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Abstract

In 1999, Fu and Shiue published a paper on optimal pebblings of com-
plete m-ary trees. Among other things, they produced OPCBT, an integer
linear program that produces an optimal pebbling of a complete binary
tree. Building upon their work, we give an explicit representation of the
optimal pebbling number of a complete binary tree. Among other things,
we show that the sequence of optimal pebbling numbers of complete binary
trees indexed by their heights is related to the Conolly sequence, a type of
meta-Fibonacci sequence.

Keywords: optimal pebbling, complete binary tree, meta-Fibonacci se-
quence.

2020 Mathematics Subject Classification: 05C57, 05C05.

1. Introduction

1.1. Prologue

In 1999, Fu and Shiue [11] developed an integer linear program that produces an
optimal pebbling of a complete binary tree. In this paper, we build upon their
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work and show that the sequence of optimal pebbling numbers of the complete
binary trees indexed by their heights is related to the Conolly sequence, a type
of meta-Fibonacci sequence.

Let G be a graph with vertex set V and edge set E. A pebbling configuration

(or just configuration) on G is a function f : V → N ∪ {0}. For v ∈ V , we think
of f(v) as the number of pebbles at v and f(G) =

∑

w∈V f(w) as the number
of pebbles on G. For each positive integer p, let Fp(G) denote the collection of
configurations on G containing p pebbles.

A pebbling move on G consists of removing two pebbles from a vertex and
placing a single pebble at an adjacent vertex. In effect, to move a pebble, we
must pay a pebble. A configuration pebbles G provided that given any vertex v,
there exists a sequence of pebbling moves (possibly empty) that brings a pebble
to v. The optimal pebbling number of G is

π∗(G) = min{p : ∃f ∈ Fp(G) such that f pebbles G}.

An optimal pebbling of G is a configuration f ∈ Fπ∗(G)(G) that pebbles G. In
this paper, we study the optimal pebbling numbers and optimal pebblings of
complete binary trees.

A tree is an undirected graph in which any two vertices are connected by
exactly one path. We adopt the following terminology regarding trees. A rooted

tree is a tree with a distinguished vertex, called the root of the tree. Let T be a
rooted tree with vertex set V , edge set E, and root r. Given a vertex v ∈ V , the
distance from r to v, denoted by d(r, v), is the number of edges in the path from
r to v. For each nonnegative integer k, the kth level of T is the set of vertices
Lk = {v ∈ V : d(r, v) = k}. A leaf of T is a vertex with degree one. The children

of a non-leaf vertex v are the vertices in the next highest level that are adjacent
to v. A complete binary tree is a rooted tree in which each non-leaf vertex has
two children and every leaf vertex is at the same level.1 The height of a complete
binary tree is the distance from the root to any leaf. Hereafter Th denotes a
complete binary tree of height h.

To describe our results, we first introduce a sequence of partial sums. Given a
list of lists L1, . . . ,Li, let Join[L1, . . . ,Li] be the list obtained by concatenating
(in order) L1 through Li. We define a list of numbers composed entirely of 1s
and 5s. We begin with A1 = (5). We define successive lists recursively: for
each k ≥ 2, let Ak = Join[Ak−1, Ak−1, (1)]. Some examples of the lists {Ak} are
collected in Table 1.

Let A be the direct limit of this sequence of lists. Let a0 = 0 and, for n ≥ 1,
let an denote the nth element of the list A. Let {sn} denote the sequence of
partial sums of {an}; see Table 2.

1This definition of a complete binary tree is not universally recognized. Our usage follows
Cormen, et al. [7] and, notably, Fu and Shiue [11].
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n An

1 (5)
2 (5, 5, 1)
3 (5, 5, 1, 5, 5, 1, 1)
4 (5, 5, 1, 5, 5, 1, 1, 5, 5, 1, 5, 5, 1, 1, 1)

Table 1. The lists A1 through A4.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

an 0 5 5 1 5 5 1 1 5 5 1 5 5 1 1 1

sn 0 5 10 11 16 21 22 23 28 33 34 39 44 45 46 47

Table 2. Some terms of {an} and {sn}.

1.2. Results

In this paper, we present three results. For each positive integer ℓ, let

(1) s−1(ℓ) = max{k ≥ 0 : sk ≤ ℓ},

a left inverse of the sequence s. First, we show that π∗(Th) = 2h − s−1(2h). As
part of our proof, we introduce a simple method to generate an optimal pebbling
of Th through the µ-expansion of 2h. The proof of this initial result is divided into
two distinct sections: an upper-bound argument in Section 3 and a lower-bound
argument in Section 4. In Section 5, we show that the sequence {sn} is related to
the Conolly sequence, a type of meta-Fibonacci sequence. The first two terms of
the Conolly sequence are c1 = 1 and c2 = 2. Thereafter, for n ≥ 2, the sequence
satisfies the nested recurrence relation

(2) cn = c(n) = c(n− c(n− 1)) + c(n− 1− c(n− 2)).

The Conolly sequence {cn} is an offset of entry A046699 in [25]. We show that
sn = 4cn+n. In Section 6, we develop an asymptotic expansion of s−1(2h), which
augments the concluding remarks of Fu and Shiue [11]. In particular, we show
that, as h → ∞,

(3) s−1(2h) =
1

3
(2h)− 1

3
(h+ 1)− 1

3
α(h) log2(h+ 1) +O(1).

The function α(h), which appears in the third-order term of the expansion, is
bounded between −1 and +1 and satisfies lim inf α(h) = −1 and lim supα(h) = 1
as h → ∞. Finally, in Section 7, we propose two problems for further study.
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1.3. Background and related work

The paper of Fu and Shiue [11] concerns the optimal pebbling number of a com-
plete m-ary tree, and our results lean heavily on their work. For each integer m
such that m ≥ 2, a complete m-ary tree is a rooted tree in which each non-leaf
vertex has m children and each leaf vertex is at the same level. For m ≥ 3, they
show that placing 2h pebbles at the root produces an optimal pebbling of a com-
plete m-ary tree of height h. Most of their paper is devoted to describing optimal
pebblings of complete binary trees, which are more subtle and intricate, deposit-
ing pebbles at various levels within the tree. Among other things, they show that
optimal pebblings can always be found within the class of symmetric configura-
tions. Symmetric configurations are homogeneous within levels and, except for
the root, are even. Fu and Shiue provide a necessary and sufficient condition
for a symmetric configuration to pebble a complete binary tree and they develop
OPCBT, an integer linear program that produces an optimal pebbling. Roughly
speaking, OPCBT is a bottom-up program: an optimal pebbling is revealed in
successive steps, starting from the leaves and terminating at the root. One aspect
of this approach is that π∗(Th) is not known until the program terminates and
the configuration is examined. By comparison, our method demonstrates that
π∗(Th) = 2h − s−1(2h) and that an optimal pebbling can be found through the
µ-expansion of 2h.

While graph pebbling grew out of problems in combinatorial number theory
and group theory, it was formally introduced in its present form by Chung [6]
in her analysis of the pebbling number of the hypercube. The optimal pebbling
number of a graph was introduced later by Pachter, Snevily, and Voxman [20].
The paper of Hurlbert [17] is an excellent survey of graph pebbling.

The optimal pebbling numbers of some classes of graphs have been studied.
For example, the optimal pebbling numbers have been determined for caterpillars
[23], the squares of paths and cycles [27], spindle graphs [12], staircase graphs [13],
and grid graphs [14, 26]. The optimal pebbling numbers have been studied for
products of graphs [16], graphs with a given diameter [15], and graphs with a
given minimum degree [10].

In recent years, a variety of adaptations and analogs of optimal pebbling
have emerged. For example, the optimal pebbling number of a graph has been
extended in a variety of ways by restricting the capacity of a configuration or
placing additional requirements on a configuration; see, for example, [5,21,22,24].
Graph rubbling is a cognate of pebbling; interested readers in graph rubbling
should consult [1–4].

2. The M and µ-Expansions

For each positive integer i, let Mi = 2i − 1 denote the ith Mersenne number.



Optimal Pebbling of Complete Binary Trees 813

Given a positive integer n, let ℓ = max{i : Mi ≤ n} and write n = Mℓ + r, where
0 ≤ r ≤ Mℓ. If r = 0, then we stop and write n = Mℓ. If r = Mℓ, then we stop
and write n = 2Mℓ. If else, then we continue this process with r. In this way,
we can write n = ε1M1 + · · · + εℓMℓ, where εi ∈ {0, 1, 2} for each i ∈ [ℓ], and
if εj = 2 for some j ∈ [ℓ], then εi = 0 for all i ∈ [j − 1]. We call the sum on
the right side of equation the M -expansion of n. Let 〈n〉M = (ε1, . . . , εℓ) denote
the coefficient list of the M -expansion of n. For example, 〈47〉M = (1, 0, 0, 1, 1)
and 〈157〉M = (0, 0, 0, 2, 0, 0, 1). The M -expansions (written in reverse order) of
the natural numbers are the canonical skew-binary numbers; see entry A169683
in [25].

For each positive integer i, let µi = 2i+1 + 2i − 1; see entry A083329 in [25].
The µ-expansion of a positive integer is developed in a parallel fashion. Let n be
a positive integer. If n ≤ 4, then we stop. If n ≥ 5, we let ℓ = max{i : µi ≤ n}
and write n = µℓ + r, where 0 ≤ r ≤ µℓ. If r = 0, then we stop and write
n = µℓ. If r = µℓ, then we stop and write n = 2µℓ. If else, then we continue
this process with r. In this way, we can write n = r + ε1µ1 + · · · + εℓµℓ, where
r ∈ {0, 1, 2, 3, 4}, εi ∈ {0, 1, 2} for each i ∈ [ℓ], and if εj = 2 for some j ∈ [ℓ],
then r = 0 and εi = 0 for all i ∈ [j − 1]. We call the sum on the right side of the
equation the µ-expansion of n. When r = 0, we let 〈n〉µ = (ε1, . . . , εℓ) denote
the coefficient list of the µ-expansion of n. For example, 409 = 3 + µ3 + µ7,
140 = 2µ2 + µ3 + µ5, and 〈140〉µ = (0, 2, 1, 0, 1).

Lemma 1. For each positive integer n, 〈sn〉µ = 〈n〉M .

Proof. We begin by proving a provisional form of this theorem; namely, for each
positive integer k, sMk

= µk. This is true for k = 1 by inspection: sM1
= s1 =

5 = µ1. Let k be a positive integer. Recall that the list Ak+1 contains Mk+1

terms and has the form

(4) Ak+1 = Join[Ak, Ak, (1)].

Thus sMk+1
= 2sMk

+ 1. By induction, it follows that sMk
= µk.

Let n be a positive integer and let ℓ = max{i : n ≥ Mi}. Then n = Mℓ + r,
where 0 ≤ r ≤ Mℓ. Referring once again to equation (4), we see that sMℓ+r is
the sum of the first Mℓ + r terms in Aℓ+1, read left to right. Clearly this is the
sum of the terms of Aℓ plus the first r terms of list Aℓ, that is, sn = sMℓ

+ sr. If
r = 0, then n = Mℓ and sn = µℓ, and if r = Mℓ, then n = 2Mℓ and sn = 2µℓ. In
either case, we are done. Otherwise 0 < r < Mℓ and we continue by developing
the µ-expansion of sr as above.

Lemma 2. Let λ be a positive integer and let λ = r + ε1µ1 + · · · + εkµk be the

µ-expansion of λ. Then s−1(λ) = ε1M1 + · · ·+ εkMk.
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Proof. Let ℓ = ε1M1 + · · · + εkMk. By Lemma 1, λ = r + sℓ. In particular,
sℓ ≤ λ. To finish our proof, we will show sℓ+1 > λ.

If r = 0 in the µ-expansion of λ, then sℓ = λ. Since s is strictly increasing,
sℓ+1 > λ. On the other hand, if r 6= 0, then ε1 ∈ {0, 1}; consequently, the M -
expansion of ℓ+1 is (ε1+1)M1+· · ·+εkMk, and, by Lemma 1, sℓ+1 = λ+5−r > λ,
as was to be shown.

3. The Upper Bound of π∗(Th)

A configuration f of Th is homogenous provided that f(v) = f(w) whenever the
vertices v and w are at the same level. When f is a homogenous pebbling of Th,
we write f = (f0, . . . , fh), where fi is the number of pebbles at each vertex at
level i. Let

(5) Γ(f) = 2f0 +
h
∑

i=1

µifi.

In accord with Fu and Shiue, a homogeneous pebbling f = (f0, . . . , fh) of Th is
symmetric provided that fi is even for i ≥ 1. In their Lemma 3.2, Fu and Shiue [11]
provide a necessary and sufficient condition for a symmetric configuration to
pebble Th. This lemma can be recast as follows:

Lemma 3 (Fu and Shiue). The symmetric configuration f = (f0, . . . , fh) pebbles
Th if and only if Γ(f) ≥ 2h+1.

For each positive integer h, we define a special symmetric configuration on
Th. Let f

1 = (2, 0) and f2 = (4, 0, 0). For h ≥ 3, let

(6) 2h = r + ε1µ1 + · · ·+ εh−2µh−2,

be the µ-expansion of 2h and let

fh = (r, 2ε1, 2ε2, . . . , 2εh−2, 0, 0).

Theorem 4. For each positive integer h, fh pebbles Th and fh(Th) = 2h −
s−1(2h).

Proof. First we show that Γ(fh) = 2h+1 for each positive integer h, which, by
virtue of Lemma 3, shows that fh pebbles Th. By inspection Γ(f1) = 22 and
Γ(f2) = 23. For h ≥ 3, Γ(fh) = 2h+1 by the µ-expansion formula, equation (6).

Next we show that fh(Th) = 2h − s−1(2h) for each positive integer h. By
inspection, f1(T1) and f2(T2) have the prescribed size since both s−1(21) and
s−1(22) are equal to 0. For h ≥ 3 the number of pebbles in fh is

fh(Th) = r + 2(2ε1) + 22(2ε2) + · · ·+ 2h−2(2εh−2).
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For each positive integer i, µi −Mi = 2i+1; accordingly,

fh(T h) = r + ε1(µ1 −M1) + · · ·+ εh−2(µh−2 −Mh−2)

= (r + ε1µ1 + · · ·+ εh−2µh−2)− (ε1M1 + · · ·+ εh−2Mh−2)

= 2h − s−1(2h),

where we used equation (6) and Lemma 2 to obtain the last line in the chain.

4. The Lower Bound of π∗(Th)

Here is the main result of this section.

Theorem 5. Let h be a positive integer. A configuration with fewer than 2h −
s−1(2h) pebbles cannot pebble Th.

Consider the sequence {bk} defined by b1 = 2 and bk = 2µk−1 = 3(2k) − 2
for k ≥ 2. A simple but important attribute of this sequence is contained in the
next lemma, which we state without proof but follows by induction.

Lemma 6. For i ≥ 2, 3b1 + b2 + · · ·+ bi = 2bi − 2i.

Let h be a positive integer, let m be an integer, 1 ≤ m < 2h+2, and let
m = δ02

0+ δ12
1+ · · ·+ δh+12

h+1 be the binary expansion of m, where δi ∈ {0, 1}
for each index i. Let φh

m = (δ0+2δ1, 2δ2, . . . , 2δh+1) denote a special configuration
on Th consisting of m pebbles. For simplicity, let γhm = Γ(φh

m). Owing to the
definition of the sequence {bk},

(7) γhm = (δ0 + 2δ1)b1 + δ2b2 + · · ·+ δh+1bh+1.

Lemma 7. Let h and m be positive integers such that γhm < 2h+1. Then π∗(Th) >
m.

Proof. For the sake of a contradiction, let us assume that Th can be pebbled
by a configuration consisting of m pebbles. Then, by Theorem 3.4 of Fu and
Shiue [11], there is a symmetric configuration f∗ that pebbles Th and consists of
m pebbles.

The list φh
m = (δ0 + 2δ1, 2δ2, . . . , 2δh+1) is a symmetric configuration on Th

containingm pebbles. Since 2µi < µi+1 for each i ≥ 1, φh
m maximizes Γ among the

set of symmetric configurations f on Th containing m pebbles. As a consequence,
Γ(f∗) ≤ γhm < 2h+1. By Lemma 3, f∗ does not pebble Th, which is a contradiction.
Thus, there does not exist a configuration that pebbles Th and consists of m
pebbles.

Finally, we present the proof of Theorem 5, the main result of this section.
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Proof. The result is true for h = 1 by inspection. Let h ≥ 2 be given and let
Nh = 2h − s−1(2h). We show that γhNh−1 < 2h+1, which, according to Lemma 7,
proves the theorem.

Let 2h = r + ε1µ1 + · · ·+ εh−2µh−2 be the µ-expansion of 2h. By Lemma 2,
s−1(2h) = ε1M1 + · · ·+ εh−2Mh−2; therefore,

Nh = r + ε1(µ1 −M1) + · · ·+ εh−2(µh−2 −Mh−2)

= r + ε12
2 + · · ·+ εh−22

h−1.

We divide the rest of the proof into two cases according to whether or not r = 0.
First, let us suppose that r = 0 and that εi 6= 2 for each i ∈ [h − 2] in the

µ-expansion of 2h. Then ε12
2+ · · ·+ εh−22

h−1 is the binary expansion of Nh and
therefore

γhNh
= ε1b2 + ε2b3 + · · ·+ εh−2bh−1

= 2(ε1µ1 + ε2µ2 + · · ·+ εh−2µh−2)

= 2h+1.

Since the sequence {γhk} is strictly increasing, γhNh−1 < 2h+1.
Next, let us suppose that r = 0 but that εj = 2 for some j ∈ [h − 2]

in the µ-expansion of 2h. In particular, this implies that εi ∈ {0, 1} for each
integer i ∈ {j + 1, . . . , h − 2}. Therefore, the binary expansion of Nh − 1 is
1 + 2 + 22 + · · ·+ 2j+1 + εj+12

j+2 + · · ·+ εh−22
h−1, hence

γhNh−1 = 3b1 + b2 + · · ·+ bj+1 + εj+1bj+2 + · · ·+ εh−2bh−1.

By Lemma 6,

γhNh−1 = 2bj+1 + εj+1bj+2 + · · ·+ εh−2bh−1 − (j + 1)2

= 2(2µj + εj+1µj+1 + · · ·+ εh−2µh−2)− (j + 1)2

= 2h+1 − (j + 1)2,

which shows that γhNh−1 < 2h+1.

Lastly, let us assume that r ∈ {1, 2, 3, 4} in the µ-expansion of 2h. This
implies that εi ∈ {0, 1} for each i ∈ [h− 2]. Consequently,

Nh − 1 = (r − 1) + ε12
2 + ε22

3 + · · ·+ εh−22
h−1

and

γhNh−1 = 2(r − 1) + ε1b2 + ε2b3 + · · ·+ εh−2bh−1

= 2 ((r − 1) + ε1µ1 + ε2µ3 + · · ·+ εh−2µh−2)

= 2h+1 − 2,

which shows that γhNh−1 < 2h+1, completing our proof.
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5. Connection with the Connolly Sequence

Recall from Section 1 that the Conolly sequence {cn} satisfies the recurrence
relation (2) with initial conditions c1 = 1 and c2 = 2. We will prove the following
theorem.

Theorem 8. For each positive integer n, sn = 4cn + n.

Proof. We begin by defining a list of numbers composed entirely of 0s and 1s.
Let D1 = (1). We define successive lists recursively: for each integer k, k ≥ 2, let
Dk = Join[Dk−1, Dk−1, (0)]. The lists D1 through D4 are collected in Table 3.

k Dk

1 (1)
2 (1, 1, 0)
3 (1, 1, 0, 1, 1, 0, 0)
4 (1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0)

Table 3. The lists D1 through D4.

Let D be the limit of this sequence of lists and, for each positive integer
n, let dn denote the nth element of D. The sequence {dn} is the sequence of
differences in the Conolly sequence; see entry A079559 in [25]. Thus, for each
positive integer n, cn = d1 + · · · + dn. The initial terms of the sequences {dn}
and {cn} are presented in Table 4.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dn 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0
cn 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8

Table 4. The initial terms of {dn} and {cn}.

Recall the sequence {an} defined in Section 1; see Table 2. For each positive
integer n, it is easy to see that an = 4dn + 1 and therefore sn = 4cn + n, as was
to be shown.

6. Asymptotic Analysis of s−1(2h)

Let m be a positive integer and let m = r+ ε1µ1 + · · ·+ εℓµℓ be the µ-expansion
of m. Define σ(m) = ε1+ · · ·+ εℓ. For example, the µ-expansions of 236 and 253
are 2µ2 + µ3 + µ6 and 4 + µ2 + µ4 + µ6, respectively. Accordingly, σ(236) = 4
and σ(253) = 3.
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Theorem 9. For each positive integer m, there exists an integer r ∈ {0, 1, 2, 3, 4}
such that m− r = 3s−1(m) + 2σ(m).

Proof. Let m = r+ε1µ1+· · ·+εℓµℓ be the µ-expansion of m. Since µi = 3Mi+2
for each positive integer i, m − r = 3(ε1M1 + · · · + εℓMℓ) + 2(ε1 + · · · + εℓ). By
Lemma 2, the right side is 3s−1(m) + 2σ(m).

Let h be a positive integer. According to Theorem 9, there exists an integer
r ∈ {0, 1, 2, 3, 4} such that

(8) s−1(2h) = 2h/3− 2σ(2h)/3− r/3.

The remainder of this section is devoted to an analysis of σ.

Lemma 10. Let h be an integer, h ≥ 6, and let j∗ = min{j : j ≥ 2h−2j−1 − 1}.
Then j∗ + 1 ≤ σ(2h) ≤ h− j∗.

Proof. We will study equation (6), the µ-expansion of 2h. Due to the definition
of j∗, we may perform j∗ successive subtractions of the sequence µ along the
arithmetic sequence of indices h− 2, h− 4, . . . , h− 2j∗, which yields

2h − µh−2 − µh−4 − · · · − µh−2j∗ = 2h−2j∗ + j∗.

Since 2h−2j∗−1−1 ≤ j∗ ≤ 2h−2j∗+1−1, the right side of this equation is bounded
below by µh−2j∗−1 and above by µh−2j∗ . The rest of the argument is broken into
two cases.

If 2h−2j∗ + j∗ = µh−2j∗, then 2h = 2µh−2j∗ + µh−2j∗+2 + · · · + µh−2 and
σ(2h) = j∗ + 1.

If 2h−2j∗ + j∗ < µh−2j∗, then the next subtraction in the µ-expansion of 2h

is µh−2j∗−1, which yields

(9) 2h − µh−2 − · · · − µh−2j∗ − µh−2j∗−1 = ρ,

where ρ = j∗ − 2h−2j∗−1 + 1. This shows that σ(2h) ≥ j∗ + 1. There are h −
2j∗− 2 remaining coefficients in the µ-expansion of 2h to be determined; namely,
ε1, . . . , εh−2j∗−2. Since ε1 can equal 2 and the remaining coefficients can each
equal 1, σ(2h) ≤ (j∗ + 1) + (h− 2j∗ − 1) = h− j∗, as was to be shown.

Remark 11. Let us make a few observations regarding Lemma 10, especially
concerning the asymptotic behavior of σ(2h) as h → ∞.

a. Given a height h, there are at least two ways to calculate j∗. First, j∗ = ⌈x∗⌉,
where x∗ is the root of the equation 2x+ log2(x+1) = h− 1. An analysis of this
equation reveals that

(10) j∗ ≥ (h− 1)/2− (1/2) log2((h+ 1)/2).
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Second, for each integer k, k ≥ 3, let Qk = 2k+(k−2) and let Ik = [Qk, Qk+1)∩Z.
For h ∈ Ik, j

∗ = ⌈(h− k)/2⌉.
b. Within each interval Ik, there are heights that satisfy the lower bound and
heights that satisfy the upper bound in the lemma. For h = Qk, j

∗ = 2k−1 − 1
and σ(2h) = 2k−1 = j∗ + 1. For h = 2k+1 − (k + 1), j∗ = 2k − k and σ(2h) =
2k − 1 = h− j∗.

c. The interval [j∗ +1, h− j∗] has center (h+1)/2 and length h− 2j∗ − 1. Using
equation (10), we may conclude that

(11) |2σ(2h)− (h+ 1)| ≤ log2((h+ 1)/2).

Taking into consideration equation (8), we can write

3s−1(2h) = 2h − (h+ 1)− α(h) log2((h+ 1)/2)− r,

where −1 ≤ α(h) ≤ 1, which gives us (3).

7. Problems for Further Study

While the bound presented in inequality (11) is sharp (at least asymptotically),
it does not capture the behavior of σ(2h) for “most” h. Here is a possible way
to improve this bound. For heights h, h ≥ 6, let E(h) = σ(2h)− (j∗ + 1), which
we call the excess. The excess measures the “thickness” of an optimal pebbling
at the top of the tree. For h ∈ Ik ∪ Ik+1, 0 ≤ E(h) ≤ k − 1. Within the
interval Ik ∪ Ik+1, there is only one height h for which E(h) = k − 1. Excluding
this singular height, if we select a height h uniformly from Ik ∪ Ik+1, then E(h)
appears to follow a binomial distribution with parameters k − 2 and 1/2. For
h ∈ Ik ∪ Ik+1, it can be shown that 2σ(2h) − h = 2

(

E(h) − (k − 2)/2
)

+ R,
where R ∈ {−1, 0, 1}. Therefore, if we sample a height uniformly from Ik ∪ Ik+1,
then |E(h)− (k − 2)/2| ≤ 3

√

(k − 2)/2 with very high probability. We offer the
following conjecture.

Conjecture 12. For most heights h ∈ Ik ∪ Ik+1, |2σ(2h)− h| ≤ 3
√
k − 2 + 1.

It would be natural to extend the results of this paper to m-ary trees, m ≥ 3.
Under the normal pebbling rule (pay one pebble to move one pebble), Fu and
Shuie showed that an optimal pebbling of an m-ary tree of height h is achieved
by placing 2h pebbles at the root; see Theorem 2.1 of [11]. For m-ary trees with
m ≥ 3, we suggest modifying the pebbling rule to disperse the pebbles away from
the root in an optimal pebbling. For example, for m = 3, a pebbling move might
consist of removing three pebbles from a vertex and placing a single pebble at
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an adjacent vertex. Some preliminary calculations show that optimal pebblings
of 3-ary trees subject to this pebbling rule distribute the pebbles throughout the
tree.
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