function, one can check that h(u0) + h(u1) ≥ 3 and h(u3) + h(u4) ≥ 3.
If at least one of h(u0)+h(u1) and h(u3)+h(u4), say h(u0)+h(u1), equals 3, then
it follows from the definition of γg[3R](P5)-function that h(u0) = 3 and h(u1) = 0,
implying that h(u2) ≥ 2 and so γg[3R](P5) = ω(h) ≥ 8. If h(u0) + h(u1) ≥ 4
and h(u3) + h(u4) ≥ 4, then γg[3R](P5) = ω(h) ≥ 8. In either case, we have
γg[3R](P5) ≥ 8. On the other hand, it follows from the proof of Theorem 5 that
γg[3R](P5) ≤ 8. Thus γg[3R](P5) = 8 = 3n− 7. This completes the proof.

Proposition 9. For each G ∈ {P4, S(1, 2), H1, H2, H3} of order n,

γg[3R](G) =







3n− 4, if G = P4,
3n− 6, if G = H1,
3n− 7, if G ∈ {S(1, 2), H2, H3},

where H1 and Hi (i ∈ {2, 3}) are illustrated in Figures 2 and 3, respectively.

2 2 2 2

1

H1

Figure 2. The graph H1 with γg[3R](H1) = 3n− 6.

0 4 4 0

30

H2

4 0 0 4

0

H3

Figure 3. The graphs H2 and H3 with γg[3R](H2) = γg[3R](H3) = 3n− 7.
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Proof. For each G ∈ {P4, S(1, 2), H1}, let h = (V h
0 , V

h
1 , . . . , V

h
4 ) be a γg[3R](G)-

function. First, suppose that G = P4 = u1u2u3u4. By the definition of γg[3R](G)-
function, we have h(u1) + h(u2) ≥ 3 and h(u3) + h(u4) ≥ 3. If at least one of
h(u1)+h(u2) and h(u3)+h(u4), say h(u1)+h(u2), equals 3, then clearly h(u1) = 3
and h(u2) = 0. This forces h(u3) ≥ 2 and h(u4) = 4, implying that γg[3R](G) =
ω(h) ≥ 9. If h(u1)+h(u2) ≥ 4 and h(u3)+h(u4) ≥ 4, then γg[3R](G) = ω(h) ≥ 8.
In either case, we have γg[3R](G) ≥ 8. On the other hand, one can check that the
function g defined by g(u2) = g(u3) = 4 and g(u1) = g(u4) = 0, is a GTRDF on
G and hence γg[3R](G) ≤ 8. This forces γg[3R](G) = 8 = 3n− 4.

Second, suppose that G = S(1, 2). If there exists some vertex v ∈ V h
0 ,

then by the definition of γg[3R](G)-function, we have
∑

x∈N(v) h(x) ≥ 4 and
∑

x/∈N [v] h(x) ≥ 4, implying that γg[3R](G) = ω(h) = h(v) +
∑

x∈N(v) h(x) +
∑

x/∈N [v] h(x) ≥ 8. Hence we may assume that V h
0 = ∅. If V h

1 = ∅, then γg[3R](G) =

ω(h) = 2|V h
2 |+ 3|V h

3 |+ 4|V h
4 | ≥ 2(|V h

2 |+ |V h
3 |+ |V h

4 |) = 2|V (G)| = 10. So in the
following we may assume that there exists some vertex v ∈ V h

1 . Then by the def-
inition of γg[3R](G)-function, we have

∑

x∈N(v) h(x) ≥ 3 and
∑

x/∈N [v] h(x) ≥ 3. If
at least one of

∑

x∈N(v) h(x) and
∑

x/∈N [v] h(x) equals at least 4, then γg[3R](G) =
ω(h) = h(v) +

∑

x∈N(v) h(x) +
∑

x/∈N [v] h(x) ≥ 8. Now let
∑

x∈N(v) h(x) =
∑

x/∈N [v] h(x) = 3. It follows from the definition of γg[3R](G)-function that there

exist two vertices u ∈ N(v) ∩ V h
3 and w ∈ (V (G)\N [v]) ∩ V h

3 . Moreover, since
V h
0 = ∅, this forces that for each x ∈ V (G)\{u, v, w}, h(x) ≥ 1. Thus γg[3R](G) =

ω(h) ≥ 9. In the above cases, we have γg[3R](G) ≥ 8. On the other hand, one
can check that the function g defined by g(x) = 4 for each support vertex x and
g(x) = 0 otherwise, is a GTRDF on G and hence γg[3R](G) ≤ 8. This forces
γg[3R](G) = 8 = 3n− 7.

Third, suppose that G = H1, where V (G) = {u1, u2, . . . , u5} and E(G) =
{u1u2, u2u3, u3u4, u2u5, u3u5}. By the definition of γg[3R](G)-function, we have
h(u1) + h(u2) ≥ 3 and h(u3) + h(u4) ≥ 3. If at least one of h(u1) + h(u2) and
h(u3) + h(u4), say h(u1) + h(u2), equals 3, then clearly h(u1) = 3 and h(u2) = 0.
This forces at least one of h(u3) and h(u5) equals at least 2 and h(u4) = 4,
implying that γg[3R](G) = ω(h) ≥ 9. Suppose next that h(u1) + h(u2) ≥ 4 and
h(u3) + h(u4) ≥ 4. If at least one of h(u1) + h(u2) and h(u3) + h(u4) equals at
least 5, then γg[3R](G) = ω(h) ≥ 9. Now let h(u1) + h(u2) = h(u3) + h(u4) = 4.
If h(u5) ≥ 1, then γg[3R](G) = ω(h) ≥ 9. Assume that h(u5) = 0. It follows from
the definition of γg[3R](G)-function that h(u1)+h(u4) ≥ 4 and h(u2)+h(u3) ≥ 4.
If h(u1) + h(u4) = h(u2) + h(u3) = 4, then since h(u5) = 0, we have that one of
h(u2) and h(u3) equals 4 and the other equals 0, say h(u2) = 4 and h(u3) = 0.
This forces that h(u1) = 0 and h(u4) = 4, a contradiction to our assumption that
h is a γg[3R](G)-function. Thus at least one of h(u1) + h(u4) and h(u2) + h(u3)
equals at least 5, and hence γg[3R](G) = ω(h) ≥ 9. In the above cases, we have
γg[3R](G) ≥ 9. On the other hand, one can check that the function g defined
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by g(u1) = g(u2) = g(u3) = g(u4) = 2 and g(u5) = 1, is a GTRDF on G and
hence γg[3R](G) ≤ ω(g) = 9. This forces γg[3R](G) = 9 = 3n − 6. Using a similar
argument we can obtain that if G ∈ {H2, H3}, then γg[3R](G) = 3n− 7.

Lemma 10. For any connected graph G on n vertices with diam(G) = 3,

γg[3R](G) ≤ 3n− 4.

Furthermore, the following hold.

(a) γg[3R](G) = 3n− 4 if and only if G = P4,

(b) γg[3R](G) 6= 3n− 5,

(c) γg[3R](G) = 3n− 6 if and only if G = H1,

(d) γg[3R](G) = 3n − 7 if and only if G ∈ {S(1, 2), H2, H3} or G ∈ {S(1, 2),
H2, H3},

where H1 and Hi (i ∈ {2, 3}) are illustrated in Figures 2 and 3, respectively.

Proof. If n = 4, that is, if G = P4, then by Proposition 9, γg[3R](G) = 3n − 4.
Suppose next that n ≥ 5. Let P = u1u2u3u4 be a diametral path of G. Without
loss of generality, we may assume that d(u1) ≤ d(u4). If d(u1) ≥ 2 or d(u4) ≥ 3,
then d(u1)+d(u4) ≥ 4 and the function h defined by h(u1) = h(u4) = 4, h(x) = 0
for each x ∈ N(u1)∪N(u4) and h(x) = 3 otherwise, is a GTRDF on G, implying
that γg[3R](G) ≤ ω(h) = 3(n − d(u1) − d(u4) − 2) + 8 ≤ 3n − 10. Hence we may
assume that d(u1) = 1 and d(u4) ∈ {1, 2}.

Claim 1. If d(u1) = d(u4) = 1, then γg[3R](G) ≤ 3n− 6 with equality if and only

if G = H1. Moreover, γg[3R](G) = 3n− 7 if and only if G ∈ {S(1, 2), H2}.

Proof. If d(u3) ≥ 5, then the function h defined by h(u1) = h(u3) = 4, h(x) = 0
for each x ∈ N(u3)\{u2} and h(x) = 3 otherwise, is a GTRDF on G and so
γg[3R](G) ≤ ω(h) = 3(n − d(u3) − 1) + 8 ≤ 3n − 10. Thus we may assume that
d(u3) ≤ 4. Similarly we may assume that d(u2) ≤ 4. This forces |N(u2)∩N(u3)| ∈
{0, 1, 2}. Consider the following three cases.

Case 1. |N(u2) ∩ N(u3)| = 0. If n = 5, then clearly G = S(1, 2) and
hence by Proposition 9, γg[3R](G) = 3n − 7. Now let n ≥ 6. Moreover, since
d(u1) = d(u4) = 1, we have d(u2)+d(u3) ≥ 5. Suppose now that d(u2)+d(u3) = 5.
Without loss of generality, we may assume that d(u2) = 2 and d(u3) = 3. Let
N(u3)\{u2, u4} = {v}. Since n ≥ 6, this forces that there must exist some vertex,
say w, in N(v)\{u3}. Note that w /∈ N(u1) ∪ N(u2) ∪ N(u3) ∪ N(u4). This
implies that d(u1, w) = 4 > diam(G), a contradiction. Thus d(u2) + d(u3) ≥ 6.
Recall that |N(u2) ∩ N(u3)| = 0. One can check that the function h defined by
h(u2) = h(u3) = 4, h(x) = 0 for each x ∈ (N(u2)∪N(u3))\{u2, u3} and h(x) = 3
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otherwise, is a GTRDF on G and so γg[3R](G) ≤ ω(h) = 3(n−d(u2)−d(u3))+8 ≤
3n− 10.

Case 2. |N(u2)∩N(u3)| = 1. If n = 5, then G = H1 and hence by Proposition
9, γg[3R](G) = 3n − 6. Now let n ≥ 6 and let N(u2) ∩ N(u3) = {w}. Without
loss of generality, assume that d(u2) ≥ d(u3). Note that d(u3) ≥ 3. If d(u2) =
d(u3) = 3, then since n ≥ 6 and d(u1) = d(u4) = 1, there must exist some
vertex, say v, in V (G)\{u1, u2, u3, u4, w} such that v ∈ N(w) and so the function
h defined by h(u2) = h(u3) = 0, h(v) = h(w) = 2 and h(x) = 3 for each
x ∈ V (G)\{u2, u3, v, w}, is a GTRDF on G, implying that γg[3R](G) ≤ ω(h) =
3(n−4)+4 = 3n−8. So in the following we may assume that d(u2) ≥ 4.Moreover,
since d(u2) ≤ 4 by our earlier assumptions, this forces d(u2) = 4. Further, we
note that d(u3) ∈ {3, 4} since d(u3) ≤ d(u2).

If d(u3) = 4, then since N(u2) ∩ N(u3) = {w}, one can check that the
function h defined by h(u2) = h(u3) = 4, h(x) = 0 for each x ∈ (N(u2) ∪
N(u3))\{u2, u3, w} and h(x) = 3 otherwise, is a GTRDF on G and so γg[3R](G) ≤
ω(h) = 3(n−6)+8 = 3n−10. Suppose next that d(u3) = 3. Let N(u2)\{u1, u3, w}
= {v}. Note that v /∈ N(u3).

First, suppose that n = 6. If vw ∈ E(G), then the function h defined by
h(u1) = h(u2) = 2, h(u3) = h(w) = 0 and h(u4) = h(v) = 3, is a GTRDF on G
and so γg[3R](G) ≤ ω(h) = 10 = 3n− 8. If vw /∈ E(G), then clearly G = H2 and
hence by Proposition 9, γg[3R](G) = 3n− 7.

Second, suppose that n ≥ 7. Since d(u1) = d(u4) = 1, d(u2) = 4 and
d(u3) = 3, this forces that xw ∈ E(G) for each x ∈ V (G)\{u1, u2, u3, u4, v, w}
(for otherwise, diam(G) ≥ d(x, u4) ≥ 4, a contradiction). It is easy to see that
the function h defined by h(u2) = h(u3) = h(w) = 4 and h(x) = 0 otherwise, is
a GTRDF on G and so γg[3R](G) ≤ ω(h) = 12 ≤ 3n− 9.

Case 3. |N(u2) ∩ N(u3)| = 2. In this case, one can check that the function
h defined by h(u1) = h(u2) = h(u3) = h(u4) = 2, h(x) = 1 for each x ∈
N(u2) ∩ N(u3) and h(x) = 3 otherwise, is a GTRDF on G and so γg[3R](G) ≤
ω(h) = 3(n− 6) + 10 = 3n− 8.

Claim 1 holds. �

Claim 2. If d(u1) = 1 and d(u4) = 2, then γg[3R](G) ≤ 3n − 7 with equality if

and only if G = H3 or G ∈ {S(1, 2), H2, H3}.

Proof. Let N(u4)\{u3} = {v}. According to the values of |N(v) ∩ {u2, u3}|, we
distinguish the following three cases.

Case 1. |N(v)∩{u2, u3}| = 0. In this case, there must exist some vertex, say
w, in V (G)\{u1, u2, u3, u4, v} adjacent to both v and u2 (for otherwise, diam(G) ≥
d(u1, v) ≥ 4, which is a contradiction). Observe that the function h defined by
h(u1) = h(u2) = h(u4) = h(v) = 2, h(u3) = h(w) = 1 and h(x) = 3 otherwise, is
a GTRDF on G and so γg[3R](G) ≤ ω(h) = 3(n− 6) + 10 = 3n− 8.
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Case 2. |N(v) ∩ {u2, u3}| = 1. If n = 5, then it is not difficult to check that
G = H3 or G = H3, and hence by Proposition 9, γg[3R](G) = γg[3R](G) = 3n− 7.
Now let n ≥ 6. Recall that d(u1) = 1 and d(u4) = 2. This forces that there must
exist some vertex, say w, in V (G)\{u1, u2, u3, u4, v} adjacent to at least one of
u2, u3 and v. Note that |N(v) ∩ {u2, u3}| = 1. Thus if w ∈ N(ui)\N(u5−i) for
some i ∈ {2, 3}, then the function h defined by h(u2) = h(u3) = 4, h(u1) =
h(u4) = h(w) = h(v) = 0 and h(x) = 3 otherwise, is a GTRDF on G and so
γg[3R](G) ≤ ω(h) = 3(n− 6) + 8 = 3n− 10; and if w ∈ N(u2) ∩N(u3), then the
function h defined by h(u1) = h(u2) = h(u3) = h(u4) = 2, h(w) = h(v) = 1 and
h(x) = 3 otherwise, is a GTRDF on G and so γg[3R](G) ≤ ω(h) = 3(n−6)+10 =
3n − 8. So in the following we may assume that w ∈ N(v)\(N(u2) ∪ N(u3)).
Recall that |N(v) ∩ {u2, u3}| = 1. If N(v) ∩ {u2, u3} = {u2}, then the function
h defined by h(u2) = h(v) = 0, h(u3) = h(u4) = 2 and h(x) = 3 otherwise,
is a GTRDF on G and so γg[3R](G) ≤ ω(h) = 3(n − 4) + 4 = 3n − 8; and
if N(v) ∩ {u2, u3} = {u3}, then the function h defined by h(u1) = h(v) = 4,
h(u2) = h(u3) = h(u4) = h(w) = 0 and h(x) = 3 otherwise, is a GTRDF on G
and so γg[3R](G) ≤ ω(h) = 3(n− 6) + 8 = 3n− 10.

Case 3. |N(v) ∩ {u2, u3}| = 2. If n = 5, then clearly G = S(1, 2) and hence
by Proposition 9, γg[3R](G) = γg[3R](G) = 3n − 7. Assume next that n ≥ 6. If
d(u2) ≥ 5, then the function h defined by h(u1) = h(u2) = 4, h(x) = 0 for
each x ∈ N(u2)\{u1} and h(x) = 3 otherwise, is a GTRDF on G and hence
γg[3R](G) ≤ ω(h) = 3(n− |N(u2)| − 1) + 8 ≤ 3n− 10. So in the following we may
assume that d(u2) ∈ {3, 4}. Note that d(u1) = 1 and d(u4) = 2. Thus if n ≥ 7,
then it is not difficult to verify that the function h defined by h(u4) = 1 and
h(x) = 2 for each x ∈ V (G)\{u4}, is a GTRDF on G and so γg[3R](G) ≤ ω(h) =
2n − 1 ≤ 3n − 8. Therefore it suffices for us to consider the case when n = 6.
Let V (G)\{u1, u2, u3, u4, v} = {w}. This forces w ∈ N(u2) ∪ N(u3) ∪ N(v) and
w /∈ N(u1) ∪N(u4). Recall that d(u2) ∈ {3, 4}.

First, suppose that d(u2) = 3. It is clear that w ∈ (N(u3) ∪ N(v))\N(u2).
If w ∈ N(u3)\N(v), then define the GTRDF h on G by h(u2) = h(v) = 0,
h(u3) = h(w) = 2 and h(u1) = h(u4) = 3; if w ∈ N(v)\N(u3), then define the
GTRDF h on G by h(u2) = h(u3) = 0, h(v) = h(w) = 2 and h(u1) = h(u4) = 3;
and if w ∈ N(u3)∩N(v), then define the GTRDF h on G by h(u1) = 4, h(u2) =
h(u3) = h(v) = 0 and h(u4) = h(w) = 3. In the above three cases, we have
γg[3R](G) ≤ ω(h) = 10 = 3n− 8.

Second, suppose that d(u2) = 4. This implies that w ∈ N(u2). If w /∈ N(u3)∪
N(v), then define the GTRDF h on G by h(u1) = h(u2) = 2, h(u3) = h(v) = 0
and h(u4) = h(w) = 3; if w ∈ N(v)\N(u3), then define the GTRDF h on
G by h(u1) = h(v) = 2, h(u2) = h(u3) = 3 and h(u4) = h(w) = 0; and if
w ∈ N(u3)\N(v), then define the GTRDF h on G by h(u1) = h(u3) = 2, h(u2) =
h(v) = 3 and h(u4) = h(w) = 0. In the above cases, we have γg[3R](G) ≤ ω(h) =
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10 = 3n− 8. If w ∈ N(u3) ∩N(v), then it is easy to see that G = H2 and hence
by Proposition 9, γg[3R](G) = γg[3R](G) = 3n− 7. Thus Claim 2 holds. �

This completes the proof.

In the following, we shall consider the graphs with diameter two. Let H be
the family of all graphs on five vertices with minimum degree one and maximum
degree four.
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v1 v2

v

0
0

0

4 3

4
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w1

w2

w3

v1 v2

v

0
0

0

34

4

H5

w1

w2

w3

v1 v2

v

0
0

0

4 3

4

H6

Figure 4. The graphs H4 to H6 with γg[3R](Hi) = 3n− 7.

Proposition 11. For each G ∈ H∪{H4, H5, H6} of order n, γg[3R](G) = 3n−7,
where H4, H5 and H6 are illustrated in Figure 4.

Proof. For each G ∈ H∪{H4}, let h = (V h
0 , V

h
1 , . . . , V

h
4 ) be a γg[3R](G)-function.

First, suppose that G ∈ H. If there exists some vertex w ∈ V h
0 , then by the

definition of γg[3R](G)-function, we have
∑

x∈N(w) h(x) ≥ 4 and
∑

x/∈N [w] h(x) ≥
4, implying that γg[3R](G) = ω(h) = h(w) +

∑

x∈N(w) h(x) +
∑

x/∈N [w] h(x) ≥ 8.

Next, assume that V h
0 = ∅. Let u and v be two vertices of G with d(u) = 4

and d(v) = 1. Then u ∈ V h
3 ∪ V h

4 . If u ∈ V h
4 , then since V h

0 = ∅, we have
γg[3R](G) = ω(h) ≥ 8. Now let u ∈ V h

3 . If v ∈ V h
2 ∪ V h

3 ∪ V h
4 , then since V h

0 = ∅,

we have γg[3R](G) = ω(h) ≥ 8. If v ∈ V h
1 , then since h is also a TRDF on

G, we have that v must be adjacent to at least one vertex of V h
3 ∪ V h

4 or two
vertices of V h

2 in G. implying that γg[3R](G) = ω(h) ≥ 9. In the above cases,
we have γg[3R](G) ≥ 8. On the other hand, one can check that the function g
defined by g(u) = g(v) = 4 and g(x) = 0 otherwise, is a GTRDF on G and hence
γg[3R](G) ≤ 8. This forces γg[3R](G) = 8 = 3n− 7.

Second, suppose that G = H4. Since h is a γg[3R](G)-function, we have that h

is a TRDF on G. We next consider the complement G. In the complement G, one
can check that h(w2) + h(v) ≥ 3, h(w1) + h(v2) ≥ 3 and h(v1) ≥ 3. If h(w3) ≥ 2,
then γg[3R](G) = ω(h) ≥ 11.

Now assume that h(w3) = 0. If at least two of h(w2) + h(v), h(w1) + h(v2)
and h(v1) equal at least 4, then γg[3R](G) = ω(h) ≥ 11. Suppose next that at least
two of h(w2) + h(v), h(w1) + h(v2) and h(v1) equal 3. Without loss of generality,
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we may assume that f(w2)+f(v) = 3. By the definition of γg[3R](G)-function, we
have h(w2) = 3 and h(v) = 0. Moreover, since h(w3) = 0, we have h(w1) = 4 and
so h(v1) = 3. If h(v2) ≥ 1, then γg[3R](G) = ω(h) ≥ 11. If h(v2) = 0, then since v
is adjacent to exactly two vertices v1 and v2 in G with h(v) = 0 and h(v1) = 3,
it is a contradiction to our assumption that h is a γg[3R](G)-function.

Next assume that h(w3) = 1. If h(w2) + h(v) = h(w1) + h(v2) = 3, then
by the definition of γg[3R](G)-function, we have h(w2) = h(v2) = 3 and h(v) =
h(w1) = 0, a contradiction to our assumption that h(w3) = 1. Thus at least one of
h(w2)+h(v) and h(w1)+h(v2) equals at least 4, and hence γg[3R](G) = ω(h) ≥ 11.

In each case, we have γg[3R](G) ≥ 11. On the other hand, one can check that
the function g defined by g(v) = g(v1) = 4, g(v2) = 3 and g(x) = 0 otherwise, is
a GTRDF on G and hence γg[3R](G) ≤ 11. This forces γg[3R](G) = 11 = 3n − 7.
Using a similar argument we can obtain that if G ∈ {H5, H6}, then γg[3R](G) =
3n− 7.

Lemma 12. Let G be a connected graph on n ≥ 5 vertices with diameter two. If

δ ≤ n− 4, then

γg[3R](G) ≤ 3n− 7

with equality if and only if G ∈ H ∪ {H4, H5, H6}, where H4, H5 and H6 are

illustrated in Figure 4.

Proof. Let v be a vertex of G having minimum degree δ. Since G has diameter
two, we have that every vertex in V (G)\N [v] is adjacent to some vertex in N(v).
If δ ≤ n − 5, then the function h defined by h(x) = 3 for each x ∈ N [v] and
h(x) = 1 for each x ∈ V (G)\N [v], is a GTRDF on G and so γg[3R](G) ≤ ω(h) =
3(δ+1)+ (n− δ− 1) = n+2δ+2 ≤ 3n− 8. Thus it suffices for us to restrict our
attention to the graphs with δ = n− 4.

If n = 5, then δ = n− 4 = 1 and since G has diameter two, we have G ∈ H
and so by Proposition 11, γg[3R](G) = 3n− 7. Hence we may assume that n ≥ 6.
Let V (G)\N [v] = {w1, w2, w3}. If |N(wi) ∩N(v)| ≥ 2 for each i ∈ {1, 2, 3}, then
the function h defined by h(v) = 4, h(w1) = h(w2) = h(w3) = 0 and h(x) = 3 for
each x ∈ N(v), is a GTRDF on G and so γg[3R](G) ≤ ω(h) = 3δ + 4 = 3n − 8.
Moreover, note that |N(wi)∩N(v)| ≥ 1 for each i ∈ {1, 2, 3} since G has diameter
two. So in the following we may assume that there exists some vertex, say w1,
in {w1, w2, w3} such that |N(w1) ∩ N(v)| = 1. This forces n ≤ 7 (for otherwise,
d(w1) ≥ δ = n − 4 ≥ 4, implying that |N(w1) ∩ N(v)| ≥ 2, a contradiction).
Moreover, if n = 7, then δ = n − 4 = 3 and so w1 must be adjacent to both w2

and w3 in G (noting that |N(w1) ∩N(v)| = 1). One can check that the function
h defined by h(v) = h(w1) = 4, h(x) = 3 for x ∈ N(w1) ∩ N(v) and h(x) = 0
otherwise, is a GTRDF on G and hence γg[3R](G) ≤ ω(h) = 11 < 3n−7. Suppose
next that n = 6.
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Note that δ = n−4 = 2. Let N(v) = {v1, v2}. Recall that |N(w1)∩N(v)| = 1.
Without loss of generality, assume that N(w1)∩{v1, v2} = {v1}. Moreover, since
δ = 2, we have w1w2 ∈ E(G) or w1w3 ∈ E(G). Without loss of generality, assume
that w1w2 ∈ E(G). We proceed further with the following claims.

Claim 1. If w1w3, w2w3 /∈ E(G), then γg[3R](G) ≤ 3n− 8.

Proof. Since δ = 2, we have N(w3) = {v1, v2}. If w2v2 ∈ E(G), then the function
h defined by h(w3) = h(v) = 0, h(w1) = h(v2) = 2 and h(w2) = h(v1) = 3, is
a GTRDF on G and so γg[3R](G) ≤ ω(h) = 10 = 3n − 8. Assume next that
w2v2 /∈ E(G). Moreover, since w2v, w2w3 /∈ E(G), w2w1 ∈ E(G) and δ = 2,
we have w2v1 ∈ E(G). Then the function h defined by h(w2) = h(w3) = 0,
h(w1) = h(v2) = 2 and h(v1) = h(v) = 3, is a GTRDF on G and so γg[3R](G) ≤
ω(h) = 10 = 3n− 8. Thus Claim 1 holds. �

As shown earlier, |N(wi)∩N(v)| ≥ 1 for each i ∈ {2, 3}, this forces |N(wi)∩
{v1, v2}| ∈ {1, 2}.

Claim 2. If w1w3 /∈ E(G) and w2w3 ∈ E(G), then γg[3R](G) ≤ 3n − 7 with

equality if and only if G = H4.

Proof. Recall that |N(wi) ∩ {v1, v2}| ∈ {1, 2} for each i ∈ {2, 3}. If |N(w3) ∩
{v1, v2}| = 1, then define the GTRDF h on G by h(w1) = h(w3) = 0, h(w2) =
h(v) = 2 and h(v1) = h(v2) = 3 and hence γg[3R](G) ≤ ω(h) = 10 = 3n− 8. So in
the following we may assume that |N(w3) ∩ {v1, v2}| = 2.

First, suppose that v1v2 /∈ E(G). If v1w2 ∈ E(G), then define the GTRDF h
on G by h(w1) = h(w2) = h(w3) = h(v2) = 0 and h(v1) = h(v) = 4; and if v1w2 /∈
E(G), then define the GTRDF h on G by h(w1) = h(w2) = h(v2) = h(v) = 0
and h(w3) = h(v1) = 4. In either case, we have γg[3R](G) ≤ ω(h) = 8 < 3n− 7.

Second, suppose that v1v2 ∈ E(G). If v1w2 /∈ E(G), then define the GTRDF
h on G by h(w2) = h(w3) = h(v2) = h(v) = 0 and h(w1) = h(v1) = 4 and if
v1w2 ∈ E(G) and v2w2 /∈ E(G), then define the GTRDF h on G by h(w1) =
h(v) = 0, h(w2) = h(v2) = 2 and h(w3) = h(v1) = 3. In either case, we have
γg[3R](G) ≤ ω(h) ≤ 10 = 3n − 8. If v1w2, v2w2 ∈ E(G), that is, if G = H4, then
by Proposition 11, γg[3R](G) = 3n− 7. Thus Claim 2 holds. �

Claim 3. If w1w3 ∈ E(G) and w2w3 /∈ E(G), then γg[3R](G) ≤ 3n − 7 with

equality if and only if G = H5.

Proof. First, suppose that v1v2 /∈ E(G). Note that δ = 2. If |N(v1)∩{w2, w3}| =
0, then clearly v2w2, v2w3 ∈ E(G) and define the GTRDF h on G by h(w2) =
h(w3) = 0, h(v1) = h(v2) = 2 and h(w1) = h(v) = 3, and if |N(v1)∩{w2, w3}| = 2,
then define the GTRDF h on G by h(w1) = h(w2) = h(w3) = h(v2) = 0 and
h(v1) = h(v) = 4. In either case, we have γg[3R](G) ≤ ω(h) ≤ 10 = 3n − 8.
Suppose now that |N(v1) ∩ {w2, w3}| = 1. Without loss of generality, assume
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that v1w2 /∈ E(G) and v1w3 ∈ E(G). Moreover, since w2w3, w2v /∈ E(G), w2w1 ∈
E(G) and δ = 2, we have v2w2 ∈ E(G). Observe that the function h defined by
h(w1) = h(v1) = 0, h(w2) = h(v) = 2 and h(w3) = h(v2) = 3, is a GTRDF on G
and so γg[3R](G) ≤ ω(h) = 10 = 3n− 8.

Second, suppose that v1v2 ∈ E(G). Note that |N(wi) ∩ {v1, v2}| ∈ {1, 2} for
each i ∈ {2, 3}. If |N(w2) ∩ {v1, v2}| = |N(w3) ∩ {v1, v2}| = 1, then define the
GTRDF h on G by h(w2) = h(w3) = 0, h(w1) = h(v) = 2 and h(v1) = h(v2) = 3
and hence γg[3R](G) ≤ ω(h) = 10 = 3n−8. So in the following we may assume that
|N(w3)∩{v1, v2}| = 2 (the case |N(w2)∩{v1, v2}| = 2 is similar). If w2v1 /∈ E(G),
then define the GTRDF h on G by h(w1) = h(w3) = h(v1) = h(v) = 0 and
h(w2) = h(v2) = 4; and if w2v1 ∈ E(G) and w2v2 /∈ E(G), then define the
GTRDF h on G by h(w3) = h(v2) = 0, h(w1) = h(v) = 2 and h(w2) = h(v1) = 3.
In either case, we have γg[3R](G) ≤ ω(h) ≤ 10 = 3n − 8. If w2v1, w2v2 ∈ E(G),
that is, if G = H5, then by Proposition 11, γg[3R](G) = 3n − 7. Thus Claim 3
holds. �

Claim 4. If w1w3, w2w3 ∈ E(G), then γg[3R](G) ≤ 3n − 7 with equality if and

only if G = H6.

Proof. Note that |N(wi)∩{v1, v2}| ∈ {1, 2} for each i ∈ {2, 3}. Thus if |N(w3)∩
{v1, v2}| = 1, then define the GTRDF h on G by h(w1) = h(w3) = 0, h(w2) =
h(v) = 2 and h(v1) = h(v2) = 3; if |N(w3)∩{v1, v2}| = 2 and |N(w2)∩{v1, v2}| =
1, then define the GTRDF h on G by h(w1) = h(w2) = 0, h(w3) = h(v) = 2 and
h(v1) = h(v2) = 3; and if |N(w3) ∩ {v1, v2}| = |N(w2) ∩ {v1, v2}| = 2 and v1v2 /∈
E(G), then define the GTRDF h on G by h(w1) = h(w2) = h(w3) = h(v2) = 0
and h(v1) = h(v) = 4. In the above cases, we have γg[3R](G) ≤ ω(h) ≤ 10 = 3n−8.
If |N(w3)∩{v1, v2}| = |N(w2)∩{v1, v2}| = 2 and v1v2 ∈ E(G), that is, if G = H6,
then by Proposition 11, γg[3R](G) = 3n− 7. Thus Claim 4 holds. �

This completes the proof.

We next consider the graphs G on n vertices different from Kn − e with
diam(G) = 2 and δ ∈ {n− 3, n− 2}.

Lemma 13. For any connected graph G on n vertices different from Kn− e with

diam(G) = ω(G) = 2 and δ ∈ {n− 3, n− 2},

γg[3R](G) ≤ 3n− 4.

Furthermore, the following hold.

(a) γg[3R](G) = 3n− 4 if and only if G = K1,3 or G = 2P2.

(b) γg[3R](G) 6= 3n− 5.

(c) γg[3R](G) = 3n− 6 if and only if G = C5.

(d) γg[3R](G) = 3n− 7 if and only if G = P2 ∪ C3.
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Proof. If n = 3, then since diam(G) = 2, we have G = P3 = K3 − e, a contra-
diction. So in the following we may assume that n ≥ 4. Let v be a vertex of G
having minimum degree δ. Since G has diameter two, we have that every vertex
in V (G)\N [v] is adjacent to some vertex in N(v). Moreover, since ω(G) = 2, we
have that G[N(v)] is empty.

We first assume that δ = n− 2. If n = 4, then δ = 2, implying that G is the
cycle C4 (noting that the complement of C4 is 2P2) and γg[3R](G) = 8 = 3n− 4.
If n ≥ 5, then since G[N(v)] is empty, we have d(x) ≤ 2 for each x ∈ N(v), a
contradiction to the fact that d(x) ≥ δ = n− 2 ≥ 3.

Suppose next that δ = n−3. Note that every vertex in V (G)\N [v] is adjacent
to some vertex in N(v) and ω(G) = 2. Thus if n = 4, then δ = 1, implying that
G is the graph K1,3 and therefore γg[3R](G) = 8 = 3n − 4; and if n = 5, then
δ = 2, implying that G ∈ {C5,K2,3} and so γg[3R](K2,3) = 8 = 3n − 7 (noting
that the complement of K2,3 is P2 ∪ C3). Now let G = C5 = w1w2 · · ·w5w1 and
let h = (V h

0 , V
h
1 , . . . , V

h
4 ) be a γg[3R](G)-function. If there exists some vertex, say

w1 ∈ V h
0 , then by the definition of γg[3R](G)-function, we have h(w2)+h(w5) ≥ 4

and h(w3)+h(w4) ≥ 4. If at least one of h(w2)+h(w5) and h(w3)+h(w4) equals at
least 5, then γg[3R](G) = ω(h) ≥ 9. Now let h(w2) + h(w5) = h(w3) + h(w4) = 4.

Since w1 ∈ V h
0 , we may assume that w2 ∈ V h

4 and w5 ∈ V h
0 . This forces that

w4 ∈ V h
4 and w3 ∈ V h

0 , a contradiction to our assumption that h is a γg[3R](G)-

function. Thus V h
0 = ∅. Suppose that there exists some vertex, say w1 ∈ V h

1 .
Since h is a GTRDF on G, we have that either {w2, w5} ∩ (V h

3 ∪ V h
4 ) 6= ∅ or

w2, w5 ∈ V h
2 , and so h(w2) + h(w5) ≥ 4 (noting that V0 = ∅). Similarly, since h

is also a GTRDF on G, we have h(w3) + h(w4) ≥ 4. Thus γg[3R](G) = ω(h) ≥ 9.

Next, assume that V h
1 = ∅. Moreover, since V h

0 = ∅, we have γg[3R](G) = ω(h) =

2|V h
2 | + 3|V h

3 | + 4|V h
4 | ≥ 2(|V h

2 | + |V h
3 | + |V h

4 |) = 10. In each case, we have
γg[3R](G) ≥ 9. On the other hand, one can check that the function g defined by
g(w1) = 1 and g(x) = 2 otherwise is a GTRDF on G and hence γg[3R](G) ≤ 9.
This forces γg[3R](G) = 9 = 3n− 6.

Assume next that n ≥ 6. Since G[N(v)] is empty, we have that for each
x ∈ N(v), 3 ≥ d(x) ≥ δ = n − 3 ≥ 3, implying that d(x) = 3 and n = 6. Let
V (G) \ N [v] = {w1, w2}. It is clear that N(x) = {v, w1, w2} for each x ∈ N(v).
Further, since ω(G) = 2, we have w1w2 /∈ E(G). This forces G = K3,3 and
γg[3R](G) = 8 = 3n− 10. This completes the proof.

In order to state the following results, we shall introduce some additional
notations. For any graph G with diam(G) = 2 and ω(G) ≥ 3, let X denote a
subset of the vertex set of G such that G[X] is a clique with ω(G) vertices and
let Y = V (G)\X.

Observation 14. Let G be a connected graph on n vertices with diam(G) = 2,
ω(G) ≥ 3 and δ ∈ {n− 3, n− 2}. Then for each v ∈ Y, |X\N(v)| ∈ {1, 2}.



Some Results on the Global Triple Roman Domination... 745

Proof. If there exists some vertex, say v, in Y such that |X\N(v)| = 0, then since
G[X] is a clique, we have that G[{v}∪X] is also a clique with |X|+1 = ω(G)+1
vertices, a contradiction. Moreover, if there exists some vertex, say v, in Y such
that |X\N(v)| ≥ 3,then δ ≤ d(v) ≤ n − |X\N(v)| − 1 ≤ n − 4, a contradiction.
Thus |X\N(v)| ∈ {1, 2} for each v ∈ Y, as desired.

Proposition 15. Let G be a connected graph on n ≥ 5 vertices. If G ∈ {C3 ∪
(n− 3)K1, P4 ∪ (n− 4)K1}, then γg[3R](G) = 3n− 5.

Proof. For each G ∈ {C3 ∪ (n − 3)K1, P4 ∪ (n − 4)K1}, let h be a γg[3R](G)-

function. First, suppose that G = C3 ∪ (n− 3)K1, where C3 = w1w2w3w1. Since
h is a TRDF on G, we have that

∑

x∈V (C3)
h(x) ≥ 4 and h(x) ≥ 3 for all other

vertices x of G. Thus γg[3R](G) = ω(h) ≥ 4+3(n−3) = 3n−5. On the other hand,
one can check that the function g defined by g(w1) = 4, g(w2) = g(w3) = 0 and
g(x) = 3 otherwise, is a GTRDF on G and hence γg[3R](G) ≤ 4+3(n−3) = 3n−5.

This forces γg[3R](G) = γg[3R](G) = 3n− 5.

Second, suppose that G = P4 ∪ (n − 4)K1, where P4 = w1w2w3w4. Since h
is a TRDF on G, we have h(w1) + h(w2) ≥ 3, h(w3) + h(w4) ≥ 3 and h(x) ≥ 3
for all other vertices x of G. If h(w1) + h(w2) = h(w3) + h(w4) = 3, then it is
easy to see that h(w1) = h(w4) = 3 and h(w2) = h(w3) = 0, a contradiction
to our assumption that h is a TRDF on G. Thus at least one of h(w1) + h(w2)
and h(w3) + h(w4) equals at least 4, implying that γg[3R](G) ≥ 4 + 3 + 3(n −
4) = 3n − 5. On the other hand, one can check that the function g defined by
g(w1) = g(w2) = 2, g(w3) = 0 and g(x) = 3 otherwise, is a GTRDF on G and
hence γg[3R](G) ≤ 4+ 3(n− 3) = 3n− 5. Thus γg[3R](G) = γg[3R](G) = 3n− 5.

Lemma 16. Let G be a connected graph on n vertices different from Kn − e
with diam(G) = 2, ω(G) ≥ 3 and δ ∈ {n − 3, n − 2}. If G[Y ] is an empty graph

with |Y | ≥ 2, then G ∈ {C3 ∪ (n − 3)K1 (n ≥ 5), P4 ∪ (n − 4)K1 (n ≥ 5)} and

γg[3R](G) = 3n− 5.

Proof. It follows from Observation 14 that |X\N(v)| ∈ {1, 2} for each v ∈ Y.
Moreover, since G[Y ] is an empty graph with |Y | ≥ 2, we have that for each
v ∈ Y,

δ ≤ d(v) = n− |Y | − |X\N(v)| ≤ n− 3

and since δ ∈ {n − 3, n − 2}, we obtain δ = n − 3, |Y | = 2 and |X\N(v)| = 1.
Further, we note that n = |X| + |Y | = ω(G) + 2 ≥ 5. Let Y = {v1, v2}. It is
clear that |X\N(v1)| = |X\N(v2)| = 1. Therefore, if X\N(v1) = X\N(v2), then
G = C3∪(n−3)K1 (n ≥ 5) and if X\N(v1) 6= X\N(v2), then G = P4∪(n−4)K1

(n ≥ 5). Thus by Proposition 15, γg[3R](G) = 3n− 5.

By the method similar to Proposition 15, we can verify the following propo-
sition. The details are omitted.
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Proposition 17. Let G be a connected graph on n vertices.

(a) If G ∈ {P3 ∪K1, 2P2 ∪ (n− 4)K1 (n ≥ 5)}, then γg[3R](G) = 3n− 4.

(b) If G ∈ {C4 ∪ K1, P3 ∪ (n − 3)K1 (n ≥ 5), P4 ∪ (n − 4)K1 (n ≥ 5)}, then
γg[3R](G) = 3n− 5.

(c) If G ∈ {3P2 ∪ (n− 6)K1 (n ≥ 6), C4 ∪ (n− 4)K1 (n ≥ 6)}, then γg[3R](G) =
3n− 6.

(d) If G ∈ {P5 ∪ (n− 5)K1 (n ≥ 5), P2 ∪ P3 ∪ (n− 5)K1 (n ≥ 5), P2 ∪ P4 ∪ (n−
6)K1 (n ≥ 6)}, then γg[3R](G) = 3n− 7.

Lemma 18. Let G be a connected graph on n vertices different from Kn− e with

diam(G) = 2, ω(G) ≥ 3 and δ ∈ {n− 3, n− 2}. If G[Y ] is a clique, then

γg[3R](G) ≤ 3n− 4.

Furthermore, the following hold.

(a) γg[3R](G) = 3n− 4 if and only if G ∈ {P3 ∪K1, 2P2 ∪ (n− 4)K1 (n ≥ 5)}.

(b) γg[3R](G) = 3n− 5 if and only if G ∈ {C4 ∪K1, P3 ∪ (n− 3)K1 (n ≥ 5), P4 ∪
(n− 4)K1 (n ≥ 5)}.

(c) γg[3R](G) = 3n−6 if and only if G ∈ {3P2∪(n−6)K1 (n ≥ 6), C4∪(n−4)K1

(n ≥ 6)}.

(d) γg[3R](G) = 3n−7 if and only if G ∈ {P5∪(n−5)K1 (n ≥ 5), P2∪P3∪(n−5)K1

(n ≥ 5), P2 ∪ P4 ∪ (n− 6)K1 (n ≥ 6)}.

Proof. Note that G is a graph different from Kn − e with δ ∈ {n − 3, n − 2}.
Thus if |Y | = 1, then since G[X] is a clique, we have that G is the graph obtained
from the complete graph Kn by deleting two adjacent edges, implying that G =
P3 ∪ (n − 3)K1 (n = |X| + |Y | = ω(G) + 1 ≥ 4) and hence by Proposition 17,
γg[3R](G) = 3n − 4 when n = 4 and γg[3R](G) = 3n − 5 when n ≥ 5. So in
the following we may assume that |Y | ≥ 2. Let Y = {v1, v2, . . . , vn−ω(G)}. By
Observation 14, we have |X\N(vi)| ∈ {1, 2} for each i ∈ {1, 2, . . . , |Y |}.

Claim 1. If |Y | = 2, then γg[3R](G) ≤ 3n− 4. Moreover,

(a) γg[3R](G) = 3n− 4 if and only if G = 2P2 ∪ (n− 4)K1 (n ≥ 5),

(b) γg[3R](G) = 3n− 5 if and only if G ∈ {C4 ∪K1, P4 ∪ (n− 4)K1 (n ≥ 5)},

(c) γg[3R](G) = 3n− 6 if and only if G = C4 ∪ (n− 4)K1 (n ≥ 6),

(d) γg[3R](G) = 3n− 7 if and only if G ∈ {P5 ∪ (n− 5)K1 (n ≥ 5), P2 ∪P3 ∪ (n−
5)K1 (n ≥ 5)}.

Proof. Clearly, n = |X|+ |Y | = ω(G)+2 ≥ 5. Recall that |X\N(vi)| ∈ {1, 2} for
each i ∈ {1, 2}. First, assume that |X\N(v1)| = |X\N(v2)| = 1. If X\N(v1) =
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X\N(v2), then since both G[X] and G[Y ] are cliques, we have that G[{v1, v2} ∪
(N(v1) ∩X)] is also a clique with |X| + 1 = ω(G) + 1 vertices, a contradiction.
Therefore X\N(v1) 6= X\N(v2), implying that G = 2P2 ∪ (n− 4)K1 (n ≥ 5) and
so by Proposition 17, γg[3R](G) = 3n− 4.

Second, assume that |X\N(v1)| = |X\N(v2)| = 2. If |(X\N(v1)) ∩ (X\
N(v2))| = 2, that is, if G = C4 ∪ (n − 4)K1 (n ≥ 5), then by Proposition
17, γg[3R](G) = 3n − 5 when n = 5 and γg[3R](G) = 3n − 6 when n ≥ 6. If

|(X\N(v1)) ∩ (X\N(v2))| = 1, that is, if G = P5 ∪ (n − 5)K1 (n ≥ 5), then by
Proposition 17, γg[3R](G) = 3n − 7. If |(X\N(v1)) ∩ (X\N(v2))| = 0, that is, if

G = 2P3 ∪ (n− 6)K1 (n ≥ 6), then clearly γg[3R](G) = 3n− 10.

Finally, assume that one of |X\N(v1)| and |X\N(v2)| equals one and the
other equals two. If (X\N(v1))∩(X\N(v2)) = ∅, that is, if G = P2∪P3∪(n−5)K1

(n ≥ 5), then γg[3R](G) = 3n − 7 and if (X\N(v1)) ∩ (X\N(v2)) 6= ∅, that is, if

G = P4 ∪ (n− 4)K1 (n ≥ 5), then γg[3R](G) = 3n− 5. Thus Claim 1 holds. �

Claim 2. If |Y | ≥ 3, then γg[3R](G) ≤ 3n− 6. Moreover,

(a) γg[3R](G) = 3n− 6 if and only if G = 3P2 ∪ (n− 6)K1 (n ≥ 6),

(b) γg[3R](G) = 3n− 7 if and only if G = P2 ∪ P4 ∪ (n− 6)K1 (n ≥ 6).

Proof. Clearly, n = |X| + |Y | = ω(G) + |Y | ≥ 6. Note that |X\N(vi)| ∈
{1, 2} for each i ∈ {1, 2, . . . , |Y |}. We first assume that |X\N(vi)| = 1 for each
i ∈ {1, 2, . . . , |Y |}. If there exist two vertices, say v1 and v2, in Y such that
X\N(v1) = X\N(v2), then G[(X ∩N(v1)) ∪ {v1, v2}] is a clique with |X|+ 1 =
ω(G) + 1 vertices, a contradiction. Therefore, we have X\N(vi) 6= X\N(vj) for
i 6= j, implying that G = |Y |P2 ∪ (n − 2|Y |)K1 (n ≥ 2|Y |). If |Y | = 3, that is,
if G = 3P2 ∪ (n − 6)K1 (n ≥ 6), then by Proposition 17, γg[3R](G) = 3n − 6.
Now let |Y | ≥ 4. One can check that the function h defined by h(x) = 2 for each
vertex with degree one in G and h(x) = 3 otherwise, is a GTRDF on G and hence
γg[3R](G) = γg[3R](G) ≤ ω(h) = 4|Y |+ 3(n− 2|Y |) = 3n− 2|Y | ≤ 3n− 8.

So in the following we may assume that there exists a vertex, say v1, in Y
such that |X\N(v1)| = 2. Let X\N(v1) = {w1, w2}. If X\{w1, w2} ⊆ N(vi)
for each i ∈ {2, 3, . . . , |Y |}, then G[V (G)\{w1, w2}] is a clique with n − 2 =
|X| + |Y | − 2 ≥ ω(G) + 1 vertices, a contradiction. Thus there must be two
vertices, say w3 ∈ X\{w1, w2} and v2 ∈ Y, such that w3v2 /∈ E(G). Moreover,
since |X\N(v2)| ∈ {1, 2} and X\N(v1) = {w1, w2}, this forces |(X\N(v1)) ∩
(X\N(v2))| ∈ {0, 1}. We distinguish several cases.

Case 1. |X\N(v2)| = 2 and |(X\N(v1)) ∩ (X\N(v2))| = 0. Recalling that
X\N(v1) = {w1, w2} and w3v2 /∈ E(G), there must exist some vertex, say w4, in
X\{w1, w2, w3} such that X\N(v2) = {w3, w4}. One can check that the function
h1 defined by h1(v1) = h1(v2) = 4, h1(wi) = 0 for each i ∈ {1, 2, 3, 4} and
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h1(x) = 3 for each x ∈ V (G)\{v1, v2, w1, w2, w3, w4}, is a GTRDF on G and
hence γg[3R](G) ≤ ω(h1) = 3(n− 6) + 8 = 3n− 10.

Case 2. |X\N(v2)| = 2 and |(X\N(v1)) ∩ (X\N(v2))| = 1. Note that
X\N(v1) = {w1, w2} and w3v2 /∈ E(G). Without loss of generality, we may
assume that X\N(v2) = {w1, w3}. Recall that both G[X] and G[Y ] are cliques.
Moreover, since v1w1, v2w1 /∈ E(G) and δ ∈ {n− 3, n− 2}, we have Y \N(w1) =
{v1, v2}. Thus if v3w2 /∈ E(G), then the function h2 defined by h2(w2) = h2(v2) =
4, h2(w1) = h2(w3) = h2(v1) = h2(v3) = 0 and h2(x) = 3 otherwise, is a GTRDF
on G and therefore γg[3R](G) ≤ ω(h2) = 3(n − 6) + 8 = 3n − 10. So in the
following we may assume that v3w2 ∈ E(G). Moreover, since v3w1 ∈ E(G)
and |X\N(v3)| ∈ {1, 2}, this forces that there exists some vertex, say w, in
X\{w1, w2} such that wv3 /∈ E(G). Thus if w = w3, then define the GTRDF
h3 on G by h3(w3) = h3(v1) = 4, h3(w1) = h3(w2) = h3(v2) = h3(v3) = 0
and h3(x) = 3 otherwise and if w 6= w3, then define the GTRDF h4 on G by
h4(w3) = h4(w) = h4(v1) = 4, h4(w1) = h4(w2) = h4(v2) = h4(v3) = 0 and
h4(x) = 3 otherwise. In either case, it is easy to check that γg[3R](G) ≤ 3n− 9.

Case 3. |X\N(v2)| = 1. Noting that w3v2 /∈ E(G), this implies that X\N(v2)
= {w3}. Recall that X\N(v1) = {w1, w2}. If v3w3 /∈ E(G) (respectively, v3w /∈
E(G), where w is a vertex of X\{w1, w2, w3}), then the function h3 (respectively,
h4) defined earlier is a GTRDF on G and hence γg[3R](G) ≤ 3n − 9. Note that
|X\N(v3)| ∈ {1, 2}. Hence we may assume that X\N(v3) ⊆ {w1, w2}.

First, suppose thatX\N(v3) = {w1, w2}. Recalling thatX\N(v1) = {w1, w2}
and X\N(v2) = {w3}, it is easy to see that the function h5 defined by h5(v2) = 4,
h5(v1) = h5(v3) = h5(w3) = 0 and h5(x) = 3 for each x ∈ V (G)\{v1, v2, v3, w3},
is a GTRDF on G and hence γg[3R](G) ≤ ω(h5) = 3(n− 4) + 4 = 3n− 8.

Second, suppose thatX\N(v3) = {w1} (the caseX\N(v3) = {w2} is similar).
Since w1v1, w1v3 /∈ E(G) and δ ∈ {n − 3, n − 2}, we have Y \N(w1) = {v1, v3}.
Let |Y | ≥ 4. Note that X\N(v1) = {w1, w2}, X\N(v2) = {w3}, X\N(v3) = {w1}
and Y \N(w1) = {v1, v3}. Moreover, since |X\N(v4)| ∈ {1, 2} as shown earlier,
one can check that the function h6 defined by h6(w1) = 0, h6(w2) = h6(w3) =
h6(v1) = h6(v2) = h6(v4) = 2 and h6(x) = 3 otherwise, is a GTRDF on G and
therefore γg[3R](G) ≤ ω(h6) = 3(n − 6) + 10 = 3n − 8. Now let |Y | = 3. Recall
that X\N(v1) = {w1, w2}, X\N(v2) = {w3} and X\N(v3) = {w1}. It is easy to
see that G = P2 ∪ P4 ∪ (n − 6)K1 (n = |X| + |Y | = ω(G) + 3 ≥ 6) and so by
Proposition 17, γg[3R](G) = 3n− 7. Thus Claim 2 holds. �

This completes the proof.

By the method similar to Proposition 15, we can verify the following propo-
sition. The details are omitted.



Some Results on the Global Triple Roman Domination... 749

Proposition 19. Let G be a connected graph on n ≥ 6 vertices. If G ∈ {P2 ∪
C3 ∪ (n− 5)K1, P2 ∪ P4 ∪ (n− 6)K1}, then γg[3R](G) = 3n− 7.

Lemma 20. Let G be a connected graph on n vertices different from Kn− e with

diam(G) = 2, ω(G) ≥ 3 and δ ∈ {n−3, n−2}. If G[Y ] is neither an empty graph

nor a clique, then

γg[3R](G) ≤ 3n− 7

with equality if and only if G ∈ {P2 ∪C3 ∪ (n− 5)K1 (n ≥ 6), P2 ∪P4 ∪ (n− 6)K1

(n ≥ 6)}.

Proof. It follows from Observation 14 that |X \ N(v)| ∈ {1, 2} for each v ∈ Y.
Moreover, since G[Y ] is neither an empty graph nor a clique, we have |Y | ≥ 3.
Thus, if G[Y ] is disconnected, then there must exist some vertex, say v, in Y such
that |Y \N [v]| ≥ 2 and hence δ ≤ d(v) = n− |X \N(v)| − |Y \N [v]| − 1 ≤ n− 4,
a contradiction. Therefore G[Y ] is connected. Moreover, since G[Y ] is not a
clique, we have that G[Y ] has a path, say P3 = v1v2v3, on three vertices as
an induced subgraph. Note that v1v3 /∈ E(G) and |X \ N(vi)| ∈ {1, 2} for
each i ∈ {1, 2, 3} as shown earlier. Further, since δ ∈ {n − 3, n − 2}, we have
|X \N(v1)| = |X \N(v3)| = 1. In fact, δ = n−3. Recall that |X \N(v2)| ∈ {1, 2}.
According to the values of |X \N(v2)|, we have the following claims.

Claim 1. If |X \N(v2)| = 2, then γg[3R](G) ≤ 3n− 8.

Proof. Note that |X \N(v1)| = |X \N(v3)| = 1. Therefore, |(X \N(v2))∩ (X \
N(vi))| ∈ {0, 1} for each i ∈ {1, 3}. If |(X \ N(v2)) ∩ (X \ N(vi))| = 0 for some
i ∈ {1, 3}, then the function h defined by h(vi) = h(v2) = 4, h(x) = 0 for each
x ∈ {v4−i}∪ (X \N(v2))∪ (X \N(vi)) and h(x) = 3 otherwise, is a GTRDF on G
and therefore γg[3R](G) ≤ ω(h) = 3(n− 6) + 8 = 3n− 10. So in the following we
may assume that |(X \N(v2))∩ (X \N(v1))| = |(X \N(v2))∩ (X \N(v3))| = 1.
Without loss of generality, assume that (X \ N(v2)) ∩ (X \ N(v1)) = {w1} and
(X \ N(v2)) ∩ (X \ N(v3)) = {w2}. Note that w1 6= w2 (for otherwise, since
v1, v2, v3 /∈ N(w1), we have δ ≤ d(w1) ≤ n − 4, a contradiction). This forces
X\N(v1) = {w1}, X\N(v2) = {w1, w2} andX\N(v3) = {w2}. Then the function
h defined by h(w2) = h(v3) = 2, h(v1) = h(v2) = 0 and h(x) = 3 otherwise, is
a GTRDF on G and therefore γg[3R](G) ≤ ω(h) = 3(n − 4) + 4 = 3n − 8. Thus
Claim 1 holds. �

Claim 2. If |X \N(v2)| = 1, then γg[3R](G) ≤ 3n− 7 with equality if and only if

G ∈ {P2 ∪ C3 ∪ (n− 5)K1 (n ≥ 6), P2 ∪ P4 ∪ (n− 6)K1 (n ≥ 6)}.

Proof. Note that |X \ N(v1)| = |X \ N(v2)| = |X \ N(v3)| = 1. If there exists
some i ∈ {1, 3} such that X \N(vi) = X \N(v2), then G[(N(v2) ∩X) ∪ {vi, v2}]
is a clique with |N(v2)∩X|+2 = |X|+1 = ω(G)+ 1 vertices, a contradiction to
the fact that the clique number is ω(G). So in the following we may assume that
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either X \N(v1) = X \N(v3) 6= X \N(v2) or three sets X \N(v1), X \N(v2) and
X \N(v3) are distinct. Let Y \ {v1, v2, v3} = {v4, v5, . . . , vn−ω(G)} when |Y | ≥ 4.

First, suppose that X \ N(v1) = X \ N(v3) 6= X \ N(v2). Moreover, since
|X \N(v1)| = |X \N(v2)| = |X \N(v3)| = 1, we may assume that X \N(v1) =
X\N(v3) = {w1} andX\N(v2) = {w2}, where w1 and w2 are distinct. If |Y | ≥ 4,
then the function h defined by h(w1) = h(w2) = 4, h(v1) = h(v2) = h(v3) = 0,
h(v4) = 2 and h(x) = 3 otherwise, is a GTRDF on G (noting that |X \N(v4)| ∈
{1, 2} by Observation 14) and hence γg[3R](G) ≤ ω(h) = 3(n− 6) + 10 = 3n− 8.

If |Y | = 3, then G = P2 ∪C3 ∪ (n− 5)K1 (n = |X|+ |Y | = ω(G) + 3 ≥ 6) and so
by Proposition 19, γg[3R](G) = 3n− 7.

Second, suppose that three sets X \ N(v1), X \ N(v2) and X \ N(v3) are
distinct. Moreover, since |X \N(v1)| = |X \N(v2)| = |X \N(v3)| = 1, we may
assume that X \ N(v1) = {w1}, X \ N(v2) = {w2} and X \ N(v3) = {w3},
where w1, w2 and w3 are distinct. If |Y | ≥ 4, then the function h defined by
h(w2) = h(w3) = h(v2) = h(v3) = h(v4) = 2, h(v1) = 0 and h(x) = 3 otherwise, is
a GTRDF on G (noting that |X\N(v4)| ∈ {1, 2} by Observation 14) and therefore
γg[3R](G) ≤ ω(h) = 3(n−6)+10 = 3n−8. If |Y | = 3, then G = P2∪P4∪(n−6)K1

(n = |X| + |Y | = ω(G) + 3 ≥ 6) and so by Proposition 19, γg[3R](G) = 3n − 7.
Thus Claim 2 holds. �

This completes the proof.

Theorem 21. For any connected graph G on n vertices,

(a) γg[3R](G) 6= 3n− 3,

(b) γg[3R](G) = 3n− 4 if and only if G ∈ {P4,K1,3} or G ∈ {P3 ∪K1, 2P2 ∪ (n−
4)K1 (n ≥ 4)},

(c) γg[3R](G) = 3n− 5 if and only if G ∈ {C4 ∪K1, P3 ∪ (n− 3)K1 (n ≥ 5), C3 ∪
(n− 3)K1 (n ≥ 5), P4 ∪ (n− 4)K1 (n ≥ 5)},

(d) γg[3R](G) = 3n−6 if and only if G ∈ {H1, C5} or G ∈ {3P2∪ (n−6)K1 (n ≥
6), C4 ∪ (n− 4)K1 (n ≥ 6)},

(e) γg[3R](G) = 3n − 7 if and only if G ∈ {S(1, 2), P5} ∪ H ∪
⋃6

i=2{Hi} or

G ∈ {S(1, 2), H2, H3,P5∪ (n−5)K1 (n ≥ 5), P2∪P3∪ (n−5)K1 (n ≥ 5), P2∪
C3 ∪ (n− 5)K1 (n ≥ 5), P2 ∪ P4 ∪ (n− 6)K1 (n ≥ 6)},

where H1, Hi (i ∈ {2, 3}) and Hi (i ∈ {4, 5, 6}) are illustrated in Figures 2, 3 and

4, respectively.

Proof. If diam(G) = 1, then by Proposition A, γg[3R](G) = 3n (n ≥ 3). If
diam(G) = 2, then by Proposition C and Lemmas 12, 13, 16, 18 and 20, γg[3R](G)
≤ 3n− 2 and the following hold.

(a) γg[3R](G) = 3n− 2 if and only if G = Kn − e (n ≥ 3),
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(b) γg[3R](G) 6= 3n− 3,

(c) γg[3R](G) = 3n− 4 if and only if G = K1,3 or G ∈ {P3 ∪K1, 2P2 ∪ (n− 4)K1

(n ≥ 4)},

(d) γg[3R](G) = 3n− 5 if and only if G ∈ {C3 ∪ (n− 3)K1 (n ≥ 5), P4 ∪ (n− 4)K1

(n ≥ 5), C4 ∪K1, P3 ∪ (n− 3)K1 (n ≥ 5)},

(e) γg[3R](G) = 3n − 6 if and only if G = C5 or G ∈ {3P2 ∪ (n − 6)K1 (n ≥ 6),
C4 ∪ (n− 4)K1 (n ≥ 6)},

(f) γg[3R](G) = 3n−7 if and only if G ∈ H∪{H4, H5, H6} or G ∈ {P5∪(n−5)K1

(n ≥ 5), P2 ∪ P3 ∪ (n− 5)K1 (n ≥ 5), P2 ∪ P4 ∪ (n− 6)K1 (n ≥ 6), P2 ∪ C3 ∪
(n− 5)K1 (n ≥ 5)}.

If diam(G) = 3, then by Lemma 10, γg[3R](G) ≤ 3n− 4 and the following hold.

(a) γg[3R](G) = 3n− 4 if and only if G = P4,

(b) γg[3R](G) 6= 3n− 5,

(c) γg[3R](G) = 3n− 6 if and only if G = H1,

(d) γg[3R](G) = 3n − 7 if and only if G ∈ {S(1, 2), H2, H3} or G ∈ {S(1, 2),
H2, H3}.

If diam(G) ≥ 4, then by Lemma 8, γg[3R](G) ≤ 3n − 7 with equality if and only
if G = P5. By considering all the above cases, the statement is trivial, which
completes our proof.

Note that γg[3R](G) = γg[3R](G) and if G is a disconnected graph, then its

complement G is a connected graph. Together with Theorem 21, we have the fol-
lowing characterization of any graphs with large global triple Roman domination
number.

Corollary 22. For any graph G on n vertices,

(a) γg[3R](G) 6= 3n− 3,

(b) γg[3R](G) = 3n − 4 if and only if one of G and G belongs to {P4,K1,3, P3 ∪
K1, 2P2 ∪ (n− 4)K1 (n ≥ 4)},

(c) γg[3R](G) = 3n − 5 if and only if one of G and G belongs to {C4 ∪K1, P3 ∪
(n− 3)K1 (n ≥ 5), C3 ∪ (n− 3)K1 (n ≥ 5), P4 ∪ (n− 4)K1 (n ≥ 5)},

(d) γg[3R](G) = 3n − 6 if and only if one of G and G belongs to {H1, C5,3P2 ∪
(n− 6)K1 (n ≥ 6), C4 ∪ (n− 4)K1 (n ≥ 6)},

(e) γg[3R](G) = 3n − 7 if and only if one of G and G belongs to {S(1, 2), P5 ∪
(n − 5)K1 (n ≥ 5), P2 ∪ P3 ∪ (n − 5)K1 (n ≥ 5), P2 ∪ C3 ∪ (n − 5)K1 (n ≥
5), P2 ∪ P4 ∪ (n− 6)K1 (n ≥ 6)} ∪ H ∪

⋃6
i=2{Hi},
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where H1, Hi (i ∈ {2, 3}) and Hi (i ∈ {4, 5, 6}) are illustrated in Figures 2, 3 and

4, respectively.
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