DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

G. Sharma

Gopika Sharma

IIT ROPAR

email: 2017maz0007@iitrpr.ac.in

A. Pandey

Arti Pandey

Department of Mathematics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India

email: arti@iitrpr.ac.in

Title:

Double dominating sequences in bipartite and co-bipartite graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 45(2) (2025) 545-564

Received: 2023-04-18 , Revised: 2024-04-05 , Accepted: 2024-04-12 , Available online: 2024-06-17 , https://doi.org/10.7151/dmgt.2548

Abstract:

In a graph $G=(V,E)$, a vertex $u \in V$ dominates a vertex $v \in V$ if $v \in N_G[u]$. A sequence $S=(v_1,v_2, \ldots, v_k)$ of vertices of $G$ is called a double dominating sequence of $G$ if (i) for each $i$, the vertex $v_i$ dominates at least one vertex $u \in V$ which is dominated at most once by the previous vertices of $S$ and, (ii) all vertices of $G$ have been dominated at least twice by the vertices of $S$. Grundy Double Domination problem asks to find a double dominating sequence of maximum length for a given graph $G$. In this paper, we prove that the decision version of the problem is NP-complete for bipartite and co-bipartite graphs. We look for the complexity status of the problem in the class of chain graphs which is a subclass of bipartite graphs. We use dynamic programming approach to solve this problem in chain graphs and propose an algorithm which outputs a Grundy double dominating sequence of a chain graph $G$ in linear-time.

Keywords:

double dominating sequences, bipartite graphs, chain graphs, NP-completeness, graph algorithms

References:

  1. B. Brešar, T. Gologranc, M. Milanič, D.F. Rall and R. Rizzi, Dominating sequences in graphs, Discrete Math. 336 (2014) 22–36.
    https://doi.org/10.1016/j.disc.2014.07.016
  2. B. Brešar, S. Klavžar and D.F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979–991.
    https://doi.org/10.1137/100786800
  3. B. Brešar, A. Pandey and G. Sharma, Computational aspects of some vertex sequences of Grundy domination-type, Indian J. Discrete Math. 8 (2022) 21–38.
  4. J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science, (John Wiley and Sons, New York 1985) 282–300.
  5. J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, (John Wiley and Sons, New York 1985) 301–311.
  6. T.W. Haynes and S.T. Hedetniemi, Vertex sequences in graphs, Discrete Math. Lett. 6 (2021) 19–31.
    https://doi.org/10.47443/dml.2021.s103
  7. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in Domination in Graphs, Dev. Math. 64 (Springer, Cham, 2020).
    https://doi.org/10.1007/978-3-030-51117-3
  8. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Structures of Domination in Graphs, Dev. Math. 66 (Springer, Cham, 2021).
    https://doi.org/10.1007/978-3-030-58892-2
  9. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcell Dekker, New York, 1998).
    https://doi.org/10.1201/9781315141428
  10. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
    https://doi.org/10.1201/9781482246582
  11. P. Heggernes and D. Kratsch, Linear-time certifying recognition algorithms and forbidden induced subgraphs, Nordic J. Comput. 14 (2007) 87–108.
  12. G. Sharma and A. Pandey, Computational aspects of double dominating sequences in graphs, in: Algorithms and Discrete Applied Mathematics: 9th International Conference, CALDAM 2023, A.Bagchi and R. Muthu (Ed(s)), Lecture Notes in Computer Science 13947, (Springer-Verlag, Berlin, Heidelberg, 2023) 284–296.
    https://doi.org/10.1007/978-3-031-25211-2_22

Close