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Abstract

We obtain some new upper bounds on the Ramsey numbers of the form

R(Cy,...,C4,Gy,...,Gy),
——
m
where m > 1 and Gy, ...,G, are arbitrary graphs. We focus on the cases of

G,’s being complete graph K}, star K j or book By, where By, = Ko+kKj.
If £ > 2, then our main upper bound theorem implies that

R(C4, Bi) < R(Ci K1) + WM} +1.

Our techniques are used to obtain new upper bounds in several concrete
cases, including: R(Cjy, K11) < 43, R(Cy4, K12) < 51, R(Cy4, K3, K4) < 29,
R(C47K4;K4) S 667 R(C47K37K33K3) S 573 R(O4,C4,K3,K4) S 757
R(C4,C47K4,K4) < 177, and R(C4,Bl7) < 28.
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1. INTRODUCTION

For n given graphs Hy, Ha, ..., H,, the Ramsey number R(H1, Hs, ..., H,) is the
smallest integer R such that if we arbitrarily color the edges of a complete graph
of order R with n colors, then it contains a monochromatic copy of H; in color 4,
for some 1 <1 <n.

We will use the following notations from [13]: K} is a complete graph on k
vertices, the graph kG is formed by k vertex-disjoint copies of G, G U H stands
for vertex-disjoint union of graphs, and the join graph G + H is obtained by
adding all of the edges between vertices of G and H to GUH. C} is a cycle on k
vertices, P is a path on k vertices, K1 = K1 + kK1 is a star on k + 1 vertices,
and B, = K> + kK7 is a book on k + 2 vertices.

An (Hy,...,Hy)-coloring of the edges of K is a coloring using n colors,
such that it does not contain any monochromatic copy of H; in color ¢, for any
i, 1 <i < n. Note that if such coloring exists, then N < R(Hy,...,Hy). In the
case of 2 colors, we will interpret graphs G as colorings in which the edges of G
are assigned the first color, and the nonedges are assigned the second color.

Let G be a graph or a coloring of edges and let V(G) denote the vertex set
of G. For v € V(G), G — v is the graph or the coloring induced by V(G) \ {v}. If
G is a coloring using n colors and v € V(G), then d;(v) is the number of edges in
color 7 incident to v in G. If G is an (Hy, ..., Hy)-coloring, 1 <i <n, v € V(G)
and u; € V(H;), then an elementary property of Ramsey colorings implies that
di(v) < R(Hiy,...,H;—1,H; —u;, Hiy1,...,H,) — 1. Numerous results on 2-color
and multicolor Ramsey numbers involving C4 are summarized in the dynamic
survey [13], mainly in Sections 3.3 (note that Cy = K5 32), 4, and 6 [4,5,6,7].

The main goal of this paper is to derive some new upper bounds on the Ram-
sey numbers of the form R(Cy,...,Cy,G1,...,Gy), where m > 1 and Gy,...,G),

~———

m
are arbitrary graphs. The main result, Theorem 6, is obtained in Section 2. Then,
in Sections 3 and 4 we focus on the cases of G;’s being complete graph, star or
book. Also in these sections several new concrete upper bounds are presented.

2. MAIN RESuLT

The main objective of this section is to obtain Theorem 6 claiming a new upper
bound on the Ramsey numbers of the form R(Cy,...,Cy, G, ..., G,), with only
—_——

m
relatively mild technical constraints. We need some auxilliary results, which will
be presented first.

Lemma 1 (Sedrakyan’s inequality [4]). For any real numbers ai,...,am, and
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positive real numbers by, ..., by, we have
m 2 m 2
Z T < (> k1 ak)
D D

Note that if b, = 1 for all k, 1 < k < m, then Lemma 1 reduces to:

(> ke ak:)Q_

Corollary 2. > /' af >
m

A simple argument, involving just the basic definition of Ramsey numbers,
leads to the next lemma.

Lemma 3. R(P;J,,Hl, .. .,Hn) +1< R(C4,H1 UKy,...,H, UKl)
=max{R(Cy, Hy,...,H,),|V(H1)|+1,...,|V(H,)|+ 1}.

Proof. Let N = R(Ps,Hy,...,H,) — 1. Consider any (Ps, Hy, ..., Hy)-coloring
of Ky. By adding a new vertex adjacent to all of Ky and using the first
color for the new edges, a (C4, Hy U Ky,..., H, U Kj)-coloring of Ky is ob-
tained. Thus, N +1 < R(Cy,H; U K3,...,H, U Kj) and the first part of the
lemma is obtained. Next, observe that any graph G containing H,, contains
H, U K as well, if |V(G)| > |V(H,)|. Thus, R(Cy,Hy,...,Hy—1,H, UK;) =
max{R(Cy, Hy,...,Hp—1,Hy), |V(H,)| + 1}. We complete the proof by using
the same argument for all colors. [ |

Lemma 4. Letm > 1 andn > 0. Consider n graphs, G1,...,Gy. For each color
i with 1 <i <n, let G = G; —w;, where w; € V(G;), and let r;’s be integers
such that

r; Z R(P3,04,. . .,C4,G1, . ,Gi_l,G;,GH_l, .. ,Gn)
1

Let R = R(Ps,Cy,...,Cy,G1,...,Gy). Then, we have
—_———

m—1

" m2—m (7’77/2—7’71)2 n
(1)R§;n—n+3+ s+ T (m—1) ;Ti—n+1

Proof. Let N = R—1 and G be a (P3,Cy,...,C4,Gq,...,Gy)-coloring of the
—_————

m—1

edges of K. Let vg € V(G) such that 3 \", di(vo) = min,ey ) {D 7%, di(v)}-
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In order to avoid a Ps of the first color, we have di(vg) < 1. If 1 <i < n, in
order to prevent a G; of color i +m, we need d; 1, (v9) < 7 — 1. Hence, we arrive
at the relation

m+n

_1+Zd vo) <2+Zd v +Z —1)=2— n—i—Zd v —i—Zn

Ifm=1,then R=N+1<3—n+>",r; and the result is obtained.

Now, let us assume that m > 2.

Following a reasoning in [5, 12], for each color i € {2,...,m}, since there is
no Cy of color 4, for any pair of vertices uj, us € V(G), there is at most one vertex
connected to both u; and ug by edges of color i. Since each vertex v € V(G) is
the common neighbor in color 7 of exactly (d’é”)) pairs of vertices in V(G), we

have that > cv(g) (d’év)) < (];), and

) (Zdi(v)2—zdi(v)> Z S di 1) < (m—1)N(N—1).
1=2 =2

veV(G) 1=2 veV(G)

™ d;(v))?
Then, by Corollary 2, for any v € V(G) we have Y ", d;(v)? > M

9

- m—1
and thus
(m-1N(N-1)> > (Z d;(v)? — Zdi(v)>
veV(G) \i=2 i=2
m (v 2 m m m (v
- <<2im2izz§ D de) S (Zdi@)) (Z%Q_dl( ) _ 1)
veV(G) i=2 veV(G) \i=2

m (v 2 m
§ de . ( Ky hl) _ 1) . ((Ziﬁao» B Zdi@o)) |
2
Hence, using (2), we obtain

i gd(vo))2 Re
1

m 2 m n
(Zdi(vo)> —(m=1)> di(vg) < (m (1—n+Zd v)+ YT )
’ i =1
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which implies

m 2 m n
<Z di(v0)> —m(m—1)> " di(vo) — (m —1)* (1 —n+ Z”) <0.
=2 =2 =1

Consequently, seeing the latter as a quadratic in )", d;(vg), we have that

id.( )<m2_m+ (m2_m)2+( _1)2<i - +1)
) di(wo) < — 1 m ri—mn .

1=1

Thus, by (2),

2

n . 2 2 n
RSZri—n+3+m2m+ (m 4m) +(m—1)2<zn—n+1>.
i=1

Since R is an integer, the result is obtained. [ |

Using Lemmas 3 and 4, we obtain the next (and last) lemma.

Lemma 5. Let m > 1 and n > 0. Consider any graphs G1,...,G,. For each
color i, 1 <i <m, let G; = G; — w;, where w; € V(G;), and let r;’s be integers
such that
i Z R(C47 DR} 047 le RN} Gi*l) G;7 Gi+17 BN} G’I’L)
———

m

Assume further that R(Cla,...,C4,G1,...,Gy) > maxi<i<p{|V(Gi)|} and G; #
<i<
Ky for some i€ {1,...,n} if m =1. Then we have

R(P33047"'aC4>Gla"'aGn)
—_———

m—1

m°+m m+1
SE T —n+ 9 + |m (4)+§ T — N
i=1 i

Proof. Let RHS(1) denote the right-hand side of inequality (1) in Lemma 4,
and let RHS(3) denote the right-hand side of inequality (3). In order to prove
this lemma, by Lemma 4, it suffices to show that RHS(3) > RHS(1). In the
proof below, among other steps, we will use an easy observation that for any

positive integer k, it is true that [\/k + 1] = L\/EJ + 1.
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If m > 2 then RHS(3) =

m°+m m*(m+1
Z§:lri—n+ 5 t1+ (4)+m2<§ ri—n>—1

2

n 2 n
m? —m m2—m
> El ri—n+1+ 5 Tt (4)+ m3+4 (m—1)2 (E T —n> -1

_gri_n+(1+m)+m22—m
+ MJF(WL—U2 <ir'_"+1> +(m?+2)(m —1)| > RHS(1).
4 =1 Z R

If m = 1, let ip be an integer such that G, # K», so that r;;, > 2 and
Yo ri—n>1. Then

n

RHS(3)=> ri—n+1+|,|14+> r—n|>> r—n+3=RHS(),
i=1 =1 =1

where in the latter the RHS’s were simplified using m = 1. [
Now, we are ready to present our main result.

Theorem 6. Let m > 1 and n > 0. Consider n graphs, G1,...,G,. For each
color i with 1 < i < n, let G}, = G; — w;, where w; € V(G;), and let r;’s be
integers such that

r; > R(C47 .. ‘7047G17 .. ')Gi—17G/i7Gi+17 .. -)Gn)'
~———

m

Assume further that R = R(Cy,...,C4,G1,...,Gy) > maxi<i<n{|V(G:)|} and
<i<

G; # Ky for somei € {1,...,n} if m =1. Then, we have

n

n 2 2
1
Rgg Ti—n+1+m;_m+ m (ml_)—}—g T — N
i=1 =1

Proof. Set N = R—1, and let G be a (Cy,...,Cy,G1,...,Gy)-coloring of the
————

edges of Ky. Let vg € V(G) such that 37", di(vo) = min,cy (@ {> it di(v)}
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For 1 < i < n, in order to avoid G; of color i4+m, we must have d;y,(vg) < r; —1.
Hence, we also have

m+n m n
(4) N=1+)> dive) <l—mn+Y di(vo) + Y ri.
i=1 i=1 i=1
For each i € {1,...,m}, the number of P3’s in color i cannot exceed (g), since

otherwise they would force a Cy4 in color i. Thus, as noted in the proof of Lemma

4, Y eviy (M) < (5) I Toevia (“57) = (5), then by the Friendship

Theorem [5], which states that in any graph in which any two vertices have

precisely one common neighbor, then there is a vertex which is adjacent to all

other vertices. In that case, let u be the vertex adjacent to all the others with

edges of the first color. G —wis a (P3,Cl4,...,C4,Gy,...,Gy)-coloring of Kn_1,
—_——

m—1

so R—2=N-12> R(P3,Cy,...,C4,Gy,...,Gy) — 1, and by Lemma 5, the
—_———

m—1
result follows.

Similarly, the same argument applies if ZUGV(G) ( g ) = ( ) for some i < m.
Therefore, we can assume that » 0,y () di(v)(di(v) — ) < N(N —1) for all ¢ and

> (Zdi(v)Q—Z ) Z D di —1) <mN(N —1),
veV(G) \i=1 i=1 i=1 veV(G)
Then, by Corollary 2, for any v € V(G) we have m > 1%, d;(v)? > (3o, d;(v))?,

and further

mN(N-1)> Y (Zd Z ())

veV(Q) i=1
m (v 2 m m m (v
> Z ((Zi;sz( ) _Zdi(v)) _ Z (Zdi(v)> (ZZ;,;Z( ) _1>
veV(G) i=1 veV(G) \i=1
>de (vo) < =1.4(v0) 1>:N<(Z”W_§:di(vo)>.
i=1

Therefore, by (4), we see that

M idl (vg) <m(N —1) <—n+2d Vo) —i—Zn)
and

m 2 m n
(Z di(vo)> —m(m+1) Z di(vo) —m? (—n + Z”) <0,
i=1

=1 i=1
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and hence

Consequently, by (4),

n 2 2 2 n
R:N—|—1§2+Zri—n—|—m+m+ (m —i—m) +m2<2ri—n>—1.
1=1 ]

Since R is an integer, we have

n 2 2 2 n
R§2+2Ti_n+w+ M+m2<zri_n>_1

, 2 4
=1

n 2 2
m°+m m-+1
:Elrin+1+2 + (m (m+1) 1 ) +El7“in ;
1= 1=

and the result follows. ]

Note that if m > 2 and n = 0, then the bound in Theorem 6 coincides with
the known result R(Cy,...,Cq) <m?+m+112,9].
N——

m

3. COMPLETE GRAPHS

In this section, we focus attention on concrete upper bounds for the Ramsey num-
bers of the form R(Cy,...,Cy,G1,...,Gy), where all G;’s are complete graphs,
———

m
for 1 < ¢ < n. We gather our results in Table 1, in which the new upper bounds
are shown in the last column. Proposition 7 below provides the upper bound in
Case #3, while all other cases are derived in the proof of Theorem 8.

Proposition 7. R(Cy, K3, K4) < 29.

Proof. First, we note that R(K3, K4) =9 [8] and R(Cy, Ky) = 30 [10]. Hence,
if there exists any (Cy, K3, K4)-coloring G of Kag, then by merging the last two
colors of G we obtain a (Cy, Ky)-coloring, i.e., a Cy-free graph G’ on 29 vertices
with maximum independent set of order at most 8. All such graphs were obtained
in [10], and up to isomorphism there are 267 of them.
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U | Ry mumber | n, o O
1 | R(Cy, K1) 1,1,36 40 [14] | 44 [10] 43
2 | R(Cy4, K12) 1,1,43 43 (*) | 52 [10] 51
3 | R(Cy, K3, Ky) Proposition 7 | 27 [3] | 32 [16] 29
4 | R(Cy, K4, Ky) 1,2,58 52 [16] | 71 [11] 66
5 | R(Cy, K3, K3, K3) 1,3,51 49 [1] |59 [11] 57
6 | R(Cy,Cu, K3, Ky) 2,2,57 43 [3] | 76 [16] 75
7 | R(Cy,Cy, Ky, Ky) 2,2,150 | 87 [16] | 179 [16] 177

Table 1. New bounds on Ramsey numbers of C; versus complete graphs described in
Section 3: parameters, lower bounds and old and new upper bounds. (*) Lower bound
43 in case #2 is easily obtained by adding vertex-disjoint K5 to the lower bound witness
graph in case #1. In all cases, except case #3, the new upper bound is obtained by using
Theorem 6.

We verified by computations that for every such graph (one of 267 possible
graphs), its non-edges cannot be partitioned into a Kj3-free graph and a Kj-
free graph. Thus, no (Cy4, K3, K4)-coloring of Kag exists, and the bound in the
proposition holds. [ |

Theorem 8. The upper bounds in the last column of Table 1 hold.

Proof. Proposition 7 proves the bound in Case #3. The upper bounds in all
other cases are obtained by applying Theorem 6 with some additional simple
steps, as described below.

#1. It is known that R(Cy, Kj9) = 36 [10]. Theorem 6 with m = n = 1
G1 = K11 and r; = 36 gives R(C4,K11) <36+ 1+ +/36 =143.

#2. Let 1 = 43, so by Case #1 we have r; > R(Cy, K11). With m =n =1 and
G = K12, we obtain R(C4,K12) <r +1+ {\/1"711 =44 +7 = 51.

#4. Let r1 = ry = 29, so by Case #3 we have 1,7y > R(Cy4, K3, K4). With
m=1,n=2 and Gy = Gy = K4, we obtain

R(Cu, Ka, Kq) <14 7a+ [Vin 472 = 1] =58 + | V57| = 66.

Y

#5. It is known that R(Cy, K3, K3) = 17 [6]. Let r; = 17 and G; = K3 for
1 <4¢<3. With m =1 and n = 3, we have

R(Cy, K3, K3, K3) < ri+ro+r3—14[Vri+r2+ 13 — 2| = 50+V49 = 57.

#6. It is known that R(C4,04,K4) < 21 [11] and R(C4,C4,K3,K3) < 36
[15]. Let r; = 21 and ro = 36, so that r; > R(C4,Cy, K4) and ro >
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R(C4, C4,K3,K3). With m = 2, n = 2, G1 = K3 and GQ = K4, we have

R(C47C47K3;K4) S T1 + T2 + 2 + ’72\/9/4 + 1 + ro — 2—‘

=59+ [V9+220] = 75.

#7. Let ry = r9 = 75, so by Case #6 we have ri,r9 > R(Cy4,Cy, K3, K4). With
m=2,n=2and Gy = Gy = K4, we have

R(Cy, Cu, K, Ky) < r1trot2+ {2\/9/4 1+ —2] =152+ [v/1+ 600] =177,
| ]

4. STARS AND BOOKS

We start this section with a classical result obtained by Parsons in 1975.
Lemma 9 [12]. For k > 2, we have R(Cy, K1) < k+ [\/E—‘ +1.

Proof. The original proof was presented by Parsons, but we note that the same
result is implied by our Theorem 6 usingm =n =1and r; = R(Cy, kK1) = k. =

The next corollary puts together Theorem 6 and Lemma 9.

Corollary 10. For k > 2, we have
R(C4, By) < R(C4,K17k)+[ R(C’4,K17k)-‘+1§ k+{ B+ | VE|+ 1} +|VE]+2

Proof. Since By, = K;i + Ky, using Theorem 6 with m = n = 1 and r; =
k + {\/ﬂ + 1 gives the first inequality. The second inequality is obtained by
Lemma 9. ]

Note that for & = ¢> — ¢ + 1 we have [\/ﬂ = ¢q. Our result in Corol-
lary 10, which holds for all integers k > 2, generalizes a result by Faudree,
Rousseau and Sheehan [7]. In particular, the Lemma in Section 2 of [7] im-
plies that R(Cy, Bi7) < 29, while our Corollary 10 using Parson’s [12] result
R(Cy, K1,17) = 22 gives a better bound, namely R(Cy, B17) < 28.

Our last corollary about multicolor Ramsey numbers of Cy’s versus stars is
also a consequence of Theorem 6.
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Corollary 11. Let m,n,ki,...,ky, > 1, such that m+ Y ;" ki > n+2. Then

R(C4, cey 04, K]-Jfl’ Ce 7K1J€n)
N——

m
me+m m+1
§1+Zki—n+T+ m (4)—1-21%—77,
i=1 1=1

Proof. Let w; be the vertex of degree k; in K1 y,. Since k; K1 = K 1, —w;, apply
Theorem 6 with

Ty = R(C47 ceey C47 Kl,ku cee 7K1,k7;717kiK17 Kl,ki+17 sy Kl,k‘n)a
————
m

and observe that r; = k;. The result follows. [ ]

We note that if we consider Corollary 11 with n = 1, then it reduces to a
result obtained in [17], which states that for k,m > 1, with m + k£ > 3, it holds
that

2 2+2m—3
R(Co... Co Ko <k s ™E™ 4 m\/kwwm
—_——— ’ 2 4

m
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