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Abstract

We obtain some new upper bounds on the Ramsey numbers of the form

R(C4, . . . , C4︸ ︷︷ ︸
m

, G1, . . . , Gn),

where m ≥ 1 and G1, . . . , Gn are arbitrary graphs. We focus on the cases of
Gi’s being complete graph Kk, star K1,k or book Bk, where Bk = K2+kK1.
If k ≥ 2, then our main upper bound theorem implies that

R(C4, Bk) ≤ R(C4,K1,k) +

⌈√
R(C4,K1,k)

⌉
+ 1.

Our techniques are used to obtain new upper bounds in several concrete
cases, including: R(C4,K11) ≤ 43, R(C4,K12) ≤ 51, R(C4,K3,K4) ≤ 29,
R(C4,K4,K4) ≤ 66, R(C4,K3,K3,K3) ≤ 57, R(C4, C4,K3,K4) ≤ 75,
R(C4, C4,K4,K4) ≤ 177, and R(C4, B17) ≤ 28.
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1. Introduction

For n given graphs H1, H2, . . . ,Hn, the Ramsey number R(H1, H2, . . . ,Hn) is the
smallest integer R such that if we arbitrarily color the edges of a complete graph
of order R with n colors, then it contains a monochromatic copy of Hi in color i,
for some 1 ≤ i ≤ n.

We will use the following notations from [13]: Kk is a complete graph on k
vertices, the graph kG is formed by k vertex-disjoint copies of G, G ∪H stands
for vertex-disjoint union of graphs, and the join graph G + H is obtained by
adding all of the edges between vertices of G and H to G∪H. Ck is a cycle on k
vertices, Pk is a path on k vertices, K1,k = K1 + kK1 is a star on k + 1 vertices,
and Bk = K2 + kK1 is a book on k + 2 vertices.

An (H1, . . . ,Hn)-coloring of the edges of KN is a coloring using n colors,
such that it does not contain any monochromatic copy of Hi in color i, for any
i, 1 ≤ i ≤ n. Note that if such coloring exists, then N < R(H1, . . . ,Hn). In the
case of 2 colors, we will interpret graphs G as colorings in which the edges of G
are assigned the first color, and the nonedges are assigned the second color.

Let G be a graph or a coloring of edges and let V (G) denote the vertex set
of G. For v ∈ V (G), G− v is the graph or the coloring induced by V (G) \ {v}. If
G is a coloring using n colors and v ∈ V (G), then di(v) is the number of edges in
color i incident to v in G. If G is an (H1, . . . ,Hn)-coloring, 1 ≤ i ≤ n, v ∈ V (G)
and ui ∈ V (Hi), then an elementary property of Ramsey colorings implies that
di(v) ≤ R(H1, . . . ,Hi−1, Hi − ui, Hi+1, . . . ,Hn)− 1. Numerous results on 2-color
and multicolor Ramsey numbers involving C4 are summarized in the dynamic
survey [13], mainly in Sections 3.3 (note that C4 = K2,2), 4, and 6 [4,5,6,7].

The main goal of this paper is to derive some new upper bounds on the Ram-
sey numbers of the form R(C4, . . . , C4︸ ︷︷ ︸

m

, G1, . . . , Gn), where m ≥ 1 and G1, . . . , Gn

are arbitrary graphs. The main result, Theorem 6, is obtained in Section 2. Then,
in Sections 3 and 4 we focus on the cases of Gi’s being complete graph, star or
book. Also in these sections several new concrete upper bounds are presented.

2. Main Result

The main objective of this section is to obtain Theorem 6 claiming a new upper
bound on the Ramsey numbers of the form R(C4, . . . , C4︸ ︷︷ ︸

m

, G1, . . . , Gn), with only

relatively mild technical constraints. We need some auxilliary results, which will
be presented first.

Lemma 1 (Sedrakyan’s inequality [4]). For any real numbers a1, . . . , am and
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positive real numbers b1, . . . , bm, we have

m∑
k=1

a2k
bk

≥
(
∑m

k=1 ak)
2∑m

k=1 bk
.

Note that if bk = 1 for all k, 1 ≤ k ≤ m, then Lemma 1 reduces to:

Corollary 2.
∑m

k=1 a
2
k ≥

(
∑m

k=1 ak)
2

m
.

A simple argument, involving just the basic definition of Ramsey numbers,
leads to the next lemma.

Lemma 3. R(P3, H1, . . . ,Hn) + 1 ≤ R(C4, H1 ∪K1, . . . ,Hn ∪K1)

= max{R(C4, H1, . . . ,Hn), |V (H1)|+ 1, . . . , |V (Hn)|+ 1}.

Proof. Let N = R(P3, H1, . . . ,Hn)− 1. Consider any (P3, H1, . . . ,Hn)-coloring
of KN . By adding a new vertex adjacent to all of KN and using the first
color for the new edges, a (C4, H1 ∪ K1, . . . ,Hn ∪ K1)-coloring of KN+1 is ob-
tained. Thus, N + 1 < R(C4, H1 ∪ K1, . . . ,Hn ∪ K1) and the first part of the
lemma is obtained. Next, observe that any graph G containing Hn contains
Hn ∪ K1 as well, if |V (G)| > |V (Hn)|. Thus, R(C4, H1, . . . ,Hn−1, Hn ∪ K1) =
max{R(C4, H1, . . . ,Hn−1, Hn), |V (Hn)| + 1}. We complete the proof by using
the same argument for all colors.

Lemma 4. Let m ≥ 1 and n ≥ 0. Consider n graphs, G1, . . . , Gn. For each color
i with 1 ≤ i ≤ n, let G′

i = Gi − wi, where wi ∈ V (Gi), and let ri’s be integers
such that

ri ≥ R(P3, C4, . . . , C4︸ ︷︷ ︸
m−1

, G1, . . . , Gi−1, G
′
i, Gi+1, . . . , Gn).

Let R = R(P3, C4, . . . , C4︸ ︷︷ ︸
m−1

, G1, . . . , Gn). Then, we have

(1) R ≤
n∑

i=1

ri−n+3+
m2 −m

2
+


√√√√(m2 −m

)2
4

+ (m− 1)2

(
n∑

i=1

ri − n+ 1

) .

Proof. Let N = R − 1 and G be a (P3, C4, . . . , C4︸ ︷︷ ︸
m−1

, G1, . . . , Gn)-coloring of the

edges of KN . Let v0 ∈ V (G) such that
∑m

i=2 di(v0) = minv∈V (G){
∑m

i=2 di(v)}.
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In order to avoid a P3 of the first color, we have d1(v0) ≤ 1. If 1 ≤ i ≤ n, in
order to prevent a Gi of color i+m, we need di+m(v0) ≤ ri− 1. Hence, we arrive
at the relation

(2) N = 1+

m+n∑
i=1

di(v0) ≤ 2+

m∑
i=2

di(v0)+

n∑
i=1

(ri−1) = 2−n+

m∑
i=2

di(v0)+

n∑
i=1

ri.

If m = 1, then R = N + 1 ≤ 3− n+
∑n

i=1 ri, and the result is obtained.
Now, let us assume that m ≥ 2.
Following a reasoning in [5, 12], for each color i ∈ {2, . . . ,m}, since there is

no C4 of color i, for any pair of vertices u1, u2 ∈ V (G), there is at most one vertex
connected to both u1 and u2 by edges of color i. Since each vertex v ∈ V (G) is
the common neighbor in color i of exactly

(
di(v)
2

)
pairs of vertices in V (G), we

have that
∑

v∈V (G)

(
di(v)
2

)
≤
(
N
2

)
, and

∑
v∈V (G)

(
m∑
i=2

di(v)
2 −

m∑
i=2

di(v)

)
=

m∑
i=2

∑
v∈V (G)

di(v)(di(v)−1) ≤ (m−1)N(N −1).

Then, by Corollary 2, for any v ∈ V (G) we have
∑m

i=2 di(v)
2 ≥

(
∑m

i=2 di(v))
2

m− 1
,

and thus

(m− 1)N(N − 1) ≥
∑

v∈V (G)

(
m∑
i=2

di(v)
2 −

m∑
i=2

di(v)

)

≥
∑

v∈V (G)

(
(
∑m

i=2 di(v))
2

m− 1
−

m∑
i=2

di(v)

)
=

∑
v∈V (G)

(
m∑
i=2

di(v)

)(∑m
i=2 di(v)

m− 1
− 1

)

≥ N
m∑
i=2

di(v0)

(∑m
i=2 di(v0)

m− 1
− 1

)
= N

(
(
∑m

i=2 di(v0))
2

m− 1
−

m∑
i=2

di(v0)

)
.

Hence, using (2), we obtain

(
∑m

i=2 di(v0))
2

m− 1
−

m∑
i=2

di(v0) ≤ (m− 1)(N − 1)

≤ (m− 1)

(
1− n+

m∑
i=2

di(v0) +

n∑
i=1

ri

)
and(

m∑
i=2

di(v0)

)2

− (m− 1)

m∑
i=2

di(v0) ≤ (m− 1)2

(
1− n+

m∑
i=2

di(v0) +

n∑
i=1

ri

)
,
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which implies(
m∑
i=2

di(v0)

)2

−m(m− 1)
m∑
i=2

di(v0)− (m− 1)2

(
1− n+

n∑
i=1

ri

)
≤ 0.

Consequently, seeing the latter as a quadratic in
∑m

i=2 di(v0), we have that

m∑
i=2

di(v0) ≤
m2 −m

2
+

√√√√(m2 −m
)2

4
+ (m− 1)2

(
n∑

i=1

ri − n+ 1

)
.

Thus, by (2),

R ≤
n∑

i=1

ri − n+ 3 +
m2 −m

2
+

√√√√(m2 −m
)2

4
+ (m− 1)2

(
n∑

i=1

ri − n+ 1

)
.

Since R is an integer, the result is obtained.

Using Lemmas 3 and 4, we obtain the next (and last) lemma.

Lemma 5. Let m ≥ 1 and n ≥ 0. Consider any graphs G1, . . . , Gn. For each
color i, 1 ≤ i ≤ n, let G′

i = Gi − wi, where wi ∈ V (Gi), and let ri’s be integers
such that

ri ≥ R(C4, . . . , C4︸ ︷︷ ︸
m

, G1, . . . , Gi−1, G
′
i, Gi+1, . . . , Gn).

Assume further that R(C4, . . . , C4︸ ︷︷ ︸
m

, G1, . . . , Gn) > max1≤i≤n{|V (Gi)|} and Gi ̸=

K2 for some i ∈ {1, . . . , n} if m = 1. Then we have

(3)

R(P3, C4, . . . , C4︸ ︷︷ ︸
m−1

, G1, . . . , Gn)

≤
n∑

i=1

ri − n+
m2 +m

2
+

m
√√√√(m+ 1)2

4
+

n∑
i=1

ri − n

 .

Proof. Let RHS(1) denote the right-hand side of inequality (1) in Lemma 4,
and let RHS(3) denote the right-hand side of inequality (3). In order to prove
this lemma, by Lemma 4, it suffices to show that RHS(3) ≥ RHS(1). In the
proof below, among other steps, we will use an easy observation that for any

positive integer k, it is true that
⌈√

k + 1
⌉
=
⌊√

k
⌋
+ 1.
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If m ≥ 2 then RHS(3) =

n∑
i=1

ri − n+
m2 +m

2
+ 1 +


√√√√m2(m+ 1)2

4
+m2

(
n∑

i=1

ri − n

)
− 1


≥

n∑
i=1

ri−n+1+
m2 −m

2
+m+


√√√√(m2 −m)2

4
+m3+ (m−1)2

(
n∑

i=1

ri − n

)
−1


=

n∑
i=1

ri − n+ (1 +m) +
m2 −m

2

+


√√√√(m2 −m)2

4
+ (m− 1)2

(
n∑

i=1

ri − n+ 1

)
+ (m2 + 2)(m− 1)

 ≥ RHS(1).

If m = 1, let i0 be an integer such that Gi0 ̸= K2, so that ri0 ≥ 2 and∑n
i=1 ri − n ≥ 1. Then

RHS(3) =
n∑

i=1

ri − n+ 1 +


√√√√1 +

n∑
i=1

ri − n

 ≥
n∑

i=1

ri − n+ 3 = RHS(1),

where in the latter the RHS’s were simplified using m = 1.

Now, we are ready to present our main result.

Theorem 6. Let m ≥ 1 and n ≥ 0. Consider n graphs, G1, . . . , Gn. For each
color i with 1 ≤ i ≤ n, let G′

i = Gi − wi, where wi ∈ V (Gi), and let ri’s be
integers such that

ri ≥ R(C4, . . . , C4︸ ︷︷ ︸
m

, G1, . . . , Gi−1, G
′
i, Gi+1, . . . , Gn).

Assume further that R = R(C4, . . . , C4︸ ︷︷ ︸
m

, G1, . . . , Gn) > max1≤i≤n{|V (Gi)|} and

Gi ̸= K2 for some i ∈ {1, . . . , n} if m = 1. Then, we have

R ≤
n∑

i=1

ri − n+ 1 +
m2 +m

2
+

m
√√√√(m+ 1)2

4
+

n∑
i=1

ri − n

 .

Proof. Set N = R − 1, and let G be a (C4, . . . , C4︸ ︷︷ ︸
m

, G1, . . . , Gn)-coloring of the

edges of KN . Let v0 ∈ V (G) such that
∑m

i=1 di(v0) = minv∈V (G){
∑m

i=1 di(v)}.
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For 1 ≤ i ≤ n, in order to avoid Gi of color i+m, we must have di+m(v0) ≤ ri−1.
Hence, we also have

(4) N = 1 +
m+n∑
i=1

di(v0) ≤ 1− n+
m∑
i=1

di(v0) +
n∑

i=1

ri.

For each i ∈ {1, . . . ,m}, the number of P3’s in color i cannot exceed
(
N
2

)
, since

otherwise they would force a C4 in color i. Thus, as noted in the proof of Lemma
4,
∑

v∈V (G)

(
di(v)
2

)
≤
(
N
2

)
. If

∑
v∈V (G)

(
d1(v)
2

)
=
(
N
2

)
, then by the Friendship

Theorem [5], which states that in any graph in which any two vertices have
precisely one common neighbor, then there is a vertex which is adjacent to all
other vertices. In that case, let u be the vertex adjacent to all the others with
edges of the first color. G− u is a (P3, C4, . . . , C4︸ ︷︷ ︸

m−1

, G1, . . . , Gn)-coloring of KN−1,

so R − 2 = N − 1 ≥ R(P3, C4, . . . , C4︸ ︷︷ ︸
m−1

, G1, . . . , Gn) − 1, and by Lemma 5, the

result follows.
Similarly, the same argument applies if

∑
v∈V (G)

(
di(v)
2

)
=
(
N
2

)
for some i ≤ m.

Therefore, we can assume that
∑

v∈V (G) di(v)(di(v)−1) < N(N −1) for all i and

∑
v∈V (G)

(
m∑
i=1

di(v)
2 −

m∑
i=1

di(v)

)
=

m∑
i=1

∑
v∈V (G)

di(v)(di(v)− 1) < mN(N − 1).

Then, by Corollary 2, for any v ∈ V (G) we have m
∑m

i=1 di(v)
2 ≥ (

∑m
i=1 di(v))

2,
and further

mN(N − 1) >
∑

v∈V (G)

(
m∑
i=1

di(v)
2 −

m∑
i=1

di(v)

)

≥
∑

v∈V (G)

(
(
∑m

i=1 di(v))
2

m
−

m∑
i=1

di(v)

)
=

∑
v∈V (G)

(
m∑
i=1

di(v)

)(∑m
i=1 di(v)

m
− 1

)

≥ N
m∑
i=1

di(v0)

(∑m
i=1 di(v0)

m
− 1

)
= N

(
(
∑m

i=1 di(v0))
2

m
−

m∑
i=1

di(v0)

)
.

Therefore, by (4), we see that

(
∑m

i=1 di(v0))
2

m
−

m∑
i=1

di(v0) < m(N − 1) ≤ m

(
−n+

m∑
i=1

di(v0) +
n∑

i=1

ri

)
and (

m∑
i=1

di(v0)

)2

−m(m+ 1)

m∑
i=1

di(v0)−m2

(
−n+

n∑
i=1

ri

)
< 0,
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and hence

m∑
i=1

di(v0) ≤
m2 +m

2
+

√√√√(m2 +m
)2

4
+m2

(
n∑

i=1

ri − n

)
− 1.

Consequently, by (4),

R = N + 1 ≤ 2 +
n∑

i=1

ri − n+
m2 +m

2
+

√√√√(m2 +m
)2

4
+m2

(
n∑

i=1

ri − n

)
− 1.

Since R is an integer, we have

R ≤ 2 +

n∑
i=1

ri − n+
m2 +m

2
+


√√√√(m2 +m

)2
4

+m2

(
n∑

i=1

ri − n

)
− 1



=

n∑
i=1

ri − n+ 1 +
m2 +m

2
+

m
√√√√(m+ 1)2

4
+

n∑
i=1

ri − n

 ,

and the result follows.

Note that if m ≥ 2 and n = 0, then the bound in Theorem 6 coincides with
the known result R(C4, . . . , C4︸ ︷︷ ︸

m

) ≤ m2 +m+ 1 [2, 9].

3. Complete Graphs

In this section, we focus attention on concrete upper bounds for the Ramsey num-
bers of the form R(C4, . . . , C4︸ ︷︷ ︸

m

, G1, . . . , Gn), where all Gi’s are complete graphs,

for 1 ≤ i ≤ n. We gather our results in Table 1, in which the new upper bounds
are shown in the last column. Proposition 7 below provides the upper bound in
Case #3, while all other cases are derived in the proof of Theorem 8.

Proposition 7. R(C4,K3,K4) ≤ 29.

Proof. First, we note that R(K3,K4) = 9 [8] and R(C4,K9) = 30 [10]. Hence,
if there exists any (C4,K3,K4)-coloring G of K29, then by merging the last two
colors of G we obtain a (C4,K9)-coloring, i.e., a C4-free graph G′ on 29 vertices
with maximum independent set of order at most 8. All such graphs were obtained
in [10], and up to isomorphism there are 267 of them.
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Case
Ramsey number m,n,

∑n
i=1 ri

lower old upper new upper
# bound bound bound

1 R(C4,K11) 1, 1, 36 40 [14] 44 [10] 43
2 R(C4,K12) 1, 1, 43 43 (*) 52 [10] 51
3 R(C4,K3,K4) Proposition 7 27 [3] 32 [16] 29
4 R(C4,K4,K4) 1, 2, 58 52 [16] 71 [11] 66
5 R(C4,K3,K3,K3) 1, 3, 51 49 [1] 59 [11] 57
6 R(C4, C4,K3,K4) 2, 2, 57 43 [3] 76 [16] 75
7 R(C4, C4,K4,K4) 2, 2, 150 87 [16] 179 [16] 177

Table 1. New bounds on Ramsey numbers of C4 versus complete graphs described in
Section 3: parameters, lower bounds and old and new upper bounds. (*) Lower bound
43 in case #2 is easily obtained by adding vertex-disjoint K3 to the lower bound witness
graph in case #1. In all cases, except case #3, the new upper bound is obtained by using
Theorem 6.

We verified by computations that for every such graph (one of 267 possible
graphs), its non-edges cannot be partitioned into a K3-free graph and a K4-
free graph. Thus, no (C4,K3,K4)-coloring of K29 exists, and the bound in the
proposition holds.

Theorem 8. The upper bounds in the last column of Table 1 hold.

Proof. Proposition 7 proves the bound in Case #3. The upper bounds in all
other cases are obtained by applying Theorem 6 with some additional simple
steps, as described below.

#1. It is known that R(C4,K10) = 36 [10]. Theorem 6 with m = n = 1,
G1 = K11 and r1 = 36 gives R(C4,K11) ≤ 36 + 1 +

√
36 = 43.

#2. Let r1 = 43, so by Case #1 we have r1 ≥ R(C4,K11). With m = n = 1 and
G1 = K12, we obtain R(C4,K12) ≤ r1 + 1 +

⌈√
r1
⌉
= 44 + 7 = 51.

#4. Let r1 = r2 = 29, so by Case #3 we have r1, r2 ≥ R(C4,K3,K4). With
m = 1, n = 2 and G1 = G2 = K4, we obtain

R(C4,K4,K4) ≤ r1 + r2 +
⌈√

r1 + r2 − 1
⌉
= 58 +

⌈√
57
⌉
= 66.

#5. It is known that R(C4,K3,K3) = 17 [6]. Let ri = 17 and Gi = K3 for
1 ≤ i ≤ 3. With m = 1 and n = 3, we have

R(C4,K3,K3,K3) ≤ r1+r2+r3−1+
⌈√

r1 + r2 + r3 − 2
⌉
= 50+

√
49 = 57.

#6. It is known that R(C4, C4,K4) ≤ 21 [11] and R(C4, C4,K3,K3) ≤ 36
[15]. Let r1 = 21 and r2 = 36, so that r1 ≥ R(C4, C4,K4) and r2 ≥
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R(C4, C4,K3,K3). With m = 2, n = 2, G1 = K3 and G2 = K4, we have

R(C4, C4,K3,K4) ≤ r1 + r2 + 2 +
⌈
2
√

9/4 + r1 + r2 − 2
⌉

= 59 +
⌈√

9 + 220
⌉
= 75.

#7. Let r1 = r2 = 75, so by Case #6 we have r1, r2 ≥ R(C4, C4,K3,K4). With
m = 2, n = 2 and G1 = G2 = K4, we have

R(C4, C4,K4,K4) ≤ r1+r2+2+
⌈
2
√

9/4 + r1 + r2 −2
⌉
=152+

⌈√
1+ 600

⌉
=177.

4. Stars and Books

We start this section with a classical result obtained by Parsons in 1975.

Lemma 9 [12]. For k ≥ 2, we have R(C4,K1,k) ≤ k +
⌈√

k
⌉
+ 1.

Proof. The original proof was presented by Parsons, but we note that the same
result is implied by our Theorem 6 using m = n = 1 and r1 = R(C4, kK1) = k.

The next corollary puts together Theorem 6 and Lemma 9.

Corollary 10. For k ≥ 2, we have

R(C4, Bk) ≤ R(C4,K1,k)+

⌈√
R(C4,K1,k)

⌉
+1≤ k+

⌈√
k +

⌈√
k
⌉
+ 1

⌉
+
⌈√

k
⌉
+2.

Proof. Since Bk = K1 + K1,k, using Theorem 6 with m = n = 1 and r1 =

k +
⌈√

k
⌉
+ 1 gives the first inequality. The second inequality is obtained by

Lemma 9.

Note that for k = q2 − q + 1 we have
⌈√

k
⌉

= q. Our result in Corol-

lary 10, which holds for all integers k ≥ 2, generalizes a result by Faudree,
Rousseau and Sheehan [7]. In particular, the Lemma in Section 2 of [7] im-
plies that R(C4, B17) ≤ 29, while our Corollary 10 using Parson’s [12] result
R(C4,K1,17) = 22 gives a better bound, namely R(C4, B17) ≤ 28.

Our last corollary about multicolor Ramsey numbers of C4’s versus stars is
also a consequence of Theorem 6.
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Corollary 11. Let m,n, k1, . . . , kn ≥ 1, such that m+
∑n

i=1 ki ≥ n+ 2. Then

R(C4, . . . , C4︸ ︷︷ ︸
m

,K1,k1 , . . . ,K1,kn)

≤ 1 +

n∑
i=1

ki − n+
m2 +m

2
+

m
√√√√(m+ 1)2

4
+

n∑
i=1

ki − n

 .

Proof. Let wi be the vertex of degree ki in K1,ki . Since kiK1 = K1,ki −wi, apply
Theorem 6 with

ri = R(C4, . . . , C4︸ ︷︷ ︸
m

,K1,k1 , . . . ,K1,ki−1
, kiK1,K1,ki+1

, . . . ,K1,kn),

and observe that ri = ki. The result follows.

We note that if we consider Corollary 11 with n = 1, then it reduces to a
result obtained in [17], which states that for k,m ≥ 1, with m + k > 3, it holds
that

R(C4, . . . , C4︸ ︷︷ ︸
m

,K1,k) ≤ k +
m2 +m

2
+

⌈
m

√
k +

m2 + 2m− 3

4

⌉
.
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