Discussiones Mathematicae
Graph Theory xx (xxxx) 1-14
https://doi.org/10.7151 /dmgt.2556

OPTIMAL PEBBLING OF COMPLETE BINARY TREES
AND A META-FIBONACCI SEQUENCE

THOMAS M. LEWIS

Department of Mathematics
Furman University

Greenville, SC, 29613, USA

e-mail: tom.lewis@furman.edu

AND

FABIAN SALINAS

Department of Mathematics
Vanderbilt University
Nashville, TN, 37212, USA

e-mail: fabian.salinas@vanderbilt.edu

Abstract

In 1999, Fu and Shiue published a paper on optimal pebblings of com-
plete m-ary trees. Among other things, they produced OPCBT, an integer
linear program that produces an optimal pebbling of a complete binary
tree. Building upon their work, we give an explicit representation of the
optimal pebbling number of a complete binary tree. Among other things,
we show that the sequence of optimal pebbling numbers of complete binary
trees indexed by their heights is related to the Conolly sequence, a type of
meta-Fibonacci sequence.
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1. INTRODUCTION

1.1. Prologue

In 1999, Fu and Shiue [11] developed an integer linear program that produces an
optimal pebbling of a complete binary tree. In this paper, we build upon their
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work and show that the sequence of optimal pebbling numbers of the complete
binary trees indexed by their heights is related to the Conolly sequence, a type
of meta-Fibonacci sequence.

Let G be a graph with vertex set V' and edge set E. A pebbling configuration
(or just configuration) on G is a function f: V — NU{0}. For v € V, we think
of f(v) as the number of pebbles at v and f(G) = >, v f(w) as the number
of pebbles on G. For each positive integer p, let .%,(G) denote the collection of
configurations on G containing p pebbles.

A pebbling move on G consists of removing two pebbles from a vertex and
placing a single pebble at an adjacent vertex. In effect, to move a pebble, we
must pay a pebble. A configuration pebbles G provided that given any vertex v,
there exists a sequence of pebbling moves (possibly empty) that brings a pebble
to v. The optimal pebbling number of G is

©(G) = min{p : If € #,(G) such that f pebbles G}.

An optimal pebbling of G is a configuration f € F . () (G) that pebbles G. In
this paper, we study the optimal pebbling numbers and optimal pebblings of
complete binary trees.

A tree is an undirected graph in which any two vertices are connected by
exactly one path. We adopt the following terminology regarding trees. A rooted
tree is a tree with a distinguished vertex, called the root of the tree. Let T be a
rooted tree with vertex set V', edge set E, and root r. Given a vertex v € V, the
distance from r to v, denoted by d(r,v), is the number of edges in the path from
r to v. For each nonnegative integer k, the kth level of T is the set of vertices
Ly ={veV:d(r,v) =k}. A leaf of T is a vertex with degree one. The children
of a non-leaf vertex v are the vertices in the next highest level that are adjacent
to v. A complete binary tree is a rooted tree in which each non-leaf vertex has
two children and every leaf vertex is at the same level.! The height of a complete
binary tree is the distance from the root to any leaf. Hereafter T}, denotes a
complete binary tree of height h.

To describe our results, we first introduce a sequence of partial sums. Given a
list of lists .4, ...,.%, let Join[.Z4, . .., %] be the list obtained by concatenating
(in order) .7 through .Z;. We define a list of numbers composed entirely of 1s
and bs. We begin with A; = (5). We define successive lists recursively: for
each k > 2, let Ay = Join[Ag_1, Ax—1,(1)]. Some examples of the lists {Ay} are
collected in Table 1.

Let A be the direct limit of this sequence of lists. Let ag = 0 and, for n > 1,
let a, denote the nth element of the list A. Let {s,} denote the sequence of
partial sums of {a,}; see Table 2.

1This definition of a complete binary tree is not universally recognized. Our usage follows
Cormen, et al. [7] and, notably, Fu and Shiue [11].



OPTIMAL PEBBLING OF COMPLETE BINARY TREES 3

Table 1. The lists A; through Ajy.

n 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a, 05 5 1 5 5 1 1 5 5 1 5 5 1 1 1
s, 0 5 10 11 16 21 22 23 28 33 34 39 44 45 46 47

Table 2. Some terms of {a,} and {s,}.
1.2. Results

In this paper, we present three results. For each positive integer ¢, let
(1) s71(0) = max{k > 0: s, <},

a left inverse of the sequence s. First, we show that 7*(T},) = 2" — s~1(2"). As
part of our proof, we introduce a simple method to generate an optimal pebbling
of Tj, through the p-expansion of 2". The proof of this initial result is divided
into two distinct sections: an upper-bound argument in §3 and a lower-bound
argument in §4. In §5, we show that the sequence {s,} is related to the Conolly
sequence, a type of meta-Fibonacci sequence. The first two terms of the Conolly
sequence are ¢; = 1 and ¢y = 2. Thereafter, for n > 2, the sequence satisfies the
nested recurrence relation

(2) cn=cn)=cn—cn—1))+cn—1-c(n-—2)).

The Conolly sequence {c,} is an offset of entry A046699 in [25]. We show that
8, = 4c, +n. In §6, we develop an asymptotic expansion of s1(2"), which
augments the concluding remarks of Fu and Shiue [11]. In particular, we show
that, as h — oo,

1 1 1
(3) s7L2h) = g( ) — g(h +1)— ga(h) logy(h + 1) + O(1).
The function «(h), which appears in the third-order term of the expansion, is
bounded between —1 and +1 and satisfies liminf a(h) = —1 and limsup a(h) = 1
as h — oo. Finally, in §7, we propose two problems for further study.
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1.3. Background and related work

The paper of Fu and Shiue [11] concerns the optimal pebbling number of a com-
plete m-ary tree, and our results lean heavily on their work. For each integer m
such that m > 2, a complete m-ary tree is a rooted tree in which each non-leaf
vertex has m children and each leaf vertex is at the same level. For m > 3, they
show that placing 2" pebbles at the root produces an optimal pebbling of a com-
plete m-ary tree of height h. Most of their paper is devoted to describing optimal
pebblings of complete binary trees, which are more subtle and intricate, deposit-
ing pebbles at various levels within the tree. Among other things, they show that
optimal pebblings can always be found within the class of symmetric configura-
tions. Symmetric configurations are homogeneous within levels and, except for
the root, are even. Fu and Shiue provide a necessary and sufficient condition
for a symmetric configuration to pebble a complete binary tree and they develop
OPCBT, an integer linear program that produces an optimal pebbling. Roughly
speaking, OPCBT is a bottom-up program: an optimal pebbling is revealed in
successive steps, starting from the leaves and terminating at the root. One aspect
of this approach is that 7*(7},) is not known until the program terminates and
the configuration is examined. By comparison, our method demonstrates that
7*(T),) = 2" — s71(2") and that an optimal pebbling can be found through the
p-expansion of 2%,

While graph pebbling grew out of problems in combinatorial number theory
and group theory, it was formally introduced in its present form by Chung [6]
in her analysis of the pebbling number of the hypercube. The optimal pebbling
number of a graph was introduced later by Pachter, Snevily, and Voxman [20].
The paper of Hurlbert [17] is an excellent survey of graph pebbling.

The optimal pebbling numbers of some classes of graphs have been studied.
For example, the optimal pebbling numbers have been determined for caterpillars
[23], the squares of paths and cycles [27], spindle graphs [12], staircase graphs [13],
and grid graphs [14,26]. The optimal pebbling numbers have been studied for
products of graphs [16], graphs with a given diameter [15], and graphs with a
given minimum degree [10].

In recent years, a variety of adaptations and analogs of optimal pebbling
have emerged. For example, the optimal pebbling number of a graph has been
extended in a variety of ways by restricting the capacity of a configuration or
placing additional requirements on a configuration; see, for example, [5,21,22,24].
Graph rubbling is a cognate of pebbling; interested readers in graph rubbling
should consult [1-4].

2. THE M AND u-EXPANSIONS

For each positive integer 4, let M; = 2! — 1 denote the ith Mersenne number.
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Given a positive integer n, let £ = max{i : M; < n} and write n = M, + r, where
0<r< M, If r=0, then we stop and write n = My. If r = My, then we stop
and write n = 2M,. If else, then we continue this process with r. In this way,
we can write n = 1My + - -+ + g¢My, where ¢; € {0,1,2} for each i € [¢], and
if e; = 2 for some j € [{], then ¢; = 0 for all ¢ € [j — 1]. We call the sum on
the right side of equation the M -expansion of n. Let (n)y = (e1,...,¢) denote
the coefficient list of the M-expansion of n. For example, (47)y = (1,0,0,1,1)
and (157)y = (0,0,0,2,0,0,1). The M-expansions (written in reverse order) of
the natural numbers are the canonical skew-binary numbers; see entry A169683
in [25].

For each positive integer i, let p; = 271 + 2¢ — 1; see entry A083329 in [25].
The p-expansion of a positive integer is developed in a parallel fashion. Let n be
a positive integer. If n < 4, then we stop. If n > 5, we let £ = max{i : p; < n}
and write n = uy + r, where 0 < r < pyp. If r = 0, then we stop and write
n = pg. If r = py, then we stop and write n = 2uy. If else, then we continue
this process with r. In this way, we can write n = r 4+ e1u1 + - - - + €pug, where
r € {0,1,2,3,4}, ¢; € {0,1,2} for each i € [¢], and if ¢; = 2 for some j € [/],
then r = 0 and ¢; = 0 for all 7 € [j — 1]. We call the sum on the right side of the
equation the p-expansion of n. When r = 0, we let (n), = (€1,...,&) denote
the coefficient list of the p-expansion of n. For example, 409 = 3 + us + ur,
140 = 2u9 + p3 + ps, and (140), = (0,2,1,0,1).

Lemma 1. For each positive integer n, (sn), = (n)nm-

Proof. We begin by proving a provisional form of this theorem; namely, for each
positive integer k, sy, = pi. This is true for K = 1 by inspection: sy, = s1 =
5 = pp. Let k be a positive integer. Recall that the list Axyq contains My
terms and has the form

(4) Apyr = Join[Ay, Ay, (1)].

Thus spr,,, = 2sp, + 1. By induction, it follows that spy, = pu.

Let n be a positive integer and let ¢ = max{i : n > M;}. Then n = M, +r,
where 0 < r < M. Referring once again to equation (4), we see that spz, 4, is
the sum of the first M, + r terms in Ay, 1, read left to right. Clearly this is the
sum of the terms of Ay plus the first r terms of list A, that is, s, = sy, + s, If
r =0, then n = My and s, = ¢, and if r = My, then n = 2M, and s, = 2uy. In
either case, we are done. Otherwise 0 < r < M, and we continue by developing
the p-expansion of s, as above. [

Lemma 2. Let A be a positive integer and let A = r + ey + -+ - + expr be the
p-expansion of \. Then s 1(\) = e My + -+ 4 e, Mj,.
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Proof. Let { = etM1 + - + M. By Lemma 1, A = r + sp. In particular,
s¢ < A. To finish our proof, we will show sy > A.

If r = 0 in the p-expansion of A, then s, = A. Since s is strictly increasing,
Sg+1 > A. On the other hand, if r» # 0, then 1 € {0,1}; consequently, the M-
expansion of /+11s (e1+1) M+ - -+ex My, and, by Lemma 1, sp11 = A+5—r > A,
as was to be shown. [ |

3. THE UpPER BOUND OF 7*(T},)

A configuration f of T} is homogenous provided that f(v) = f(w) whenever the
vertices v and w are at the same level. When f is a homogenous pebbling of T},

we write f = (fo,..., fn), where f; is the number of pebbles at each vertex at
level i. Let

h
(5) T(f)=2fo+ Y pifi.

i=1

In accord with Fu and Shiue, a homogeneous pebbling f = (fo,..., fn) of T}, is
symmetric provided that f; is even for ¢ > 1. In their Lemma 3.2, Fu and Shiue [11]
provide a necessary and sufficient condition for a symmetric configuration to
pebble T},. This lemma can be recast as follows:

Lemma 3 (Fu and Shiue). The symmetric configuration f = (fo,..., frn) pebbles
Ty, if and only if T(f) > 2"+,

For each positive integer h, we define a special symmetric configuration on
Ty. Let f! = (2,0) and f? = (4,0,0). For h > 3, let

(6) 2" =t eypn + -+ Ep_atn—2,
be the p-expansion of 2" and let
= (r,2¢1,2e9,...,264_5,0,0).

Theorem 4. For each positive integer h, f* pebbles Ty, and fM(T},) = 2" —
—1/9h
sTH(2M).

Proof. First we show that T'(f") = 2#*1 for each positive integer h, which, by
virtue of Lemma 3, shows that f" pebbles T},. By inspection I'(f') = 22 and
I'(f%) = 23. For h > 3, T'(f") = 2"*! by the p-expansion formula, equation (6).

Next we show that f(T3) = 2" — s71(2") for each positive integer h. By
inspection, f1(71) and f2(T%) have the prescribed size since both s~!(2!) and
571(22) are equal to 0. For A > 3 the number of pebbles in f" is

AT = r+2(2e1) + 22(2e0) + - - - + 2072(2e_9).
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For each positive integer 4, y; — M; = 2+1; accordingly,

T =r+e1(pn — M) + - + ep_alptn—o — Mp_2)
=(r+ep+--+en—2pn-2) — (E1 M1+ +ep_aMp_2)
= 2h - 8_1(2h)7

where we used equation (6) and Lemma 2 to obtain the last line in the chain. m

4. THE LOWER BOUND OF 7*(T})

Here is the main result of this section.

Theorem 5. Let h be a positive integer. A configuration with fewer than 2" —
s71(2") pebbles cannot pebble Tj,.

Consider the sequence {b;} defined by by = 2 and by = 2ux_1 = 3(2¥) — 2
for k > 2. A simple but important attribute of this sequence is contained in the
next lemma, which we state without proof but follows by induction.

Lemma 6. Fori> 2, 3by +by+---+b; = 2b; — 2i.

Let h be a positive integer, let m be an integer, 1 < m < 2/2 and let
m = 02" 4 012 + - - - + 8,112 be the binary expansion of m, where ¢; € {0,1}
for each index i. Let ¢, = (894201, 209, . .., 20;41) denote a special configuration
on Tj, consisting of m pebbles. For simplicity, let 7/, = I'(¢"). Owing to the
definition of the sequence {by},

(7) A = (80 4 261)b1 + Gaby + -+ + Snp1bas.

Lemma 7. Let h and m be positive integers such that 4, < 2"+, Then 7*(Tj) >
m.

Proof. For the sake of a contradiction, let us assume that T} can be pebbled
by a configuration consisting of m pebbles. Then, by Theorem 3.4 of Fu and
Shiue [11], there is a symmetric configuration f* that pebbles T}, and consists of
m pebbles.

The list ¢!, = (6 + 201,202, ...,20,41) is a symmetric configuration on T},
containing m pebbles. Since 24; < p;i 11 for each i > 1, ¢ maximizes I among the
set of symmetric configurations f on T} containing m pebbles. As a consequence,
I(f*) <~k < 21 By Lemma 3, f* does not pebble Ty, which is a contradiction.
Thus, there does not exist a configuration that pebbles T}, and consists of m
pebbles. [ |

Finally, we present the proof of Theorem 5, the main result of this section.
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Proof. The result is true for A = 1 by inspection. Let h > 2 be given and let
Ny, = 2" — s71(2"). We show that 71]17;1—1 < 21 which, according to Lemma 7,
proves the theorem.

Let 2" =74 eypu1 + -+ - + €p_oftn—_o be the p-expansion of 2". By Lemma 2,
s7H2M) = ey My + - - - + e4_o Mj,_o; therefore,

Np=r+ei(pm — M)+ +epa(pn-—2 — Mp_2)
=r4e224 - 492"

We divide the rest of the proof into two cases according to whether or not r = 0.

First, let us suppose that » = 0 and that ¢; # 2 for each i € [h — 2] in the
p-expansion of 2. Then 122 + - - - 4+ ,_92""1 is the binary expansion of N}, and
therefore

Vi, = €1ba + €2b3 + -+ + Ep_2bp1

= 2(e1p1 +e2p2 + -+ Ep_aptn—2)
=Mt

Since the sequence {y7'} is strictly increasing, 71}%—1 < it
Next, let us suppose that r = 0 but that ¢; = 2 for some j € [h — 2]
in the p-expansion of 2", In particular, this implies that ¢; € {0,1} for each
integer i € {j +1,...,h — 2}. Therefore, the binary expansion of Ny — 1 is
1424224 207 45,1272 o g 92071 hence
’ykfh_l = 3b1 + b2 + -4 bj+1 + 5j+1bj+2 4+ -+ 5h—2bh—1~
By Lemma 6,
Vf%hfl =2bj11 +€jq1bjao+ -+ ep_2by_1 — (J+1)2
=2(2uj + €j 111 + -+ Epopn—2) — (§ +1)2
= 2" - (j+1)2,
which shows that 71}\th—1 < ot
Lastly, let us assume that r» € {1,2,3,4} in the p-expansion of 2". This
implies that ¢; € {0,1} for each i € [h — 2]. Consequently,
Np—1=(r—1) +€122 +5223 + - +€h_22h71
and
’V]h{fhfl =2(r—1)+e1ba+e2bs+ -+ +ep_2bp_1
=2((r—1) +e1p1 +e2p3 + - + En—2pn—2)
=2 2

i

which shows that '7]}{,“1 < 21 completing our proof. [ |
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5. CONNECTION WITH THE CONNOLLY SEQUENCE

Recall from §1 that the Conolly sequence {c,} satisfies the recurrence relation (2)
with initial conditions ¢; = 1 and cs = 2. We will prove the following theorem.

Theorem 8. For each positive integer n, s, = 4c, + n.

Proof. We begin by defining a list of numbers composed entirely of 0s and 1s.
Let Dy = (1). We define successive lists recursively: for each integer k, k > 2, let
Dy, = Join[Dy_1, D1, (0)]. The lists D; through D, are collected in Table 3.

k Dy

)

2 (1,1, 0)

3 (1,1,0,1,1,0,0)

4 (1,1,0,1,1,0,0,1,1,0,1,1,0,0,0)

Table 3. The lists Dy through Djy.

Let D be the limit of this sequence of lists and, for each positive integer
n, let d, denote the nth element of D. The sequence {d,} is the sequence of
differences in the Conolly sequence; see entry A079559 in [25]. Thus, for each
positive integer n, ¢, = dy + -+ + d,. The initial terms of the sequences {d,}
and {c,} are presented in Table 4.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d, 1 1.0 110 0 1 1 0 1 1 0 0 0
e, 1 2 2 3 4 4 45 6 6 7 8 8 8 8

Table 4. The initial terms of {d,,} and {c,}.

Recall the sequence {a,} defined in §1; see Table 2. For each positive integer
n, it is easy to see that a, = 4d,, + 1 and therefore s,, = 4c, + n, as was to be
shown. -

6. ASYMPTOTIC ANALYSIS OF s~ 1(2")

Let m be a positive integer and let m = r+e1u1 + - - - + gopte be the p-expansion
of m. Define o(m) = €1+ -- - +¢4. For example, the p-expansions of 236 and 253
are 2us + ps + pe and 4 + o + g + pg, respectively. Accordingly, o(236) = 4
and 0(253) = 3.
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Theorem 9. For each positive integer m, there exists an integer r € {0, 1,2, 3,4}
such that m —r = 3s~1(m) + 20(m).

Proof. Let m = r+equ1+- - -+eope be the p-expansion of m. Since p; = 3M;+2
for each positive integer i, m —r = 3(ey My + - -+ +e,My) + 2(e1 + - - - + &¢). By
Lemma 2, the right side is 3s~(m) + 20(m). ]

Let h be a positive integer. According to Theorem 9, there exists an integer
r € {0,1,2,3,4} such that

(8) sTH2M) =2"/3 — 20(2") /3 — /3.
The remainder of this section is devoted to an analysis of o.

Lemma 10. Let h be an integer, h > 6, and let j* = min{j : j > 2"=2-1 _ 1},
Then 7* +1 < o(2") < h — j*.

Proof. We will study equation (6), the y-expansion of 2. Due to the definition
of 7%, we may perform j* successive subtractions of the sequence p along the
arithmetic sequence of indices h — 2, h — 4, ..., h — 25*, which yields

2" — oy —ppg — o — Hh—2j+ = oh=27" 4 j*,

Since 22" ~1 _1 < j* < 2h=2"+1 _ 1 the right side of this equation is bounded
below by ji,—2j+—1 and above by p,—2;+. The rest of the argument is broken into
two cases.

If 207207 4 j* = pp_gj,, then 2" = 2pup_oj» + pp_gjeys + -+ + pp—p and
o(2M) = j* + 1.

If 22" 4 j* < Hh—2j+, then the next subtraction in the p-expansion of 2h
is Hh—25%—1, which y1€1dS

9) 2" — Yo — = 2 — fthe2j5—1 = p,

where p = j* — 2"=2"=1 1 1. This shows that o(2") > j* + 1. There are h —
2j* — 2 remaining coefficients in the p-expansion of 2 to be determined; namely,
€1,...,Ep—2j+—2. Since €1 can equal 2 and the remaining coefficients can each
equal 1, 0(2") < (j* + 1) + (h — 2j* — 1) = h — j*, as was to be shown. |

Remark 11. Let us make a few observations regarding Lemma 10, especially
concerning the asymptotic behavior of o(2") as h — oo.

a. Given a height h, there are at least two ways to calculate j*. First, j* = [z*],
where x* is the root of the equation 2z 4 logy(z + 1) = h — 1. An analysis of this
equation reveals that

(10) j* 2 (h=1)/2 = (1/2)logy((h +1)/2).
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Second, for each integer k, k > 3, let Q;, = 24 (k—2) and let I, = [Qx, Qr+1)NZ.
For h € Iy, j* = [(h — k)/2].

b. Within each interval I, there are heights that satisfy the lower bound and
heights that satisfy the upper bound in the lemma. For h = Qy, j* = 2F"1 -1
and o(2") = 2871 = j* 4 1. For h = 2" — (k 4+ 1), j* = 28 — k and 0(2") =
2k —1=h—j*

c. The interval [j* 4+ 1, h — j*] has center (h+1)/2 and length h —2j* — 1. Using
equation (10), we may conclude that

(11) 20(2") = (h+1)| < logy((h+1)/2).
Taking into consideration equation (8), we can write
3s71(2") = 2" — (h + 1) — a(h) logy((h +1)/2) — 1,

where —1 < a(h) < 1, which gives us (3).

7. PROBLEMS FOR FURTHER STUDY

While the bound presented in inequality (11) is sharp (at least asymptotically),
it does not capture the behavior of ¢(2") for “most” h. Here is a possible way
to improve this bound. For heights h, h > 6, let E(h) = o(2") — (j* 4 1), which
we call the excess. The excess measures the “thickness” of an optimal pebbling
at the top of the tree. For h € Iy U Ixy1, 0 < E(h) < k — 1. Within the
interval Iy, U Ij1, there is only one height h for which E(h) = k — 1. Excluding
this singular height, if we select a height h uniformly from I U 41, then E(h)
appears to follow a binomial distribution with parameters &k — 2 and 1/2. For
h € Iy U Iy1, it can be shown that 20(2") — h = 2(E(h) — (k — 2)/2) + R,
where R € {—1,0,1}. Therefore, if we sample a height uniformly from I} U I}41,
then |E(h) — (k —2)/2| < 34/(k — 2)/2 with very high probability. We offer the
following conjecture.

Conjecture 12. For most heights h € I;, U Iy41, |20(2") — h| < 3vEk — 2+ 1.

It would be natural to extend the results of this paper to m-ary trees, m > 3.
Under the normal pebbling rule (pay one pebble to move one pebble), Fu and
Shuie showed that an optimal pebbling of an m-ary tree of height h is achieved
by placing 2" pebbles at the root; see Theorem 2.1 of [11]. For m-ary trees with
m > 3, we suggest modifying the pebbling rule to disperse the pebbles away from
the root in an optimal pebbling. For example, for m = 3, a pebbling move might
consist of removing three pebbles from a vertex and placing a single pebble at
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an adjacent vertex. Some preliminary calculations show that optimal pebblings
of 3-ary trees subject to this pebbling rule distribute the pebbles throughout the
tree.
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