DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

M.-Y. Ma

Mingyuan Ma

School of Mathematical Sciences,East China Normal University.

email: 623mmy@sina.com

H. Ren

Han Ren

email: hren@math.ecnu.edu.cn

Title:

The decycling number of a graph with large girth embedded in a surface

PDF

Source:

Discussiones Mathematicae Graph Theory 45(2) (2025) 595-614

Received: 2023-11-21 , Revised: 2024-04-17 , Accepted: 2024-04-17 , Available online: 2024-06-14 , https://doi.org/10.7151/dmgt.2547

Abstract:

It were conjectured that the decycling number of a bipartite planar graph of $n$ vertices is at most $\frac{3n}{8}$, and that the decycling number of a planar graph of $n$ vertices with girth at least five is at most $\frac{3n}{10}$. In this paper we show that the decycling number of a planar graph of $n$ vertices with girth at least six (or eight) is at most $\frac{3n-6}{8}$ (or $\frac{3n-6}{10}$), which means that the first conjecture is true if the girth is at least six and the second conjecture holds if the girth is at least eight. If $G$ is a connected graph $2$-cell embedded in the orientable surface $S_{\gamma} (\gamma\geq 1)$, we prove that the decycling number of $G$ is at most $\frac{3}{8}(n-2+2\gamma)$ (or $\frac{3}{10}(n-2+2\gamma)$) if the girth of $G$ is at least $6+4\gamma$ (or $8+6\gamma$). Similarly, if $G$ is $2$-cell embedded in the non-orientable surface $N_{\bar\gamma}$, then the decycling number of $G$ is at most $\frac{3}{8} (n-2+\bar\gamma)$ (or $\frac{3}{10}(n-2+\bar\gamma)$) if the girth of $G$ is at least $6+2\bar\gamma$ (or $8+4\bar\gamma$).

Keywords:

decycling number, girth, embedding

References:

  1. J. Akiyama and M. Watanabe, Maximum induced forests of planar graphs, Graphs Combin. 3 (1987) 201–202.
    https://doi.org/10.1007/BF01788541
  2. M.O. Albertson and R.Haas, A problem raised at the DIMACS Graph Coloring Week (New Jersey, 1998).
  3. M.O Albertson and D.M. Berman, The acyclic chromatic number, in: Proc. Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Number. 17, (Vinnipeg, Man., 1976) 51–69.
  4. N. Alon, Problems and results in extremal combinatorics–-I, Discrete Math. 273 (2003) 31–53.
    https://doi.org/10.1016/S0012-365X(03)00227-9
  5. N. Alon, D. Mubayi and R. Thomas, Large induced forests in sparse graphs, J. Graph Theory 38 (2001) 113–123.
    https://doi.org/10.1002/jgt.1028
  6. L.W. Beineke and R.C. Vandell, Decycling graphs, J. Graph Theory 25 (1997) 59–77.
    https://doi.org/10.1002/(SICI)1097-0118(199705)25:1<59::AID-JGT4>3.0.CO;2-H
  7. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer, London, 2008).
    https://doi.org/10.1007/978-1-84628-970-5
  8. B. Bollobás, Extremal Graph Theory (Academic Press, London-NewYork-San Francisco, 1978).
  9. O.V. Borodin, A proof of Grünbaum's conjecture on the acyclic $5$-colorability of planar graphs, Dokl. Akad. Nauk SSSR 231 (1976) 18–20, in Russian.
  10. F. Dross, M. Montassier and A. Pinlou, A lower bound on the order of the largest induced forest in planar graphs with high girth, Discrete Appl. Math. 214 (2016) 99–107.
    https://doi.org/10.1016/j.dam.2016.06.011
  11. F. Dross, M. Montassier and A. Pinlou, Large induced forests in planar graphs with girth $4$, Discrete Appl. Math. 254 (2019) 96–106.
    https://doi.org/10.1016/j.dam.2018.06.029
  12. P. Erdős, M. Saks and V.T. Sós, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1986) 61–79.
    https://doi.org/10.1016/0095-8956(86)90028-6
  13. P. Festa, P.M. Pardalos and M.G.C. Reseude, Feedback set problem, in: Handbook of Combinatorial Optimization, D.-Z. Du and P.M. Pardalos (Ed(s)), (Springer, Boston, MA 1999) 209–258.
    https://doi.org/10.1007/978-1-4757-3023-4_4
  14. P.J. Heahood, Map-colour theorem, Quart. J. Pure and Appl. Math. 24 (1890) 332–338.
  15. K. Hosono, Induced forests in trees and outerplanar graphs, Proc. Fac. Sci. Tokai Univ. 25 (1990) 27–29.
  16. R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, R.E. Miller, J.W. Thatcher and J.D. Bohlinger (Ed(s)), (Springer, Boston, MA 1972) 85–103.
    https://doi.org/10.1007/978-1-4684-2001-2_9
  17. L. Kowalik, B. Lužar and R. Škrekovski, An improved bound on the large induced forests for triangle-free planar graphs, Discrete Math. Theor. Comput. Sci. 12 (2010) 87–100.
    https://doi.org/10.46298/dmtcs.487
  18. J.-P. Liu and C. Zhao, A new bound on the feedback vertex sets in cubic graphs, Discrete Math. 148 (1996) 119–131.
    https://doi.org/10.1016/0012-365X(94)00268-N
  19. S.-D. Long and H. Ren, The decycling number and maximum genus of cubic graphs, J. Graph Theory 88 (2018) 375–384.
    https://doi.org/10.1002/jgt.22218
  20. M.-Y. Ma and H. Ren, The decycling number of a line graph, (2024) a manuscript, submitted.
  21. B. Mohar and C. Thomassen, Graphs on Surfaces (Johns Hopkins University Press, 2001).
    https://doi.org/10.56021/9780801866890
  22. D.A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math. 19 (2005) 651–663.
    https://doi.org/10.1137/S089548010444016X
  23. H. Ren, C. Yang and T.-X. Zhao, A new formula for the decycling number of regular graphs, Discrete Math. 340 (2017) 3020–3031.
    https://doi.org/10.1016/j.disc.2017.07.011
  24. G. Ringel, Das Geschlecht des vollständigen paaren Graphen, Abh. Math. Sem. Univ. Hamburg 28 (1965) 139–150.
    https://doi.org/10.1007/BF02993245
  25. G. Ringel, Der vollständige paare Graph auf nichtorientierbaren Flächen, J. Reine Angew. Math. 220 (1965) 88–93.
    https://doi.org/10.1515/crll.1965.220.88

Close