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Abstract

In a graph G = (V,E), a vertex u ∈ V dominates a vertex v ∈ V if
v ∈ NG[u]. A sequence S = (v1, v2, . . . , vk) of vertices of G is called a
double dominating sequence of G if (i) for each i, the vertex vi dominates
at least one vertex u ∈ V which is dominated at most once by the previous
vertices of S and, (ii) all vertices of G have been dominated at least twice
by the vertices of S. Grundy Double Domination problem asks to find
a double dominating sequence of maximum length for a given graph G. In
this paper, we prove that the decision version of the problem is NP-complete
for bipartite and co-bipartite graphs. We look for the complexity status of
the problem in the class of chain graphs which is a subclass of bipartite
graphs. We use dynamic programming approach to solve this problem in
chain graphs and propose an algorithm which outputs a Grundy double
dominating sequence of a chain graph G in linear-time.

Keywords: double dominating sequences, bipartite graphs, chain graphs,
NP-completeness, graph algorithms.
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1. Introduction

For a graph G = (V,E), a set D ⊆ V is called a dominating set of G, if for
each vertex x ∈ V , NG[x] ∩ D ̸= ∅. The Minimum Domination problem is
to find a dominating set of a graph G having minimum cardinality. One of the
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fundamental problems in graph theory is the Minimum Domination problem
and there is a huge amount of literature on this topic, see [7–10]. Further, Fink
and Jacobson introduced the concept of double domination [4,5]. For a graph G
with no isolated vertices, a set D ⊆ V is called a double dominating set of G, if
for every vertex x ∈ V , |NG[x] ∩D| ≥ 2.

In 2014, Brešar et al. introduced the concept of dominating sequences. A
motivation for introducing dominating sequences came from the well known dom-
ination game in which we get a vertex sequence as an outcome of a two-player
game, played on a graph. For detailed description, one may refer [2].

Formally, a dominating sequence of G is a sequence S of vertices of G such
that (i) each vertex of S dominates at least one vertex of G which was not
dominated by any of the previous vertices of S, and (ii) every vertex of G is
dominated by at least one vertex of S. The Grundy Domination problem
is to find a longest dominating sequence of a given graph G. The Grundy
Domination Decision (GDD) problem is the decision version of the Grundy
Domination problem.

Recently, Haynes et al. proposed various kinds of vertex sequences, each of
which is specified in terms of some conditions that must be satisfied by every
subsequent vertex in the sequence [6]. Predictably, double domination in the
sequence context is one of these variations. Before formally presenting the def-
initions related to this variant, we mention that for a sequence S, consisting of
distinct vertices of a graph G, the corresponding set of vertices is denoted by Ŝ.

A sequence S = (v1, v2, . . . , vn) is called a double neighborhood sequence of G
if for each i, the vertex vi dominates at least one vertex u of G which is dominated
at most once by the vertices v1, v2, . . . , vi−1. If Ŝ is a double dominating set of G,
then we call S a double dominating sequence of G. A double dominating sequence
of G with maximum length is called a Grundy double dominating sequence of
G. The length of a Grundy double dominating sequence is the Grundy double
domination number of G and is denoted by γ×2

gr (G). Given a graph G with no
isolated vertices, the Grundy Double Domination (GD2) problem asks to find
a Grundy double dominating sequence of G. The decision version of the Grundy
Double Domination problem is as follows.

Decision Version: Grundy Double Domination Decision (GD2D) Problem
Input : A graph G = (V,E) with no isolated vertices and k ∈ Z+.
Question: Is there a double dominating sequence of G of length at least k?

This concept was introduced in a slightly different manner by Haynes et al.
in [6]. In their version, Si denotes the subsequence (v1, v2, . . . , vi) which consists
of the first i vertices of S. If for each i, the vertex vi ∈ Ŝ dominates at least one
vertex x ∈ V (G) \ Ŝi−1 which is dominated at most once by the vertices in Ŝi−1

and S is of maximal length, then S is called a double dominating sequence of G.
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This definition does not obey the property that Ŝ is a double dominating set of
G. Brešar et al. introduced the former definition of double dominating sequences
and argued that two invariants are equal in all graphs [3]. So, in this paper, we
only consider the former version of double dominating sequences.

The Grundy double domination number of a tree T is exactly the number of
vertices of T [6]. Recently, Brešar et al. proved that the GD2D problem is NP-
complete for split graphs and can be solved efficiently for threshold graphs [3].
Here, we extend the literature of this variant by studying it for bipartite graphs.

The structure of the paper is as follows. In Section 2, we give some basic
definitions and notations used throughout the paper. In Section 3, we prove
that the GD2D problem is NP-complete even when restricted to bipartite and
co-bipartite graphs. On the positive note, we present a linear-time algorithm for
determining the Grundy double domination number of chain graphs in Section
4. Finally, we conclude the paper in Section 5.

2. Preliminaries

All graphs considered in this paper are simple, undirected and connected. Let
[n] = {1, 2, . . . , n} for any positive integer n. Given a graph G, the open neigh-
borhood of a vertex x is NG(x) = {y ∈ V (G) : xy ∈ E(G)}, while the closed
neighborhood of x is NG[x] = NG(x) ∪ {x}. Two vertices u, v ∈ V (G) are called
open twins (closed twins) if NG(u) = NG(v) (NG[u] = NG[v]). For a graph
G = (V,E), the subgraph induced on a set U ⊆ V , denoted by G[U ], is the
subgraph of G whose vertex set is U and whose edge set consists of all edges in
G that have both endpoints in U .

A complete graph on n vertices is denoted by Kn. An independent set of G
is a set of vertices A ⊆ V (G) such that no two vertices of A are adjacent in G.
A bipartite graph G = (X,Y,E) is a graph whose vertex set can be partitioned
into two independent sets X and Y . The complement of G, denoted by G, is the
graph obtained by removing the edges of G and adding the edges that are not in
G. A co-bipartite graph is a graph which is the complement of a bipartite graph.
A bipartite graph G = (X,Y,E) is a chain graph if there exists an ordering
α = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of vertices of G such that N(x1) ⊆ N(x2) ⊆
· · · ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇ · · · ⊇ N(yn2), where X = {x1, x2, . . . , xn1}
and Y = {y1, y2, . . . , yn2}. The ordering α is called a chain ordering of G and it
can be found in linear-time [11].

Recall that a relation on a set A is a subset of A×A. We define a relation R
on the vertex set of a chain graph G = (X,Y,E) such that two vertices u and v
of G are related if and only if they are open twins. It is easy to see that R is an
equivalence relation so it provides a partition P of V (G). Let {X1, X2, . . . , Xk}
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and {Y1, Y2, . . . , Yk} be the parts obtained from the relation R for the X and Y
side, respectively. We write the partition P as {X1, X2, . . . , Xk, Y1, Y2, . . . , Yk}.
We keep the order of the sets in P so that it is satisfied that N(X1) ⊂ N(X2) ⊂
· · · ⊂ N(Xk) and N(Y1) ⊃ N(Y2) ⊃ · · · ⊃ N(Yk). For each i, j ∈ [k], it is easy to
see that N(Xi) =

⋃i
r=1 Yr and N(Yj) =

⋃k
r=j Xr.

For two vertex sequences S1 = (v1, . . . , vn) and S2 = (u1, . . . , um), in G,
the concatenation of these two sequences is defined as the sequence S1 ⊕ S2 =
(v1, . . . , vn, u1, . . . , um). For an ordered set A = {u1, u2, . . . , uk} of vertices, (A)
denotes the sequence of vertices (u1, u2, . . . , uk).

3. NP-Completeness

3.1. Bipartite graphs

Recall that the GD2D problem is NP-complete for general graphs [3]. In this
subsection, we prove that the problem remains NP-complete for bipartite graphs.

Let H = (X , E) be a hypergraph with no isolated vertices. An edge cover of
H is a set of hyperedges from E that covers all vertices X of H. A legal hyperedge
sequence of H is a sequence of hyperedges C = (C1, . . . , Cr) of H such that, for
each i, i ∈ [r], Ci covers a vertex not covered by Cj , for each j < i. In addition,

if the set Ĉ is an edge cover of H, then C is called an edge covering sequence of H.
The maximum length of an edge covering sequence of H is denoted by ρgr(H).
The Grundy Covering problem asks to find an edge covering sequence of H
having size ρgr(H). The Grundy Covering Decision (GCD) problem is the
decision version of the Grundy Covering problem.

It is known that GCD problem is NP-hard in general graphs [1]. For k ≤ 2,
we can find an edge covering sequence of the hypergraph H of length at least k
in polynomial time. So, the GCD problem is NP-complete for k ≥ 3.

Theorem 1. The GD2D problem is NP-complete for bipartite graphs.

Proof. It is clear that the GD2D problem is in class NP. To show the NP-
hardness, we give a polynomial reduction from the GCD problem in hypergraphs
which is known to be NP-hard [1]. Given a hypergraph H = (X , E) with |X | = n
and E = {E1, E2, . . . , Em}, n,m ≥ 2, we construct an instance G = (X∗, Y ∗, E∗)
of the GD2D problem, where G is a bipartite graph, as follows. X∗ = I ∪
X ′ and Y ∗ = E ′, where I = {v1, v2, . . . , vm}, X ′ = {x1, x2, . . . , xn} and E ′ =
{α, e1, e2, . . . , em}. A vertex of X ′ corresponds to a vertex of X in the hypergraph
H and the vertex ei of E ′ corresponds to the hyperedge Ei of H. Now, a vertex
x of X ′ is adjacent to a vertex of ei ∈ E ′ in G if and only if x ∈ Ei in H. Each
vertex of I is adjacent to each vertex of E ′ in G. Clearly, G is a bipartite graph.
Figure 1 illustrates the construction of G when H is the hypergraph given by
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(X = {x1, x2, x3, x4}, E = {E1, E2, E3, E4}), where E1 = {x1, x2, x4}, E2 = {x2, x3},
E3 = {x1, x2} and E4 = {x2, x3, x4}.
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Figure 1. Construction of bipartite graph G from the hypergraph H.

Now, we show that ρgr(H) ≥ k if and only if γ×2
gr (G) ≥ n + m + k + 1, for

k ≥ 3. First, let (Ei1 , Ei2 , . . . , Eik′ ) be an edge covering sequence of size at least
k in H. Then the sequence (x1, x2, . . . , xn, v1, v2, . . . , vm, α, ei1 , ei2 , . . . , eik′ ) is a
double dominating sequence of size at least n + m + k + 1 in G. So, we have
γ×2
gr (G) ≥ n+m+ k + 1.

For the converse part, we give a claim first.

Claim 1. There exists a double dominating sequence of G of size at least n +
m+ k + 1 in which the first vertex from E ′ is the vertex α.

Proof. Let S be a double dominating sequence of G of size at least n+m+k+1
and e0 be the first vertex from E ′ appearing in S. If e0 = α, then there is
nothing to prove. So, we assume that e0 ̸= α. Now, we see that e0 appears to
dominate some vertices of both I and X ′. If the vertex α appears in the sequence
somewhere after e0, we modify the sequence by putting the vertex α immediately
before e0 in the sequence. If the vertex α does not appear in the sequence, we
modify the sequence by replacing the vertex e0 by α. Note that the modified
sequence, in both situations, is also a double dominating sequence of G of size at
least n+m+ k + 1 and now, the first vertex from E ′ appearing in the sequence
is α.

Hence, the claim is true.

Let S be a double dominating sequence of size at least n+m+ k + 1 in any
chosen bipartite graph G satisfying Claim 1. Note that |Ŝ ∩ E ′| ≥ k + 1.

As k ≥ 3, let e be the second vertex coming from E ′ in S. Now, let A denote
the set of vertices appearing before the vertex α in S, B denote the set of vertices
appearing after the vertex α and before the vertex e. Finally, let C denote the
set of vertices appearing after the vertex e in S.
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Claim 2. |I ∩ (A ∪B)| ≥ 2.

Proof. Clearly, |I ∩ Ŝ| ≥ k ≥ 3. Since all neighbors of vertices of I have been
dominated twice before the appearance of last vertex of I in the sequence, the
last vertex from I in the sequence dominates itself and so, it cannot appear after
e. Indeed, I ∩ C = ∅. We also have, |I ∩ Ŝ| = |I ∩ (A ∪ B)| + |I ∩ C|. Thus,
|I ∩ (A ∪B)| ≥ 2 holds true.

Claim 3. There exists a double dominating sequence S0 of G of size at least
n +m + k + 1 satisfying Claim 1 such that Ŝ0 ∩X ′ = X ′ and all vertices of X ′

appear before the vertex e in the sequence S0.

Proof. Here, we have two cases to consider.

Case 1. There is a vertex x ∈ X ′ which does not appear in the sequence S.
Let x ∈ X ′ be a vertex such that it does not appear in the sequence S. This tells
that there are two vertices coming from E ′, say ei and ej which appear in S and
they dominate the vertex x first and second time respectively. Let v∗ denote the
vertex which appears just before the vertex e in the sequence S. Then, we see
that the vertices ei and ej appear in the sequence S after v∗. Using Claim 2, we
know that before the vertex e all vertices of E ′ are dominated twice. So, vertex
ej is appearing to dominate vertices of X ′ only.

Now, there are two possibilities. First, assume that ei is appearing only to
dominate the vertex x first time, then we modify S by adding x just before e
and removing the vertex ei from S. But, if ei was appearing to dominate some
vertices of {ei} ∪ I ∪ (X ′ \ {x}) also, then we modify S by putting the vertex
x just before e in the sequence. By this modification, we removed at most one
vertex from the sequence and added a new vertex to S. Thus, S remains a double
dominating sequence of size at least n +m + k + 1 in G with x appearing in S
before the vertex e.

Case 2. There is a vertex x ∈ X ′ ∩ Ŝ which appears after e in S. In this
case, vertex x is appearing to dominate itself only. Since all vertices of E ′ are
dominated twice before the vertex e, so we remove the vertex x from its place
and put it just before e. Note that the size of S is not changed and so, S remains
a double dominating sequence of size at least n+m+k+1 in G with x appearing
in S before the vertex e. Therefore, the claim holds true.

Claim 3 ensures that we can assume that Ŝ ∩X ′ = X ′ and all vertices of X ′

appear before the vertex e in the sequence S. Combining all claims, we get that
|Ŝ∩(E ′\{α})| ≥ k and these vertices of (E ′\{α}) are appearing only to dominate
vertices of X ′ second time. So, these vertices of Ŝ ∩ (E ′ \ {α}) correspond to a
legal hyperedge sequence of size at least k in the hypergraph H. So, ρgr(H) ≥ k.

Therefore, the GD2D problem is NP-complete for bipartite graphs.
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3.2. Co-bipartite graphs

In this subsection, we prove that the problem also remains NP-complete for co-
bipartite graphs. For this, we give a polynomial reduction from the GDD problem
in general graphs when k ≥ 4, which is already known to be NP-complete [1].
Given a graph G = (V,E) with V = {v1, v2, . . . , vn} (n ≥ 2), we construct an
instance G′ = (V ′, E′) of the GD2D problem in the following way.

Define the vertex set V ′ as V ′ = V1 ∪ V2 ∪ V3, where Vr = {vri : i ∈ [n]} for
each r, 1 ≤ r ≤ 3. Add the edges in G′ in the following way. (i) Add the edges
so that G′[V1] and G′[V2 ∪ V3] are complete subgraphs of G′. (ii) If vj ∈ NG[vi],
then add an edge between v1i and v2j . (iii) For each i ∈ [n], add the edge v1i v

3
i in

G′. Formally, define E′ = {v1i v1j , v2i v2j , v3i v3j : 1 ≤ i < j ≤ n} ∪ {v2i v3j : 1 ≤ i ≤ j ≤
n} ∪ {v1i v2j : vj ∈ NG[vi]} ∪ {v1i v3i : i ∈ [n]}. Clearly, G′ is a co-bipartite graph.
Figure 2 illustrates the construction of G′ from a graph G.
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Figure 2. Construction of co-bipartite graph G′ from the graph G.

To prove the NP-hardness of the GD2D problem in co-bipartite graphs, it is
enough to prove the following theorem.

Theorem 2. Let G′ be the co-bipartite graph constructed from a graph G = (V,E)
with V = {v1, v2, . . . , vn} (n ≥ 2) as explained above. Then, γgr(G) ≥ k if and
only if γ×2

gr (G
′) ≥ n+ k, for k ≥ 4.

Proof. First, let S = (vi1 , vi2 , . . . , vit) be a dominating sequence of G of size
t, where t ≥ k. Then the sequence (v31, v

3
2, . . . , v

3
n, v

2
i1
, v2i2 , . . . , v

2
it
) is a double

dominating sequence of G′ of size at least n+k. So, we get that γ×2
gr (G

′) ≥ n+k.

Conversely, let S be a double dominating sequence of G′ having size at least
n+ k. Now, we claim that there exists a double dominating sequence S∗ of G′ in
which the following is true.

1. V1 ∩ Ŝ∗ = ∅,
2. V3 ⊆ Ŝ∗,
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3. all vertices of V3 appear at initial n places of the sequence S∗.

If S satisfies all the above conditions then there is nothing to prove. So, assume
that V1 ∩ Ŝ ̸= ∅. Then either |V1 ∩ Ŝ| ≥ 2 or |V1 ∩ Ŝ| ≤ 1.

If |V1∩Ŝ| ≥ 2, let v1i and v1j be the first two vertices of V1 which are appearing

in S. Let A be the subset of Ŝ which contains vertices of S appearing before v1i
in S. Let B be the subset of Ŝ which contains vertices of S appearing after v1i
in S and before v1j . Finally, let C be the subset of Ŝ which contains vertices of

S appearing after v1j in S. Now, we claim that |(A ∪B) ∩ (V2 ∪ V3)| ≥ 3. To see
this, if |(A ∪ B) ∩ (V2 ∪ V3)| ≤ 2 then |(A ∪ B) ∩ (V2 ∪ V3)| = 0 or 1 or 2. In
each of these three cases, we have, |(A ∪ B) ∩ (V2 ∪ V3)| + |C ∩ (V2 ∪ V3)| ≤ 2.
So, |Ŝ ∩ (V2 ∪ V3)| ≤ 2 which further implies that |Ŝ| ≤ n + 2. This contradicts
the assumption that k ≥ 4. So, |(A ∪ B) ∩ (V2 ∪ V3)| ≥ 3. In this case, we
see that all vertices of G′ are dominated twice upto the appearance of vertex v1j .

Thus, we get that C = ∅. Note that |V1 ∩ Ŝ| = 2. Since all vertices of V2 ∪ V3

have been dominated twice before the appearance of v1j and v1i ∈ V1 also appears

before v1j , we get that v1j appears to dominate some vertex v1k ∈ V1 second time.

As, no vertex of G′ appears after v1j , we have that v3k /∈ Ŝ. Now, we modify S by

replacing the vertex v1j by v3k and get a new double dominating sequence of G′ of
same size. Hence, we can say that there exists a double dominating sequence of
G′ in which at most 1 vertex of V1 appears. So, we assume that |V1 ∩ Ŝ| ≤ 1.

First, we assume that |V1 ∩ Ŝ| = 1 and V1 ∩ Ŝ = {v1i }. Again, let A be

the subset of Ŝ which contains vertices of S appearing before v1i in S and B

be the subset of Ŝ which contains vertices of S appearing after v1i in S. Now,
either |A ∩ (V2 ∪ V3)| ≤ 1 or |A ∩ (V2 ∪ V3)| ≥ 2. If |A ∩ (V2 ∪ V3)| ≤ 1 then,
after the first three vertices appearing in the sequence, all vertices of V2 ∪ V3 are
dominated twice and all vertices of V1 are dominated at least once. Consequently,
the subsequent vertices in the sequence must dominate some vertices of V1 for
the second time, and as a result, there cannot be more than n such vertices in the
sequence. Hence, |Ŝ| ≤ n + 3. This contradicts the assumption that k ≥ 4. So,
we have that |A∩ (V2 ∪ V3)| ≥ 2. Note that v1i appears after at least two vertices
of V2 ∪ V3 in S, this implies that v1i appears only to dominate some vertex of V1

first or second time. There can be two cases now.

Case 1. v1i appears to dominate itself. If there is a vertex u ∈ V2 ∪ V3 which

is a neighbor of v1i in G′ and u /∈ Ŝ, then we modify S by replacing the vertex
v1i by u and get a new double dominating sequence of G′ of same size in which
no vertex of V1 appears. So, assume that all neighbors of v1i belonging to the set

V2 ∪ V3 appear in Ŝ. So, v3i ∈ Ŝ.

Thus, we have that v3i appears to dominate v1i first or second time and all
other neighbors of v1i from the set V2 ∪ V3 belong to the set B. In particular,
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the vertex v2i is also in B and it appears after v3i in S. Note that v2i appears to

dominate some vertex v1j of V1 second time. This implies that v3j /∈ Ŝ. Now, we

modify S by replacing the vertex v2i by v3j and the vertex v1i by v2i to get a new
double dominating sequence of G′ of same size in which no vertex of V1 appears.

Case 2. v1i is dominated twice before its appearance. Here, suppose that v1i
appears to dominate some vertex v1j of V1, first or second time. If v2j /∈ Ŝ, then

we can modify S by replacing the vertex v1i by v2j to get a new double dominating

sequence of G′ of same size in which no vertex of V1 appears. Similarly if v3j /∈ Ŝ,
we get a new double dominating sequence of G′ of same size containing no vertex
of V1. So, assume that v2j , v

3
j ∈ Ŝ. Note that at least one of the vertices v2j and v3j

does not belong to the set A. This implies that the vertex v2j appears to dominate

some vertex v1k of V1 second time and v3k /∈ Ŝ. Now, we modify S by replacing the
vertex v2j by v3k and the vertex v1i by v2j to get a new double dominating sequence
of G′ of same size in which no vertex of V1 appears.

Hence, we can assume that S contains no vertex of V1. Thus, condition (1)
holds. Now, we need to show that V3 ⊆ Ŝ. On the contrary, assume that this is
not true. Let v3i ∈ V3 be a vertex which is not in Ŝ. This implies that the vertex
v1i is dominated both times by two vertices of V2. Let v

2
j ∈ V2 be the vertex which

dominates v1i second time. Now, we modify S by replacing the vertex v2j by v3i to

get a new double dominating sequence of G′ of same size in which the vertex v3i
appears. By repeating this argument, we get that there is a double dominating
sequence of G′ in which all vertices of V3 appears. So, we can assume that V3 ⊆ Ŝ
and thus, condition (2) is also satisfied.

Now, it remains to show that all n vertices of V3 appear at initial n places.
For this, it is enough to show that v3i ∈ V3 dominates the vertex v1i first time
for each i ∈ [n]. So, let v1i be a vertex of V1 such that it is dominated first time
by a vertex v2j of V2 and second time by v3i . Clearly v3i appears after v2j in S.

Here, we see that NG′ [v3i ] ⊆ NG′ [v2j ], so we can exchange the positions of these
two vertices with each other and get a new double dominating sequence of G′ of
same size such that v3i dominates v1i first time. Hence, we get that all n vertices
of V3 appear at initial n places of S.

Therefore, we have that, at least k vertices of V2 are appearing in S and all of
them are appearing only to dominate vertices of V1 second time. So, these vertices
correspond to a dominating sequence of G of size at least k. Thus, γgr(G) ≥ k.

Now, we can directly state the following theorem.

Theorem 3. The GD2D problem is NP-complete for co-bipartite graphs.
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4. Algorithm for Chain Graphs

In this section, we present a linear-time algorithm to solve the GD2 problem in
chain graphs. Let G = (X,Y,E) denotes a chain graph and P is the partition of
V (G) obtained by the relationR. Recall that, P = (X1, X2, . . . , Xk, Y1, Y2, . . . , Yk).
Let |X| = n1 and |Y | = n2. For i ∈ [k], xi denotes the vertex of Xi having min-
imum index in the chain ordering of G. Similarly, yi denotes the vertex of Yi
having maximum index in the chain ordering of G. Below, we give a result which
gives the Grundy double domination number of a complete bipartite graph.

Proposition 4. Let G = (X,Y,E) be a complete bipartite graph. Then γ×2
gr (G) =

max{|X|, |Y |}+ 1.

Proof. Without loss of generality, assume that n1 ≥ n2 and n1 ≥ 2. We show
that γ×2

gr (G) = n1 + 1. Clearly (x1, x2, . . . , xn1 , y1) is a double dominating se-
quence of G which implies that γ×2

gr (G) ≥ n1 + 1.
Now, assume that S is a Grundy double dominating sequence of G such that

|Ŝ| > n1 + 1. In this case, there can not be at least two vertices from both
sets X and Y prior to the last vertex in the sequence. Thus, |Ŝ| ≤ n1 + 2 and
so, |Ŝ| = n1 + 2. Therefore, if the last vertex of the sequence is from X, then
|X ∩ Ŝ| = 2, |Y | = n1 and Y ⊆ Ŝ. But so, just before the last vertex, every
vertex of G is dominated twice, a contradiction. Similarly, if the last vertex of
the sequence is from Y , then |Y ∩ Ŝ| = 2 and X ⊆ Ŝ. But so, just before
the last vertex, every vertex of G is dominated twice, a contradiction. Hence,
γ×2
gr (G) = n1 + 1.

For technical reasons, we actually consider a slightly more generalized prob-
lem in chain graphs. Let G = (X,Y,E) be a chain graph and M ⊆ V (G).
Vertices of M are called marked vertices of G. All remaining vertices of G are
called unmarked vertices. We denote the set of unmarked vertices of G by V0

and the subgraph of G induced on the set V0 by G0. The set of marked vertices
satisfy all the conditions written in equation (1).

(1) M ⊆ (Xk ∪ Y1), |M ∩Xk| ≤ 1, |M ∩ Y1| ≤ 1, |Xk \M | ≥ 1, |Y1 \M | ≥ 1.

A sequence S = (v1, v2, . . . , vk), where vi ∈ V0 for each i ∈ [k], is called an M-
double neighborhood sequence of (G,M) if for each i, the vertex vi dominates at
least one vertex u of G which is dominated at most once by its preceding vertices
in the sequence S. In addition, if Ŝ is a double dominating set of G0, then we
call S an M-double dominating sequence of (G,M). Note that Ŝ may not be a
double dominating set of G. An M-double dominating sequence with maximum
length is called a Grundy M-double dominating sequence of (G,M). The length
of a Grundy M-double dominating sequence of (G,M) is called the Grundy M-
double domination number of (G,M) and is denoted by γ×2

grm(G,M). Given a
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chain graph G and M ⊆ V (G) satisfying equation (1), the Grundy M-Double
Domination (GMD2) problem asks to compute a Grundy M-double dominating
sequence of (G,M).

Throughout this section, G = (G,M) denotes an instance of the GMD2
problem, where G = (X,Y,E) is a chain graph and M is a subset of V (G)
satisfying equation (1). Let S be a Grundy M-double dominating sequence of G.
If M = ∅ then, S is also a Grundy double dominating sequence of G. So, the
GD2 problem is a special case of the GMD2 problem.

Now, we state two important lemmas. The proofs of these lemmas are easy
and hence are omitted.

Lemma 5. Let M ̸= ∅. Then, γ×2
grm(G) ≤ γ×2

gr (G).

Lemma 6. For any Grundy M-double dominating sequence S of G, we have that
Xk ∩ Ŝ ̸= ∅ and Y1 ∩ Ŝ ̸= ∅.

We prove a lemma for complete bipartite graphs that forms the basis of our
algorithm.

Lemma 7. γ×2
grm(G) ∈ {max{n1, n2},max{n1, n2} + 1}, for a complete bipartite

graph G.

Proof. There are four cases to consider.

Case 1. M = ∅. In this case, γ×2
grm(G) = γ×2

gr (G). Using Proposition 4, we
have γ×2

grm(G) = max{n1, n2}+ 1.

Case 2. M ∩Xk = {xn1} and M ∩Y1 = ∅. Since |M ∩Xk| = 1, we have that
n1 ≥ 2. We consider two subcases now.

Subcase 2.1. n1 = max{n1, n2}. Here, we have that γ×2
gr (G) = n1 + 1. Now,

if n2 = 1, γ×2
grm(G) ≤ |X| − 1 + |Y | = n1. As the sequence (x1, x2, . . . , xn1−1, y1)

is an M-double dominating sequence of G of length n1. So, γ×2
grm(G) = n1 =

max{n1, n2}. Otherwise, if n2 > 1, the sequence (x1, x2, . . . , xn1−1, y1, y2) is
an M-double dominating sequence of G of length n1 + 1. Thus, we have that
γ×2
grm(G) = n1 + 1 = max{n1, n2}+ 1 using Lemma 5.

Subcase 2.2. n2 = max{n1, n2}. Here, we have that γ×2
gr (G) = n2 + 1. Since

n1 ≥ 2, we have that n2 ≥ 2. The sequence (y1, y2, . . . , yn2 , x1) is an M-double
dominating sequence of G of length n2 + 1. Thus, we have γ×2

grm(G) = n2 + 1 =
max{n1, n2}+ 1 using Lemma 5.

Case 3. M ∩ Y1 = {y1} and M ∩Xk = ∅. This case is similar to Case 2.

Case 4. M ∩Xk = {xn1} and M ∩ Y1 = {y1}. Clearly, n1 ≥ 2 and n2 ≥ 2.
We again consider two subcases.
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Subcase 4.1. n1 = max{n1, n2}. Here, we have that γ×2
gr (G) = n1+1. If n2 ≥

3, the sequence (x1, x2, . . . , xn1−1, y2, y3) is an M-double dominating sequence of G
of length n1−1+2 = n1+1. So, γ×2

grm(G) = n1+1 = max{n1, n2}+1 using Lemma
5. But, if n2 = 2, the sequence (x1, x2, . . . , xn1−1, y2) is an M-double dominating
sequence of G of length n1 − 1 + 1 = n1. So, γ×2

grm(G) = n1 = max{n1, n2} using
the fact that γ×2

grm(G) ≤ |X| − 1 + |Y | − 1 = n1 − 1 + 2− 1 = n1.

Subcase 4.2. n2 = max{n1, n2}. Similar to Subcase 4.1, we can prove that
γ×2
grm(G) is either n2 or n2 + 1.

Algorithm 1 computes a Grundy M-double dominating sequence of G based
on the Lemma 7, when G is a complete bipartite graph.

Next, we state some lemmas for G, when G is not a complete bipartite graph,
that is, k ≥ 2.

Lemma 8. If there exists a Grundy M-double dominating sequence S∗ of G such
that |Xk ∩ Ŝ∗| ≥ 3, then exactly one of the following is true.

1. γ×2
grm(G) = |X|+ k.

2. γ×2
grm(G) = |X|+ k − 1.

Proof. Let Xk = {ak1 , ak2 , . . . , akt}. There can be two cases.

Case 1. M ∩Xk = ∅. In this case, no vertex of Xk is marked and
(
x1, x2, . . . ,

xn1 , y
k, yk−1, . . . , y1

)
is an M-double dominating sequence of G which implies that

γ×2
grm(G) ≥ |X|+ k.

Since, |Xk ∩ Ŝ∗| ≥ 3, we get that t ≥ 3. Note that we can assume that all

vertices of Xk ∩ Ŝ∗ appear in the same order as in the chain ordering. We also
assume that all vertices of (Xk \{ak1})∩ Ŝ∗ appear together in S∗. Now, we show
that there exists an M-double dominating sequence of G in which all vertices of
Xk appear. To see this, suppose that there is a vertex aki , where i ≥ 4, such

that aki /∈ Ŝ∗. This means that there are two vertices y, y′ ∈ Y ∩ Ŝ∗ which
dominate aki first and second time respectively. Note that y′ appears after ak3 in
S∗. Here, we modify the sequence by replacing y′ with the vertex aki and get a
new Grundy M-double dominating sequence of G in which the vertex aki appears.
By repeating this argument, we get a Grundy M-double dominating sequence of
G in which all vertices of Xk appear. So, assume that Xk ⊆ Ŝ∗. We also assume
that all vertices of Xk \ {ak1} appear together in S∗.
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Algorithm 1: S = GrundyM1(G,M)

Input: G = (G,M), where G = (X,Y,E) is a complete bipartite graph and
M ⊆ V (G) satisfying equation (1), X = {x1, . . . , xn1

} and
Y = {y1, . . . , yn2

}.
Output: A Grundy M-double dominating sequence S of G.
if M = ∅ then

if n1 ≥ n2 then
S = (x1, x2, . . . , xn1

, y1)

else
S = (y1, y2, . . . , yn2

, x1)

if M ∩Xk = {xn1} and M ∩ Y1 = ∅ then
if n1 ≥ n2 then

if n2 = 1 then
S = (x1, x2, . . . , xn1−1, y1)

else
S = (x1, x2, . . . , xn1−1, y1, y2)

else
S = (y1, y2, . . . , yn2

, x1)

if M ∩ Y1 = {y1} and M ∩Xk = ∅ then
if n2 ≥ n1 then

if n1 = 1 then
S = (y2, y3, . . . , yn2 , x1)

else
S = (y2, y3, . . . , yn2 , x1, x2)

else
S = (x1, x2, . . . , xn2 , y2)

if M ∩Xk = {xn1
} and M ∩ Y1 = {y1} then

if n1 ≥ n2 then
if n2 ≥ 3 then

S = (x1, x2, . . . , xn1−1, y2, y3)

else
S = (x1, x2, . . . , xn1−1, y2)

else
if n1 ≥ 3 then

S = (y2, y3, . . . , yn2 , x1, x2)

else
S = (y2, y3, . . . , yn2 , x1)

return S.
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Next, we show that there exists a Grundy M-double dominating sequence of
G in which all vertices ofX appear. So, let x0 be a vertex ofX side which does not
appear in S∗. This implies that there is a vertex y0 ∈ Y which appear in S∗, to
dominate x0 second time. Note that y0 appears after all vertices of Xk in S∗. We
modify S∗ by replacing y0 with the vertex x0 and get a new Grundy M-double
dominating sequence of G in which the vertex x0 appears. By repeating this
argument, we get a Grundy M-double dominating sequence S of G in which all
vertices of X appear. Thus, X ⊆ Ŝ. Since N(Xk) = Y and |Xk ∩ Ŝ| = |Xk| ≥ 3,
we have that at most one vertex of Y appears before ak3 in S. So, at most k
vertices can appear in S from the Y side. Thus, γ×2

grm(G) ≤ |X|+k which further
implies that γ×2

grm(G) = |X|+ k.

Case 2. M ∩ Xk ̸= ∅. Let akt be the marked vertex of Xk. Here, we see

that t ≥ 4. If (X \ {akt}) ⊈ Ŝ∗, we can do similar modifications as done in
Case 1 and get a new Grundy M-double dominating sequence S of G such that
all vertices of X \ {akt} appear in S. Again, we see that at most k vertices can
appear from Y side in S. Thus, γ×2

grm(G) ≤ |X|− 1+k which further implies that
γ×2
grm(G) = |X|+ k − 1.

Similar to Lemma 8, we state another lemma for the Y side of G. Proof of
Lemma 9 is similar to the one of Lemma 8.

Lemma 9. If there exists a Grundy M-double dominating sequence S∗ of G such
that |Y1 ∩ Ŝ∗| ≥ 3, then exactly one of the following is true.

1. γ×2
grm(G) = |Y |+ k.

2. γ×2
grm(G) = |Y |+ k − 1.

Lemma 10. Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩
Ŝ∗| ≥ 3. Assume that S is a Grundy M-double dominating sequence of G such
that |Xk ∩ Ŝ| = 2. Then either |Y1 ∩ Ŝ| = 1 or there exists another Grundy
M-double dominating sequence S′ of G satisfying one of the following.

(i) |Xk ∩ Ŝ′| = 2 and |Y1 ∩ Ŝ′| = 1.

(ii) |Xk ∩ Ŝ′| = 1 and |Y1 ∩ Ŝ′| = 2.

Proof. Since G has no Grundy M-double dominating sequence having at least 3
vertices from Y1, we have that |Y1 ∩ Ŝ| ≤ 2. Moreover, Lemma 6 ensures that
|Y1 ∩ Ŝ| = 1 or |Y1 ∩ Ŝ| = 2. Now, if |Y1 ∩ Ŝ| = 1, there is nothing to prove. So,
assume that |Y1 ∩ Ŝ| = 2. Suppose that Xk ∩ Ŝ = {a, b} and Y1 ∩ Ŝ = {c, d}.
Note that the sequence S ends with a vertex of the set {a, b, c, d}. There are two
cases to consider.



Double Dominating Sequences in Bipartite and ... 559

Case 1. S ends with c or d. First, we assume that S ends with the vertex
d. As all vertices of the set {a, b, c} have been appeared before d, we get that d
appears to dominate some vertex x∗ of X second time. Note that x∗ /∈ Ŝ. Now,
if x∗ is an unmarked vertex, we modify S by replacing the last vertex d by the
vertex x∗ and get a new Grundy M-double dominating sequence S′ of G such that
|Y1 ∩ Ŝ′| = 1. Otherwise, x∗ is a marked vertex of G. This means that x∗ ∈ Xk.
As d is dominating x∗ second time and N(Xk) = Y , we get that |Y ∩ Ŝ| = 2.
In particular, Y ∩ Ŝ = {c, d} = Y1 ∩ Ŝ. Since k ≥ 2, there is a vertex y0 ∈ Y2
which is appearing nowhere in S. So, we modify S by replacing the last vertex d
by the vertex y0 and get a new Grundy M-double dominating sequence S′ of G
such that |Y1 ∩ Ŝ′| = 1. Hence, Ŝ′ is the desired Grundy M-double dominating
sequence of G. Similar arguments can be given when S ends with the vertex c.

Case 2. S ends with a or b. In this case, we get a new Grundy M-double
dominating sequence S′ of G such that |Xk ∩ Ŝ′| = 1 and |Y1 ∩ Ŝ′| = 2 by doing
similar modifications as done in Case 1.

Therefore, the lemma holds.

The proof of the next lemma is easy and hence is omitted.

Lemma 11. Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩
Ŝ∗| ≥ 3. Assume that S is a Grundy M-double dominating sequence of G such
that |Xk ∩ Ŝ| = 1. Then Yk ⊆ Ŝ.

Similar to Lemma 11, we state another lemma for G.

Lemma 12. Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩
Ŝ∗| ≥ 3. Assume that S is a Grundy M-double dominating sequence of G such
that |Y1 ∩ Ŝ| = 1. Then X1 ⊆ Ŝ.

Using Lemmas 10, 11 and 12, we can directly state the following result.

Lemma 13. Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩
Ŝ∗| ≥ 3. Then one of the following is true.

(i) There exists a Grundy M-double dominating sequence S of G such that
|Xk ∩ Ŝ| = 1 and Yk ⊆ Ŝ.

(ii) There exists a Grundy M-double dominating sequence S of G such that
|Y1 ∩ Ŝ| = 1 and X1 ⊆ Ŝ.

Let G be an instance of the GMD2 problem such that there is no Grundy
M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3.
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We call a Grundy M-double dominating sequence S of G as a type 1 optimal
sequence of G if it satisfies that |Xk ∩ Ŝ| = 1 and Yk ⊆ Ŝ. Similarly, we call a
Grundy M-double dominating sequence S of G a type 2 optimal sequence of G if
it satisfies that |Y1 ∩ Ŝ| = 1 and X1 ⊆ Ŝ.

Lemma 14. Let G be an instance of the GMD2 problem. Then one of the fol-
lowing is true.

(i) There exists a type 1 optimal sequence of G.
(ii) There exists a type 2 optimal sequence of G.

Proof. If a vertex of X is marked, we assume that it is the vertex xn1 and if a
vertex of Y is marked, we assume that it is the vertex y1.

If G is an instance such that there is no Grundy M-double dominating se-
quence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3 then the statement is
true using Lemma 13.

So, assume that there is a Grundy M-double dominating sequence S∗ of G
such that |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3. If |Xk ∩ Ŝ∗| ≥ 3 then, using Lemma
8, we get that γ×2

grm(G) is |X| + k or |X| + k − 1. If γ×2
grm(G) is |X| + k, then

(x1, x2, . . . , xn1 , y
k, yk−1, . . . , y1) is a type 2 optimal sequence of G. Note that xn1

is not a marked vertex of G in this case. Otherwise, if γ×2
grm(G) is |X| + k − 1,

then (x1, x2, . . . , xn1−1, y
k, yk−1, . . . , y1) is a type 2 optimal sequence of G. Thus,

if |Xk ∩ Ŝ∗| ≥ 3, there exists a type 2 optimal sequence of G.
Similarly, if |Y1 ∩ Ŝ∗| ≥ 3, then we get that there exists a type 1 optimal

sequence of G. This is ensured due to Lemma 9.

Finally, we state the lemma which completely characterizes the structure of
an optimal solution for an instance of the GMD2 problem.

Lemma 15. Let G be an instance of the GMD2 problem. Then one of the fol-
lowing is true.

(i) There exists a type 1 optimal sequence S of G in which the vertex of Xk ∩ Ŝ
appear in the last.

(ii) There exists a type 2 optimal sequence S of G in which the vertex of Y1 ∩ Ŝ
appear in the last.

Proof. Using Lemma 14, we have that, there exists a type 1 optimal sequence of
G or there exists a type 2 optimal sequence of G. If there exists a type 1 optimal
sequence S of G then S contains one vertex of Xk and all vertices of Yk. If the
vertex of Xk does not appear as the last vertex of the sequence S, we relocate
that vertex in the last and obtain a new sequence. Since N(Xk) = Yk, the last
vertex dominates the vertices of Yk the second time and so, the new sequence is
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also a type 1 optimal sequence of G. Hence, (i) is true. Using similar arguments,
(ii) also holds true.

We use a dynamic programming approach to solve the GMD2 problem for an
instance G in Algorihtm 2. Through Lemma 15, we characterized the structure
of an optimal solution. Next, we define the optimal solution of the problem
recursively in terms of the optimal solutions to subproblems. For GMD2 problem,
we pick the subproblems as the problem of finding a Grundy M-double dominating
sequence of G′ = (G′,M ′), where G′ is a subgraph of G andM ′ ⊆ V (G′) satisfying
equation (1).

Let S be a Grundy M-double dominating sequence of G which is a type 1
optimal sequence of G and the vertex of Xk∩Ŝ appear in the last. We also assume
that all vertices of Yk appear together just before the vertex ofXk. Let G1 denotes
the subgraph of G induced on the set of vertices (X \ Xk) ∪ {xt+1} ∪ (Y \ Yk),
where t = |X| − |Xk|. Let M1 = {xt+1} ∪ (M ∩ Y1). Then the subsequence of
S obtained by removing the last |Yk| + 1 vertices of S is a Grundy M-double
dominating sequence of (G1,M1).

Similarly, if S is a type 2 optimal sequence of G having the vertex of Y1 ∩ Ŝ
in the last and G2 denotes the subgraph of G induced on the set of vertices
(Y \Y1)∪{yt}∪ (X \X1), where t = |M ∩Y1|+1. Again, assume that all vertices
of X1 appear together just before the vertex of Y1. Let M2 = {yt} ∪ (M ∩Xk).
Then the subsequence of S obtained by removing the last |X1|+ 1 vertices of S
is a Grundy M-double dominating sequence of (G2,M2).

Now, we give the algorithm to compute a Grundy M-double dominating
sequence of G.

Algorithm 2 computes a Grundy M-double dominating sequence of G =
(G,M) by recursively appending some vertices at the end of the Grundy M-
double dominating sequence of (G′,M ′), where G′ is a subgraph of G. Note that
this task can be performed in linear-time.

Based on the above discussion, we directly state the following theorem.

Theorem 16. Algorithm 2 outputs a Grundy M-double dominating sequence of
G = (G,M) in linear-time, where G is a chain graph.

To solve the GD2 problem in a chain graph G, we compute a Grundy M-
double dominating sequence of (G, ∅) using Algorithm 2. So, we can state the
following theorem.

Theorem 17. A Grundy double dominating sequence of a chain graph G can be
computed in linear-time.
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Algorithm 2: S = GrundyM(G,M)

Input: G = (G,M), where G = (X,Y,E) is a chain graph and
M ⊆ V (G) satisfying equation (1). X = {x1, . . . , xn1} and
Y = {y1, . . . , yn2}.

Output: A Grundy M-double dominating sequence S of G.
if k = 1 then

S = GrundyM1(G,M);
return S;

else
t = |X| − |Xk|, X ′

k−1 = Xk−1 ∪ {xt+1};
if k ≥ 3 then

X ′ = ∪k−2
i=1 Xi ∪X ′

k−1;

else
X ′ = X ′

k−1;

G1
k−1 = G[X ′ ∪ (Y \ Yk)], M ∩Xk = {xt+1};

S1 = GrundyM(G1
k−1,M)⊕ (Yk)⊕ xt+1;

t = |M ∩ Y1|+ 1, Y ′
1 = Y2 ∪ {yt};

if k ≥ 3 then
Y ′ = ∪k

i=3Yi ∪ Y ′
1 ;

else
Y ′ = Y ′

1 ;

G2
k−1 = G[(X \X1) ∪ Y ′], M ∩ Y1 = {yt};

S2 = GrundyM(G2
k−1,M)⊕ (X1)⊕ yt;

if |Ŝ1| ≥ |Ŝ2| then
return S1;
else

return S2;

5. Conclusion

We studied the GD2D problem in this paper. We proved that the problem is NP-
complete for bipartite graphs and co-bipartite graphs. We also proved that the
GD2D problem is efficiently solvable for chain graphs. We solved this problem in
chain graphs using a dynamic programming approach. Since the class of chain
graphs is a subclass of bipartite graphs, the gap between the efficient algorithms
and NP-completeness in the subclasses of bipartite graphs has been narrowed a
little. To find the status of the problem in the graph classes such as bipartite
permutation graphs, convex bipartite graphs and chordal bipartite graphs can
be the next research direction. These graph classes are subclasses of bipartite
graphs and superclasses of chain graphs. Various types of vertex sequences were
proposed for which computational complexities are still unknown in many graph
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classes [6]. These kind of vertex sequences are open for further research.
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