Article in press
Authors:
Title:
Optimal pebbling of complete binary trees and a meta-Fibonacci sequence
PDFSource:
Discussiones Mathematicae Graph Theory
Received: 2023-06-09 , Revised: 2024-07-06 , Accepted: 2024-07-07 , Available online: 2024-09-03 , https://doi.org/10.7151/dmgt.2556
Abstract:
In 1999, Fu and Shiue published a paper on optimal pebblings of complete $m$-ary trees.
Among other things, they produced OPCBT, an integer linear program that produces
an optimal pebbling of a complete binary tree. Building upon their work, we give
an explicit representation of the optimal pebbling number of a complete binary tree.
Among other things, we show that the sequence of optimal pebbling numbers of complete binary trees
indexed by their heights is related to the Conolly sequence, a type of meta-Fibonacci sequence.
Keywords:
optimal pebbling, complete binary tree, meta-Fibonacci sequence
References:
- R.A. Beeler, T.W. Haynes and K. Murphy, $1$-restricted optimal rubbling on graphs, Discuss. Math. Graph Theory 39 (2019) 575–588.
https://doi.org/10.7151/dmgt.2102 - R.A. Beeler, T.W. Haynes, M.A. Henning and R. Keaton, Total domination cover rubbling, Discrete Appl. Math. 283 (2020) 133–141.
https://doi.org/10.1016/j.dam.2019.12.020 - R.A. Beeler, T.W. Haynes and R. Keaton, Domination cover rubbling, Discrete Appl. Math. 260 (2019) 75–85.
https://doi.org/10.1016/j.dam.2019.01.037 - C. Belford and N. Sieben, Rubbling and optimal rubbling of graphs, Discrete Math. 309 (2009) 3436–3446.
https://doi.org/10.1016/j.disc.2008.09.035 - M. Chellali, T.W. Haynes, S.T. Hedetniemi and T.M. Lewis, Restricted optimal pebbling and domination in graphs, Discrete Appl. Math. 221 (2017) 46–53.
https://doi.org/10.1016/j.dam.2016.12.029 - F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (1989) 467–472.
https://doi.org/10.1137/0402041 - T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms (MIT Press, Cambridge, MA, 2009).
- C.A. Cusack, M. Powers and A. Bekmetjev, Doppelgangers and Lemke graphs, Discrete Math. 341 (2018) 2686–2693.
https://doi.org/10.1016/j.disc.2018.06.028 - C.A. Cusack, A. Bekmetjev and M. Powers, Two-pebbling and odd-two-pebbling are not equivalent, Discrete Math. 342 (2019) 777–783.
https://doi.org/10.1016/j.disc.2018.10.030 - A. Czygrinow, G. Hurlbert, G.Y. Katona and L.F. Papp, Optimal pebbling number of graphs with given minimum degree, Discrete Appl. Math. 260 (2019) 117–130.
https://doi.org/10.1016/j.dam.2019.01.023 - H.-L. Fu and C.-L. Shiue, The optimal pebbling number of the complete m-ary tree, Discrete Math. 222 (2000) 89–100.
https://doi.org/10.1016/S0012-365X(00)00008-X - Z.-T. Gao and J.-H. Yin, The optimal pebbling of spindle graphs, Open Math. 17 (2019) 582–587.
https://doi.org/10.1515/math-2019-0094 - E. Győri, G.Y. Katona, F.L. Papp and C. Tompkins, The optimal pebbling number of staircase graphs, Discrete Math. 342 (2019) 2148–2157.
https://doi.org/10.1016/j.disc.2018.06.042 - E. Győri, G.Y. Katona and L.F. Papp, Optimal pebbling number of the square grid, Graphs Combin. 36 (2020) 803–829.
https://doi.org/10.1007/s00373-020-02154-z - E. Győri, G.Y. Katona and F.L. Papp, Optimal pebbling and rubbling of graphs with given diameter, Discrete Appl. Math. 266 (2019) 340–345.
https://doi.org/10.1016/j.dam.2018.06.014 - D.S. Herscovici, B.D. Hester and G.H. Hurlbert, Optimal pebbling in products of graphs, Australas. J. Combin. 50 (2011) 3–24.
- G. Hurlbert, General graph pebbling, Discrete Appl. Math. 161 (2013) 1221–1231.
https://doi.org/10.1016/j.dam.2012.03.010 - Y. Li and Y. Ye, The $2$-pebbling property of squares of paths and Graham's conjecture, Open Math. 18 (2020) 87–92.
https://doi.org/10.1515/math-2020-0009 - A. Lourdusamy and T. Mathivanan, The domination cover pebbling number for some cyclic graphs and path graphs, Ars Combin. 138 (2018) 51–61.
- L. Pachter, H.S. Snevily and B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995) 65–80.
- C.-L. Shiue, Distance restricted optimal pebbling in cycles, Discrete Appl. Math. 279 (2020) 125–133.
https://doi.org/10.1016/j.dam.2019.10.017 - C.-L. Shiue, Capacity restricted optimal pebbling in graphs, Discrete Appl. Math. 260 (2019) 284–288.
https://doi.org/10.1016/j.dam.2019.01.002 - C.-L. Shiue and H.-L. Fu, The optimal pebbling number of the caterpillar, Taiwanese J. Math. 13 (2009) 419–429.
https://doi.org/10.11650/twjm/1500405346 - C.-L. Shiue, H.-H. Chiang, M.-M. Wong and H.M. Srivastava, The optimal t-pebbling number of a certain complete m-ary tree, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM 113 (2019) 2889–2910.
https://doi.org/10.1007/s13398-018-0503-2 - N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (2024).
https://oeis.org - C. Xue and C. Yerger, Optimal pebbling on grids, Graphs Combin. 32 (2016) 1229–1247.
https://doi.org/10.1007/s00373-015-1615-5 - Y. Ye, M. Liu and J. Gao, The optimal pebbling number of square of paths and cycles, Ars Combin. 114 (2014) 363–371.
Close