DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

L. Boza

Luis Boza

Departamento de Matemática Aplicada I
Universidad de Sevilla

email: boza@us.es

0000-0002-4304-3268

S.P. Radziszowski

Stanisław P. Radziszowski

Department of Computer Science
Rochester Institute of Technology

email: spr@cs.rit.edu

0000-0002-1470-5517

Title:

Some upper bounds on Ramsey numbers involving $C_4$

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-12-04 , Revised: 2024-07-31 , Accepted: 2024-07-31 , Available online: 2024-09-06 , https://doi.org/10.7151/dmgt.2557

Abstract:

We obtain some new upper bounds on the Ramsey numbers of the form $$ R(\underbrace{C_4,\ldots,C_4}_m,G_1,\ldots,G_n), $$ where $m\ge 1$ and $G_1,\ldots,G_n$ are arbitrary graphs. We focus on the cases of $G_i$'s being complete graph $K_k$, star $K_{1,k}$ or book $B_k$, where $B_k=K_2+kK_1$. If $k\ge 2$, then our main upper bound theorem implies that $$ R(C_4,B_k) \le R(C_4,K_{1,k})+\left\lceil\sqrt{R(C_4,K_{1,k})}\right\rceil+1. $$ Our techniques are used to obtain new upper bounds in several concrete cases, including: $R(C_4,K_{11})\leq 43$, $R(C_4,K_{12})\leq 51$, $R(C_4,K_3,K_4)\leq 29$, $R(C_4,K_4,K_4)\leq 66$, $R(C_4,K_3,K_3,K_3)\leq 57$, $R(C_4,C_4,K_3,K_4)\leq 75$, $R(C_4,C_4,K_4,K_4)\leq 177$, and $R(C_4,B_{17})\leq 28$.

Keywords:

Ramsey numbers, cycles

References:

  1. D. Bevan, Personal communication to S. Radziszowski (2002), manuscript.
  2. F.R.K. Chung, On triangular and cyclic Ramsey numbers with $k$ colors, in: Graphs Combin., R. Bari and F. Harary (Ed(s)), Lect. Notes Math. 406, (Springer, Berlin, 1974) 236–241.
  3. J. Dybizbański and T. Dzido, On some Ramsey numbers for quadrilaterals, Electron. J. Combin. 18(1) (2011) #P154.
    https://doi.org/10.37236/641
  4. A. Engel, Problem-Solving Strategies (Springer-Verlag New York, Inc, 1998).
  5. P. Erdős, A. Rényi and V.T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966) 215–235.
  6. G. Exoo and D.F. Reynolds, Ramsey numbers based on $C_5$-decompositions, Discrete Math. 71 (1988) 119–127.
    https://doi.org/10.1016/0012-365X(88)90065-9
  7. R.J. Faudree, C.C. Rousseau and J. Sheehan, More from the Good Book, Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Util. Math. Congr. Numer. XXI (1978) 289–299.
  8. R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1–7.
    https://doi.org/10.4153/CJM-1955-001-4
  9. R.W. Irving, Generalised Ramsey numbers for small graphs, Discrete Math. 9 (1974) 251–264.
    https://doi.org/10.1016/0012-365X(74)90008-9
  10. A. Lange, I. Livinsky and S.P. Radziszowski, Computation of the Ramsey numbers $R(C_4,K_9)$ and $R(C_4,K_{10})$, J. Combin. Math. Combin. Comput. 97 (2016) 139–154.
  11. B. Lidický and F. Pfender, Semidefinite programming and Ramsey numbers (2017, revised version 2020).
    arXiv: 1704.03592
  12. T.D. Parsons, Ramsey graphs and block designs, I, Trans. Amer. Math. Soc. 209 (1975) 33–44.
    https://doi.org/10.1090/S0002-9947-1975-0396317-X
  13. S. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2024) DS1, revision #17.
  14. S. Van Overberghe, Algorithms for Computing Ramsey Numbers, MS Thesis in Mathematics, Ghent University, Belgium (2020).
    https://github.com/Steven-VO/circulant-Ramsey
  15. X. Xu and S.P. Radziszowski, $28\le R(C_4,C_4,C_3,C_3)\le 36$, Util. Math. 79 (2009) 253–257.
  16. X. Xu, Z. Shao and S.P. Radziszowski, Bounds on some Ramsey numbers involving quadrilateral, Ars Combin. 90 (2009) 337-344.
  17. X. Zhang, Y. Chen and T.C. Edwin Cheng, On three color Ramsey numbers for $R(C_4,C_4,K_{1,n})$, Discrete Math. 342 (2019) 285–291.
    https://doi.org/10.1016/j.disc.2018.09.030

Close