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Abstract

It were conjectured that the decycling number of a bipartite planar graph
of n vertices is at most 3n

8
, and that the decycling number of a planar graph

of n vertices with girth at least five is at most 3n

10
. In this paper we show that

the decycling number of a planar graph of n vertices with girth at least six
(or eight) is at most 3n−6

8
(or 3n−6

10
), which means that the first conjecture

is true if the girth is at least six and the second conjecture holds if the girth
is at least eight. If G is a connected graph 2-cell embedded in the orientable
surface Sγ(γ ≥ 1), we prove that the decycling number of G is at most
3

8
(n − 2 + 2γ) (or 3

10
(n − 2 + 2γ)) if the girth of G is at least 6 + 4γ (or

8 + 6γ). Similarly, if G is 2-cell embedded in the non-orientable surface Nγ̄ ,
then the decycling number of G is at most 3

8
(n− 2 + γ̄) (or 3

10
(n− 2 + γ̄))

if the girth of G is at least 6 + 2γ̄ (or 8 + 4γ̄).
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1. Introduction

All graphs in this paper are simple and finite. Let G = (V (G), E(G)) be a graph
in which S is a subset of V (G). If the graph obtained from G by deleting all
vertices in S is a forest, then S is called a decycling set of G. Sometimes a
decycling set is said to be a feedback vertex set. The cardinality of a minimum
decycling set of G is called the decycling number of G, which is denoted by ∇(G).
Clearly, finding a decycling set S of G is equivalent to obtain a subset S′ of V (G)
such that the subgraph of G induced by S′ is a forest. Such a set as S′ is called
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an acyclic set of G. The cardinality of a maximum acyclic set is referred to as a
forest number, which is denoted by a(G). Obviously, ∇(G) + a(G) = |V (G)|.

The problem of finding a minimum decycling set of a graph is known to be
NP-hard [16]. The decycling number of some classes of graphs, such as complete
graphs and complete bipartite graphs, has been determined [6]. For a graph
embedded in a surface, its decycling number has been explored [1, 13, 15, 19, 23,
etc.]. It needs to point out that there is a following challenging conjecture for the
decycling number of a planar graph.

Conjecture 1 [3, 12]. If G is a planar graph of n vertices, then ∇(G) ≤ n
2 .

The conjecture is still open. However, there are a few of results on the
decycling number of planar graphs. For instance, Hosono [15] showed that the
decycling number of every outerplanar graph of n vertices is at most n

3 . The
authors [20] proved that if G is a planar graph with n edges such that the line
graph L(G) of G is also a planar graph, then ∇(L(G)) ≤ n

2 .

Let G be a planar graph. If the girth of G is restricted, then the bound in
Conjecture 1 can be improved. Alon et al. [5] showed that for every triangle-free
cubic graph G of n vertices, a(G) ≥ 5n

8 . Thus ∇(G) ≤ 3n
8 if G is a bipartite

cubic graph of order n. Akiyama and Watanabe [1], and Albertson and Haas [2]
independently proposed the conjecture below.

Conjecture 2 [1, 2]. If G is a bipartite planar graph of n vertices, then ∇(G) ≤
3n
8 .

Upon planar graphs with girth at least five, Kowalik et al. [17] proposed the
following conjecture.

Conjecture 3 [17]. If G is a planar graph of n vertices with girth at least five,

then ∇(G) ≤ 3n
10 .

Need to say that Conjectures 2 and 3 are still open. Since n
2 can be expressed

as 3n
6 and a bipartite graph has girth at least four, Conjectures 1, 2 and 3 seem

to imply the following conjecture.

Conjecture 4. Let g ≥ 3 be an integer. If G is a planar graph of n vertices with

girth at least g, then ∇(G) ≤ 3n
2g .

In this paper, we show the theorem below.

Theorem 5. Let t and g be two integers with t ≥ 8 and t ≡ 0 (mod 2). Let

G be a planar graph of n vertices with girth at least g. If g ≥ (t−8)2

2 + 6, then
∇(G) ≤ 3n−6

t .
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As the corollaries of Theorem 5, Conjecture 2 is true if the girth of G is at
least six, and Conjecture 3 holds if the girth of G is at least eight. In addition, if
G is a connected graph 2-cell embedded in a surface, we obtain a similar result
to that in Theorem 5.

In 2016, Dross et al. [10] proposed the conjecture below.

Conjecture 6. If G is a planar graph of m edges with girth at least g, then

∇(G) ≤ m
g .

The conjecture is still open. Since m ≤ 3
2(n−2) by Euler’s formula if G has n

vertices and g ≥ 6, it follows that m
g ≤ 3n−6

2g if g ≥ 6. Consequently, for a planar
graph with girth at least six, Conjecture 4 holds if ∇(G) ≤ m

g . In this paper we
show the following result. Given an integer g ≥ 8, if G is a planar graph of m
edges with girth at least 2(g − 4)2 + 6, then ∇(G) ≤ m

g .

The arrangement of the paper is as follows. In Section 2, we first study the
relation between the number of vertices of degree two and the number of vertices
of degree at least three in a planar graph. Then we discuss the decycling number
of a planar graph with large girth. In Section 3, we explore the decycling number
of a connected graph G which is 2-cell embedded in a surface, and we obtain a
similar result to Theorem 5. At the end of this paper, we propose two conjectures
on the decycling number of a connected graph 2-cell embedded in a surface as a
generalization of Conjecture 4.

The remainder of this section is contributed for some terminologies on graphs
or surfaces. The other undefined terminologies can be found in [7] or [21].

The degree of a vertex v in a graph G, denoted by dG(v), is the number of
edges of G incident with v. The maximum degree and the minimum degree of G
are denoted by ∆(G) and δ(G), respectively. Let X be a subset of V (G). The
subgraph of G induced by X is denoted by G[X]. The girth of a graph with at
least one cycle is the length of a shortest cycle, and the girth of a forest is infinite.
Let X and Y be two disjoint vertex subsets of V (G). If one end of an edge e is
in X and another end is in Y , then we say that e is between X and Y .

A surface is a compact connected 2-dimensional manifold without boundary.
The orientable surface Sγ(γ ≥ 0) (or the non-orientable surface Nγ̄(γ̄ ≥ 1)) can
be obtained from the sphere by attaching γ handles (or γ̄ Möbius bands). The
orientable surface S1 and the non-orientable surface N1 are usually said to be
the torus and the projective plane, respectively. If a connected graph G is drawn
in a surface Σ such that any edge does not pass through any vertex and any
two edges do not cross each other, then we say that G is embedded in Σ. An
embedding Π of G in Σ is called 2-cell embedding if any connected component of
Σ-Π is homeomorphic to an open disc. In this paper a graph and its embedding
are not distinguished if no confusion is caused.
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At last, we give a proposition by Euler’s formula, which is often used in the
later proofs.

Proposition 7. If G is 2-cell embedded in the surface Sγ (or the surface Nγ̄) with
girth at least g, then |E(G)| ≤ g

g−2(n−2)+ 2g
g−2γ

(

or |E(G)| ≤ g
g−2(n−2)+ g

g−2 γ̄
)

.

2. The Decycling Number of a Planar Graph with Large Girth

This section starts with a lemma.

Lemma 8. Let G be a connected planar graph of n vertices with ∆(G) = ∆ ≥ 3
and δ(G) = 2. Let n≥3 be the number of vertices of degree at least three in G,

and let n2 be the number of vertices of degree two in G. If the girth g of G is at

least six, then

n≥3 <
4n

g − 2
.

Proof. Suppose on the contrary that n≥3 ≥
4n
g−2 . Then

|E(G)| =
1

2

∑∆

k=2
knk =

1

2

∑∆

k=3
knk + n2 ≥

3

2
n≥3 + n2

=
3

2
n≥3 + (n− n≥3) = n+

1

2
n≥3 ≥ n+

2n

g − 2
=

gn

g − 2
.

However, |E(G)| ≤ g
g−2(n−2) < gn

g−2 since G is a planar graph, a contradiction.

For a graph G, let Γ(G) be the sum of degrees of all vertices of G. If nk

is the number of vertices of degree k in G, then Γ(G) = Σ
∆(G)
k=1 knk. Obviously,

Γ(G) = 2m if G has m edges. If ∆(G) ≤ 2 and the girth of G is large, then we
have the result below.

Lemma 9. Let t ≥ 8 be an integer. Let G be a graph with ∆(G) ≤ 2 and girth

at least
(t−8)2

2 + 6. Then

∇(G) ≤
Γ(G)

t
.

Proof. If G does not have any cycle, then ∇(G) = 0. Obviously, ∇(G) ≤ Γ(G)
t .

If G has at least one cycle, we can suppose that G is a connected graph.
Otherwise, every component of G is argued in a similar way. Since ∆(G) ≤ 2, G
is exactly a cycle. Moreover, ∇(G) = 1 and Γ(G) = 2|V (G)|. Since the girth of G

is at least (t−8)2

2 +6, we have Γ(G) ≥ (t−8)2+12. Thus Γ(G)−t ≥ [(t−8)2+12]−t

= (t− 17
2 )

2 + 15
4 > 0. In other words, Γ(G) > t. Hence ∇(G) < Γ(G)

t .

For a planar graph with maximum degree at least three, there is a similar
result to that in Lemma 9.



The Decycling Number of a Graph with Large Girth Embedded ...599

Theorem 10. Let g and t be two integers with t ≥ 8 and t ≡ 0 (mod 2). Let G
be a planar graph of n vertices with ∆(G) ≥ 3, δ(G) = 2, and girth at least g. If

g ≥ (t−8)2

2 + 6, then

∇(G) ≤
Γ(G)

t
.

Proof. Suppose that the theorem is not true. Let G be a minimum counterex-
ample with respect to the number of vertices.

We claim that G is a connected graph. Otherwise, suppose that G has k
components G1, G2, . . . , Gk, where k ≥ 2. Clearly, the girth of any Gi is at least
g. We observe that δ(Gi) = 2 for i = 1, 2, . . . , k. Otherwise, suppose that Gj is
a component with δ(Gj) ≥ 3. Then |E(Gj)| ≥

3
2 |V (Gj)|. Since the girth of Gj is

at least six, we have |E(Gj)| ≤
3
2(|V (Gj)| − 2), a contradiction. If ∆(Gi) ≥ 3 for

an arbitrary i, then ∇(Gi) ≤ Γ(Gi)
t , since G is a minimum counterexample. In

this case ∇(G) =
∑k

i=1∇(Gi) ≤
∑k

i=1
Γ(Gi)

t = Γ(G)
t , a contradiction. So there is

some component, say Gk, with ∆(Gk) = 2. Considering that ∆(G) ≥ 3, there is
some component, say G1, with ∆(G1) ≥ 3. Since δ(Gk) = 2, Gk is a cycle with
at least g vertices. Then ∇(Gk) = 1. Let G′ be the union of G1, G2, . . . , Gk−1.
Then G′ has fewer vertices than that of G with ∆(G′) ≥ 3 and δ(G′) = 2. So

∇(G′) ≤ Γ(G′)
t . Since Γ(G′) = Γ(G)− Γ(Gk) ≤ Γ(G)− 2g, it follows that

∇(G) = ∇(G′) + 1 ≤
Γ(G)− 2g

t
+ 1 =

Γ(G)

t
−

2g − t

t
.

Notice that 2g − t ≥ (t− 8)2 − t+ 12 = (t− 17
2 )

2 + 15
4 > 0. So ∇(G) < Γ(G)

t ,
a contradiction.

Considering that ∆(G) ≥ 3, we have n≥3 ≥ 1. Since t ≥ 8, it follows that

g ≥ 6. By Lemma 8, n≥3 <
4n
g−2 . Therefore, n2 >

(g−6)n
g−2 .

Let X be the set of all vertices of degree at least three in G, and let Y be
the set of all vertices of degree two in G. We have two cases to consider.

Case 1. There is some vertex, say v, in X such that it is adjacent to at least
t
2 − 3 vertices in Y .

Suppose that dG(v) = a, and suppose that u1, u2, . . . , ul are all neighbors of
v in Y . Then a ≥ 3 and l ≥ t

2 − 3. We first delete the vertex v from G. Then
the degree of any neighbor of v is decreased by one. Next, ui is removed for
i = 1, 2, . . . , l. Let H1 be the obtained graph. In the previous procedure, a + l
edges are deleted because the girth of G is larger than three. Since the deletion
of an edge decreases two degrees, we have

Γ(H1) = Γ(G)− 2a− 2l ≤ Γ(G)− 6− 2

(

t

2
− 3

)

= Γ(G)− t.
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If δ(H1) ≤ 1, suppose that w1, w2, . . . , wp are all vertices of degree at most
one in H1, where p ≥ 1. Next, we remove those p vertices. If the minimum degree
of the obtained graph is still at most one, then those vertices of degree at most
one are deleted. The procedure is not stopped until a graph H2 without any
vertex of degree at most one is obtained. If H2 has at most two vertices, then
∇(G) ≤ 1. Since δ(G) = 2, G has at least one cycle. Thus n ≥ g. Considering
that ∆(G) ≥ 3, we have Γ(G) ≥ 2n + 1 ≥ 2g + 1 ≥ (t − 8)2 + 13. Hence

Γ(G) − t ≥ t2 − 17t + 77 = (t − 17
2 )

2 + 19
4 > 0. In other words, Γ(G)

t > 1. So

∇(G) ≤ Γ(G)
t , a contradiction. If H2 has at least three vertices, then δ(H2) ≥ 2.

If δ(H2) ≥ 3, then |E(H2)| ≥
3
2 |V (H2)|, which violates the fact that |E(H2)| ≤

3
2(|V (H2)| − 2), since the girth of H2 is at least six. So δ(H2) = 2. If ∆(H2) = 2,

then ∇(H2) ≤ Γ(H2)
t by Lemma 9. So ∇(G) ≤ ∇(H2) + 1 ≤ Γ(H2)

t + 1 ≤
Γ(H1)

t + 1 ≤ Γ(G)
t , a contradiction. If ∆(H2) ≥ 3, there are two cases to consider.

If H2 is a connected graph, then ∇(H2) ≤
Γ(H2)

t , because H2 has fewer vertices

than that of G. Therefore, ∇(G) ≤ ∇(H2) + 1 ≤ Γ(H2)
t +1 ≤ Γ(H1)

t +1 ≤ Γ(G)
t , a

contradiction. Otherwise, H2 has s components, say B1, B2, . . . , Bs, where s ≥ 2.
Proceeding a similar argument as G1, G2, . . . , Gk, it follows that ∇(H2) ≤

Γ(H2)
t .

Considering ∇(G) ≤ ∇(H2) + 1, we have ∇(G) ≤ Γ(G)
t , a contradiction.

We now suppose that δ(H1) ≥ 2. Then we proceed a similar argument to
that of H2 in the previous paragraph, which yields a contradiction.

Case 2. Any vertex in X joins to at most t
2 − 4 vertices in Y . Let η be the

number of all edges between X and Y . Then η ≤ ( t2 − 4)|X| in this case. Since
|X| = n≥3 <

4n
g−2 , we have

(2.1) η ≤

(

t

2
− 4

)

|X| <
4n

g − 2

(

t

2
− 4

)

=
2t− 16

g − 2
n.

We now consider the induced subgraph G[Y ] of G. Since any vertex in Y is
of degree two in G, every component of G[Y ] is a path. If every path in G[Y ] has
at most t

2 − 4 vertices, then the number of paths in G[Y ] is at least n2/(
t
2 − 4).

Since n2 >
g−6
g−2n and g ≥ (t−8)2

2 + 6, we have

(2.2) n2/

(

t

2
− 4

)

>
g − 6

g − 2
n/

(

t

2
− 4

)

≥
(t− 8)2

2(g − 2)
n/

(

t

2
− 4

)

=
t− 8

g − 2
n.

Since any end of a path in G[Y ] is adjacent to some vertex in X,

η > 2 ·
t− 8

g − 2
n =

2t− 16

g − 2
n,

which violates the formula (2.1). Thus there is some path, say P , in G[Y ] which
has at least t

2 − 3 vertices. Suppose that P = y1y2 · · · ys, where s ≥
t
2 − 3. Let x1
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be the neighbor of y1 in X, and let xs be the neighbor of ys in X, where x1 may
be xs. Suppose that dG(x1) = b. Then b ≥ 3. We now delete the vertex x1, then
the degree of y1 is one in the obtained graph. Next, we remove y1, y2, . . . , ys one
by one. Let H3 be the obtained graph. If x1 6= xs, then

Γ(H3) = Γ(G)− 2b− 2s ≤ Γ(G)− 6− 2

(

t

2
− 3

)

≤ Γ(G)− t.

If x1 is the same as xs, then x1y1 · · · ysx1 is a cycle with at least g vertices
in G. Thus s+ 1 ≥ g. So

Γ(H3) = Γ(G)− 2b− 2s+ 2 ≤ Γ(G)− 6− 2(g − 1) + 2 = Γ(G)− 2g − 2.(2.3)

Considering g ≥ (t−8)2

2 + 6, we have 2g ≥ (t − 8)2 + 12. It is easy to check that
(t− 8)2 + 12 > t if t ≥ 8. Thus 2g > t if t ≥ 8. By the formula (2.3), we have

Γ(H3) < Γ(G)− t− 2 < Γ(G)− t.

Next, we argue H3 in a similar way to that for H1 in Case 1. Then

∇(G) ≤ ∇(H3) + 1 ≤
Γ(H3)

t
+ 1 ≤

Γ(G)

t
,

which violates the assumption that G is a minimum counterexample. The proof
is fulfilled.

Next, we shall prove Theorem 5. But we need to show the following lemma
first.

Lemma 11. Let G be a connected planar graph of n vertices. If the girth g of G
is at least six, then Γ(G) ≤ 3n− 6.

Proof. Since the girth of G is at least six, we have

|E(G)| ≤
6

6− 2
(n− 2) =

3

2
(n− 2).

Considering that Γ(G) = 2|E(G)|, we have Γ(G) ≤ 3n− 6.

Proof of Theorem 5. Since the deletion of any vertex of degree at most one
does not affect the decycling number, we can suppose that δ(G) ≥ 2. If G is a
connected graph, then the theorem follows from Lemmas 9, 11 and Theorem 10
directly. Otherwise, every component of G is argued in a similar way. Then the
theorem holds.

In Theorem 5, if t = 8, then g ≥ 6, and if t = 10, then g ≥ 8. So we have the
following results by Theorem 5.
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Theorem 12. Let G be a planar graph of n vertices. If the girth of G is at least

six (or eight), then ∇(G) ≤ 3n−6
8

(

or ∇(G) ≤ 3n−6
10

)

.

Obviously, Conjecture 2 (or Conjecture 3) is true if the girth of a planar
graph is at least six (or eight) by Theorem 12.

Theorem 13. Let g ≥ 8 be an integer. Let G be a planar graph of m edges. If

the girth of G is at least 2(g − 4)2 + 6, then ∇(G) ≤ m
g .

Proof. As in the proof of Theorem 5, we can suppose that δ(G) ≥ 2. Applying

Lemma 9 and Theorem 10, we have ∇(G) ≤ Γ(G)
t if the girth of G is at least

(t−8)2

2 + 6. Let t = 2g. Then (t−8)2

2 + 6 = 2(g − 4)2 + 6. So ∇(G) ≤ Γ(G)
2g if the

girth of G is at least 2(g − 4)2 + 6, where t ≡ 0 (mod 2). Since Γ(G) = 2m, we
have ∇(G) ≤ m

g .

Remark 14. Given an integer g ≥ 8, if a planar graph of m edges has girth at
least 2(g − 4)2 + 6, then Conjecture 6 holds by Theorem 13.

3. The Decycling Number of a Graph Embedded in a Surface

Section 2 has discussed the decycling number of a planar graph with large girth.
Notice that a graph is planar if and only if it can be embedded in the sphere. We
now consider the decycling number of a connected graph with large girth which
is 2-cell embedded in other surfaces. The section starts with a lemma.

Lemma 15. Let G be a connected graph of n vertices with ∆(G) = ∆ ≥ 3,
δ(G) = 2, and the girth g at least six. Let n≥3 be the number of vertices of degree

at least three and n2 the number of vertices of degree two in G. Then

(1) n≥3 <
4n
g−2 +

4g
g−2γ, if G is 2-cell embedded in the orientable surface Sγ, where

γ ≥ 1, and

(2) n≥3 <
4n
g−2 +

2g
g−2 γ̄, if G is 2-cell embedded in the non-orientable surface Nγ̄.

Proof. (1) If G is 2-cell embedded in the orientable surface Sγ , then |E(G)| ≤
g

g−2(n − 2) + 2g
g−2γ by Proposition 7. Thus |E(G)| < g

g−2n + 2g
g−2γ. Suppose on

the contrary that n≥3 ≥
4n
g−2 + 4g

g−2γ. Then

|E(G)| =
1

2

∑∆

k=2
knk =

1

2

∑∆

k=3
knk + n2

≥
3

2
n≥3 + n2 =

3

2
n≥3 + (n− n≥3) = n+

1

2
n≥3

≥ n+
2

g − 2
n+

2g

g − 2
γ =

g

g − 2
n+

2g

g − 2
γ.
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Thus there is a contradiction.

(2) If G is 2-cell embedded in the non-orientable surface Nγ̄ , then |E(G)| ≤
g

g−2(n − 2) + g
g−2 γ̄. If n≥3 ≥ 4n

g−2 + 2g
g−2 γ̄, then there is a contradiction by

proceeding a similar argument as in the previous paragraph. Therefore, n≥3 <
4

g−2n+ 2g
g−2 γ̄.

Lemma 16 [8]. Let g ≥ 4 be an integer. Let G be a connected graph of n vertices

with δ(G) = δ ≥ 2 and girth at least g. Then

n ≥ 1 +
(δ − 1)(g−1)/2 − 1

δ − 2
δ, if g is odd, or n ≥

2[(δ − 1)g/2 − 1]

δ − 2
, if g is even.

The following lemma is related to the number of the vertices and the girth of
a connected graph which is 2-cell embedded in the orientable surface Sγ , which
will be used in the proof of Theorem 18.

Lemma 17. Let t ≥ 8 be an integer. Let G be a connected graph of n vertices

with girth at least g which is 2-cell embedded in the orientable surface Sγ where

γ ≥ 1. If δ(G) ≥ 3, then

g <

[

(t− 8)2

2
+ 4

]

γ +
(t− 8)2

2
+ 6.

Proof. Suppose on the contrary that g ≥
[ (t−8)2

2 + 4
]

γ + (t−8)2

2 + 6. Since t ≥ 8
and γ ≥ 1, we have g ≥ 10. Since G is a connected graph with δ(G) ≥ 3,
n > 2g/2 − 1 by Lemma 16. It is not hard to show that 2x > 6x+1, where x ≥ 5

is a variable. So n ≥ 3g. Let d = (t−8)2

2 + 4. Then d ≥ 4, since t ≥ 8. Moreover,

n ≥ 3g ≥ 3
{[ (t−8)2

2 + 4
]

γ + (t−8)2

2 + 6
}

= 3dγ + 3(t−8)2

2 + 18. Thus

(3.1) γ ≤
1

3d

[

n−
3(t− 8)2

2
− 18

]

<
1

3d
(n− 2).

Since δ(G) ≥ 3, we have |E(G)| ≥ 3
2n. On the other hand, |E(G)| ≤ g

g−2(n−

2) + 2g
g−2γ by Proposition 7. Hence

g

g − 2
(n− 2) +

2g

g − 2
γ ≥

3

2
n,

i.e.,
2g

g − 2
γ ≥

3

2
n−

g

g − 2
(n− 2).

So

(3.2) γ ≥

(

1

4
−

3

2g

)

n+ 1.
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Considering that g ≥
[ (t−8)2

2 + 4
]

γ + (t−8)2

2 + 6, we have g ≥ dγ + 6 ≥ d+ 6.
Thus 1

4 − 3
2g ≥ 1

4 − 3
2(d+6) . So

(3.3) γ ≥

[

1

4
−

3

2(d+ 6)

]

n+ 1.

We now claim that
1

3d
<

1

4
−

3

2(d+ 6)
.

Otherwise, 1
3d ≥ 1

4 −
3

2(d+6) , then 3d2−4d−24 ≤ 0. So 4−
√
304

6 ≤ d ≤ 4+
√
304

6 .

However, d ≥ 4 > 4+
√
304

6 , a contradiction. Thus γ ≥ n
3d +1 by the formula (3.3),

which violates the formula (3.1). Hence g <
[ (t−8)2

2 + 4
]

γ + (t−8)2

2 + 6.

Theorem 18. Let t be an integer with t ≥ 8 and t ≡ 0 (mod 2). Let G be a

connected graph of n vertices with girth at least g which is 2-cell embedded in the

orientable surface Sγ. If ∆(G) ≥ 3, δ(G) = 2, and g ≥
[ (t−8)2

2 +4
]

γ+ (t−8)2

2 +6,
then

∇(G) ≤
Γ(G)

t
.

Proof. We use the induction on γ. The base case is that γ = 0. In this case the
theorem holds by Theorem 10. Assume that ∇(G) ≤ Γ(G)

t if γ < k, where k > 0.
We now consider the case that γ = k.

Suppose that the theorem is not true. Let G be a minimum counterexample
with respect to the number of vertices. Let X be the set of all vertices of degree
at least three and Y the set of all vertices of degree two in G. We have two cases
to consider.

Case 1. There is some vertex, say w, in X such that it is adjacent to at least
t
2 − 3 vertices in Y .

Suppose that dG(w) = c, and suppose that u1, u2, . . . , uj are all neighbors of
w in Y . Then c ≥ 3 and j ≥ t

2 − 3. As in the proof of Theorem 10, let H1 be the
graph obtained from G by deleting w, u1, . . . , uj . Then

Γ(H1) = Γ(G)− 2c− 2j ≤ Γ(G)− 6− 2

(

t

2
− 3

)

= Γ(G)− t.

If δ(H1) ≤ 1, then we continuously remove the vertices of degree at most one.
At last, we obtain a graph H2. If H2 has at most two vertices or ∆(H2) = 2,
then we proceed a similar argument to that in the proof of Theorem 10, which
yields a contradiction. If δ(H2) ≥ 3, then there is a contradiction by Lemma
17. So H2 has at least three vertices with ∆(H2) ≥ 3 and δ(H2) = 2. There
are two cases to consider. If H2 is a connected graph, then H2 can be 2-cell
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embedded in some orientable surface Sτ , where τ ≤ k. Notice the girth of H2

is at least g. So g ≥
[ (t−8)2

2 + 4
]

τ + (t−8)2

2 + 6. By the inductional assumption,

∇(H2) ≤ Γ(H2)
t . Hence ∇(G) ≤ ∇(H2) + 1 ≤ Γ(H2)

t + 1 ≤ Γ(H1)
t + 1 ≤ Γ(G)

t ,
a contradiction. If H2 is not a connected graph, let F1, F2, . . . , Fh be the all
components of H2, where h ≥ 2. For i = 1, 2, . . . , h, suppose that Fi is 2-cell
embedded in some orientable surface Sτi , where τi ≤ k. Obviously, the girth of

Fi is at least g. Since g ≥
[ (t−8)2

2 +4
]

k+ (t−8)2

2 +6 ≥
[ (t−8)2

2 +4
]

τi+
(t−8)2

2 +6, we

have δ(Fi) = 2 by Lemma 17. For an arbitrary i, if ∆(Fi) ≥ 3, then ∇(Fi) ≤
Γ(Fi)

t

by the inductional assumption. If ∆(Fi) = 2, then ∇(Fi) ≤ Γ(Fi)
t by Lemma

9. Therefore, ∇(G) ≤ ∇(H2) + 1 ≤
∑h

i=1
Γ(Fi)

t + 1 ≤ Γ(G)−t
t + 1 = Γ(G)

t , a
contradiction.

If δ(H1) ≥ 2, then there is a contradiction by proceeding a similar argument
as H2 in the previous paragraph.

Case 2. Any vertex in X joins to at most t
2 − 4 vertices in Y . Let η be the

number of all edges between X and Y . Then η ≤ ( t2 − 4)|X| in this case. By

Lemma 15, |X| = n≥3 < 4n
g−2 + 4g

g−2γ. Considering that γ = k ≥ 1, we have

g ≥ 10. Thus 2g
g−2 < 3. So

η ≤

(

t

2
− 4

)

|X| <

(

4

g − 2
n+

4g

g − 2
γ

)(

t

2
− 4

)

=
2t− 16

g − 2
n+

2g

g − 2
γ(t− 8)

<
2t− 16

g − 2
n+ 3γ(t− 8).(3.4)

We now consider the induced subgraph G[Y ] of G by Y . Since any vertex in
Y has degree two in G, every component of G[Y ] is a path.

If every path in G[Y ] has at most t
2 − 4 vertices, the number of paths in

G[Y ] is at least n2/(
t
2 − 4). Considering that ∆(G) ≥ 3 and δ(G) = 2, we claim

that n
g−2 > 3

2 . In fact, G has at least two cycles in this case. Let C1 and C2

be such two cycles. If C1 and C2 have at most one vertex in common, then
n ≥ |V (C1)| + |V (C2)| − 1 ≥ 2g − 1. So n

g−2 > n
g ≥ 2 − 1

g > 3
2 . Otherwise, C1

and C2 have at least two vertices in common. Let F be the union of C1 and
C2. Let z1 be a vertex in F whose degree is at least three. Let z2 be the last
vertex in F which has degree at least three when travelling C1 starting from z1.
Then there are two internally disjoint paths P1 and P2 from z1 to z2 such that
Pi is in Ci for i = 1, 2. Let P3 be the path obtained from C1 by deleting all
edges in P1 and isolated vertices. P1, P2, and P3 are shown in Figure 1. Then
P1 ∪ P2 is a cycle, say C3, and P2 ∪ P3 is a cycle, say C4. Let Q be the graph
which is the union of P1, P2, P3. Since the girth of G is at least g, we have
|E(Q)| ≥ 1

2 [|E(C1)| + |E(C3)| + |E(C4)|] ≥ 3
2g. Considering that Q has two

vertices of degree three, n ≥ |V (Q)| ≥ 3
2g − 2. Thus 2n ≥ 3g − 4 = 3(g − 2) + 2.

So n
g−2 > 3

2 .
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z1

z2

P1 P3 P2

Figure 1. P1, P2 and P3 in G.

Since g ≥ 6, we have 4g
g−2 ≤ 6. By Lemma 15, n2 = n− n≥3 >

g−6
g−2n− 4g

g−2γ.
Thus

n2/

(

t

2
− 4

)

>

(

g − 6

g − 2
n−

4g

g − 2
γ

)

/

(

t

2
− 4

)

≥

(

g − 6

g − 2
n− 6γ

)

/

(

t

2
− 4

)

.

Considering that g ≥
[ (t−8)2

2 + 4
]

γ +
[ (t−8)2

2 + 6
]

and n
g−2 > 3

2 , we have

n2/

(

t

2
− 4

)

>

{

(t− 8)2

2(g − 2)
n+

n

g − 2

[

(t− 8)2

2
γ + 4γ

]

− 6γ

}

/

(

t

2
− 4

)

>

{

(t− 8)2

2(g − 2)
n+

3

2

[

(t− 8)2

2
γ + 4γ

]

− 6γ

}

/

(

t

2
− 4

)

(3.5)

=
t− 8

g − 2
n+

3

2
γ(t− 8).

Since any end of a path in G[Y ] is adjacent to some vertex in X,

η ≥ 2

[

t− 8

g − 2
n+

3

2
γ(t− 8)

]

=
2t− 16

g − 2
n+ 3γ(t− 8),

which violates the formula (3.4). So there is a path P = y1y2 · · · yq, where
q ≥ t

2 − 3. Let x1 be the neighbor of y1 in X, and let xq be the neighbor of yq
in X, where x1 may be xq. Suppose that dG(x1) = b. Then b ≥ 3. Let H3 be
the graph obtained from G by deleting x1, y1, . . . , yq. Next, H3 is argued as H1

in Case 1 if x1 6= xs. Otherwise, x1y1 · · · yqxs is a cycle, which is argued in a
similar way as in the proof of Theorem 10. Then Γ(H3) ≤ Γ(G)− t. Furthermore,

∇(G) ≤ ∇(H3) + 1 ≤ Γ(H3)
t + 1 ≤ Γ(G)

t , which violates the assumption that G is
a minimum counterexample. Thus the proof is completed.

We now consider the case that a connected graph is 2-cell embedded in a
non-orientable surface. We first give two lemmas.
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Lemma 19. Let t be an integer with t ≥ 8. Let G be a connected graph of n
vertices with girth at least g which is 2-cell embedded in the non-orientable surface

Nγ̄. If δ(G) ≥ 3, then

g <

[

(t− 8)2

2
+ 2

]

γ̄ +
(t− 8)2

2
+ 6.

Proof. Suppose on the contrary that g ≥
[ (t−8)2

2 + 2
]

γ̄ + (t−8)2

2 + 6. Since t ≥ 8
and γ̄ ≥ 1, we have g ≥ 8. Since G is a connected graph with δ(G) ≥ 3,
n > 2g/2 − 1 by Lemma 16. It is not hard to show that 2x > 9x − 21, where

x ≥ 4 is a variable. So n ≥ 9
2g − 21. Let d = (t−8)2

2 + 2. Then d ≥ 2, since t ≥ 8.

Moreover, n ≥ 9
2g− 21 ≥ 9

2

{[ (t−8)2

2 + 2
]

γ̄ + (t−8)2

2 + 6
}

− 21 = 9
2dγ̄ + 9(t−8)2

4 + 6.
Thus

(3.6) γ̄ ≤
2

9d
[n−

9(t− 8)2

4
− 6] <

2

9d
(n− 2).

Since δ(G) ≥ 3, we have |E(G)| ≥ 3
2n. On the other hand, |E(G)| ≤ g

g−2(n−

2) + g
g−2 γ̄ by Proposition 7. Hence

g

g − 2
(n− 2) +

g

g − 2
γ̄ ≥

3

2
n,

i.e.,
g

g − 2
γ̄ ≥

3

2
n−

g

g − 2
(n− 2).

So

(3.7) γ̄ ≥

(

1

2
−

3

g

)

n+ 2.

Considering that g ≥
[ (t−8)2

2 + 2
]

γ̄ + (t−8)2

2 + 6, we have g ≥ dγ̄ + 6 ≥ d+ 6.
Thus 1

2 − 3
g ≥ 1

2 − 3
d+6 . So

(3.8) γ̄ ≥

[

1

2
−

3

d+ 6

]

n+ 2.

We now claim that
2

9d
<

1

2
−

3

d+ 6
.

Otherwise, 2
9d ≥ 1

2 − 3
d+6 , then 9d2 − 4d− 24 ≤ 0. So 2−

√
220

9 ≤ d ≤ 2+
√
220

9 .

However, d ≥ 2 > 2+
√
220

9 , a contradiction. Thus γ̄ ≥ 2n
9d +2 by the formula (3.8),

which violates the formula (3.6). Hence g <
[ (t−8)2

2 + 2
]

γ̄ + (t−8)2

2 + 6.
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Lemma 20. Let t be an integer with t ≥ 8 and t ≡ 0 (mod 2). Let G be a

connected graph of n vertices with girth at least g which is 2-cell embedded in the

projective plane N1. If ∆(G) ≥ 3, δ(G) = 2, and g ≥ (t− 8)2 + 8, then

∇(G) ≤
Γ(G)

t
.

Proof. Suppose that the theorem is not true. Let G be a minimum counterex-
ample with respect to the number of vertices. Let X be the set of all vertices of
degree at least three and Y the set of all vertices of degree two in G. We consider
two cases.

Case 1. There is some vertex, say u, in X such that it is adjacent to at least
t
2 − 3 vertices in Y .

Suppose that dG(u) = α, and suppose that z1, z2, . . . , zβ are all neighbors
of u in Y . Then α ≥ 3 and β ≥ t

2 − 3. Let H1 be the graph obtained from G
by deleting u, z1, . . . , zβ. Proceeding a similar argument to that in the proof of
Theorem 10, we have Γ(H1) ≤ Γ(G)− t.

If δ(H1) ≤ 1, let H2 be the graph obtained from H1 by deleting the vertices
of degree at most one continuously. If H2 has at most two vertices or ∆(H2) = 2,
then there is a contradiction by proceeding a similar argument to that in the
proof of Theorem 10. If δ(H2) ≥ 3, then there is also a contradiction by Lemma
19. So H2 has at least two vertices with ∆(H2) ≥ 3 and δ(H2) = 2. Now, we
consider two cases. If H2 is a connected graph, then H2 can be 2-cell embedded
in the sphere or the projective plane. If the former occurs, then ∇(H2) ≤

Γ(H2)
t

by Theorem 10. If the latter occurs, then ∇(H2) ≤
Γ(H2)

t , since G is a minimum

counterexample. Thus ∇(G) ≤ ∇(H2) + 1 ≤ Γ(H2)
t + 1 ≤ Γ(H1)

t + 1 ≤ Γ(G)
t ,

a contradiction. If H2 is not a connected graph, let Q1, Q2, . . . , Qθ be the all
components of H2, where θ ≥ 2. For an arbitrary i, if Qi can be embedded in the
sphere, then ∇(Qi) ≤

Γ(Qi)
t . If Qi is 2-cell embedded in the projective plane, then

∆(Qi) ≥ 3. If δ(Qi) ≥ 3, then the girth of Qi is less than (t−8)2+8 by Lemma 19.
However, the girth ofQi is at least g which is at least (t−8)2+8, a contradiction. If

δ(Qi) = 2, then∇(Qi) ≤
Γ(Qi)

t , sinceG is a minimum counterexample. Therefore,

∇(G) ≤ ∇(H2) + 1 ≤
∑θ

i=1
Γ(Qi)

t + 1 ≤ Γ(G)−t
t + 1 = Γ(G)

t , a contradiction.
We now suppose that δ(H1) ≥ 2. Then there is a contradiction by proceeding

a similar argument as H2 in the previous paragraph.

Case 2. Any vertex in X joins to at most t
2 − 4 vertices in Y . Let η be the

number of all edges between X and Y . Then η ≤
(

t
2 − 4

)

|X| in this case. By

Lemma 15, |X| = n≥3 <
4n
g−2 + 2g

g−2 . So

η ≤

(

t

2
− 4

)

|X| <

(

4

g − 2
n+

2g

g − 2

)(

t

2
− 4

)

=
2t− 16

g − 2
n+

g

g − 2
(t− 8).



The Decycling Number of a Graph with Large Girth Embedded ...609

Since g ≥ 8, we have 2g
g−2 < 3. So

(3.9) η <
2t− 16

g − 2
n+

3

2
(t− 8).

We now consider the induced subgraph G[Y ] of G by Y . Since any vertex in
Y has degree two in G, every component of G[Y ] is a path.

If every path in G[Y ] has at most t
2 −4 vertices, then the number of paths in

G[Y ] is at least n2/
(

t
2 − 4

)

. Proceeding a similar argument to that in the proof
Theorem 18, we claim that n

g−2 > 3
2 .

Since 2g
g−2 < 3 and n2 = n− n≥3 >

g−6
g−2n− 2g

g−2 , we have

n2/

(

t

2
− 4

)

>

(

g − 6

g − 2
n−

2g

g − 2

)

/

(

t

2
− 4

)

>

(

g − 6

g − 2
n− 3

)

/

(

t

2
− 4

)

.

Considering that g ≥ (t− 8)2 + 8 and n
g−2 > 3

2 , we have

n2/

(

t

2
− 4

)

>

{

1

g − 2

[

(t− 8)2 + 2
]

n− 3

}

/

(

t

2
− 4

)

=

{

(t− 8)2

2(g − 2)
n+

n

g − 2

[

(t− 8)2

2
+ 2

]

− 3

}

/

(

t

2
− 4

)

>

{

(t− 8)2

2(g − 2)
n+

3

2

[

(t− 8)2

2
+ 2

]

− 3

}

/

(

t

2
− 4

)

(3.10)

=
t− 8

g − 2
n+

3

2
(t− 8).

Since any end of a path in G[Y ] is adjacent to some vertex in X, we have

η ≥ 2

[

t− 8

g − 2
n+

3

2
(t− 8)

]

=
2t− 16

g − 2
n+ 3(t− 8),

which violates the formula (3.9). Next, proceed a similar argument as in the
proof of Theorem 18. Then there is a contradiction.

We now consider the decycling number of a connected graph which is 2-cell
embedded in a non-orientable surface.

Theorem 21. Let t be an integer with t ≥ 8 and t ≡ 0 (mod 2). Let G be a

connected graph of n vertices with girth at least g which is 2-cell embedded in

the non-orientable surface Nγ̄. If ∆(G) ≥ 3, δ(G) = 2, and g ≥ [ (t−8)2

2 + 2]γ̄ +
(t−8)2

2 + 6, then

∇(G) ≤
Γ(G)

t
.
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Proof. We use the induction on γ̄. The base case is that γ̄ = 1. By Lemma 20,
the theorem holds. Assume that ∇(G) ≤ Γ(G)

t if γ̄ < k, where k ≥ 1. We now
consider the case that γ̄ = k. Suppose that the theorem does not hold. Let G
be a minimum counterexample with respect to the number of vertices. Next we
proceed a similar argument to that in the proof of Theorem 18. The difference is
that the application of Lemma 17 is replaced with that of Lemma 19. Then the
theorem is true.

Lemma 22. Let G be a connected graph of n vertices with the girth g at least

six.

(1) If G is 2-cell embeddable in the orientable surface Sγ, where γ ≥ 1, then

Γ(G) ≤ 3n− 6 + 6γ.

(2) If G is 2-cell embeddable in the non-orientable surface Nγ̄, then Γ(G) ≤
3n− 6 + 3γ̄.

Proof. (1) By Proposition 7, we have

|E(G)| ≤
g

g − 2
(n− 2) +

2g

g − 2
γ.

Since g ≥ 6, we have g
g−2 ≤ 3

2 . So

|E(G)| ≤
3

2
(n− 2 + 2γ).

Since Γ(G) = 2|E(G)|, we have Γ(G) ≤ 3n− 6 + 6γ.

(2) Proceeding a similar argument as in (1), Γ(G) ≤ 3n− 6+3γ̄ if G is 2-cell
embeddable in the non-orientable surface Nγ̄ .

The theorem below follows from Theorems 18, 21 and Lemma 22 directly.

Theorem 23. Let t and g be two integers with t ≥ 8, t ≡ 0 (mod 2), and g ≥ 6.
Let G be a connected graph of n vertices with ∆(G) ≥ 3, δ(G) = 2, and the girth

at least g.

(1) If G is 2-cell embedded in the orientable surface Sγ, where γ ≥ 1, and if

g ≥
[ (t−8)2

2 + 4
]

γ + (t−8)2

2 + 6, then

∇(G) ≤
3

t
(n− 2 + 2γ).

(2) If G is 2-cell embedded in the non-orientable surface Nγ̄, and if g ≥
[ (t−8)2

2 +

2
]

γ̄ + (t−8)2

2 + 6, then

∇(G) ≤
3

t
(n− 2 + γ̄).
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If t = 8, then
[ (t−8)2

2 +4
]

γ+ (t−8)2

2 +6 = 6+4γ, and
[ (t−8)2

2 +2
]

γ̄+ (t−8)2

2 +6 =
6 + 2γ̄. Let G be a connected graph of n vertices with girth at least g which is
2-cell embedded in the orientable surface Sγ where γ ≥ 1 (or the non-orientable
surface Nγ̄). By Lemma 17 (or Lemma 19), if g ≥ 6 + 4γ (or g ≥ 6 + 2γ̄), then
δ(G) ≤ 2. If ∆(G) = 2, then G is a cycle which cannot be 2-cell embedded in
the orientable surface Sγ where γ ≥ 1 and the non-orientable surface Nγ̄ . So
∆(G) ≥ 3. Considering that the deletion of any vertex of degree at most one
does not affect the decycling number, we have the following result by Theorem
23.

Theorem 24. Let G be a connected graph of n vertices with girth at least g.

(1) If G is 2-cell embedded in the orientable surface Sγ, where γ ≥ 1, and if

g ≥ 6 + 4γ, then ∇(G) ≤ 3
8(n− 2 + 2γ).

(2) If G is 2-cell embedded in the non-orientable surface Nγ̄ and if g ≥ 6 + 2γ̄,
then ∇(G) ≤ 3

8(n− 2 + γ̄).

If t = 10, then
[ (t−8)2

2 +4
]

γ+ (t−8)2

2 +6 = 8+6γ, and
[ (t−8)2

2 +2
]

γ̄+ (t−8)2

2 +
6 = 8 + 4γ̄. Similarly, we have the results below.

Theorem 25. Let G be a connected graph of n vertices with girth at least g.

(1) If G is 2-cell embedded in the orientable surface Sγ, where γ ≥ 1, and if

g ≥ 8 + 6γ, then ∇(G) ≤ 3
10(n− 2 + 2γ).

(2) If G is 2-cell embedded in the non-orientable surface Nγ̄ and if g ≥ 8 + 4γ̄,
then ∇(G) ≤ 3

10(n− 2 + γ̄).

4. Two Conjectures

Let G be a connected graph of n vertices with girth at least g. If G is 2-cell
embedded in the orientable surface Sγ (or the non-orientable surface Nγ̄), we
have showed that ∇(G) ≤ 3

8(n− 2 + 2γ)
(

or ∇(G) ≤ 3
8(n− 2 + γ̄)

)

if g ≥ 6 + 4γ
(or g ≥ 6+ 2γ̄), and that ∇(G) ≤ 3

10(n− 2+ 2γ)
(

or 3
10(n− 2+ γ̄)

)

if g ≥ 8+ 6γ
(or g ≥ 8 + 4γ̄).

Notice that 3
8(n− 2+2γ) < 3

8(n+2γ) and that 3
10(n− 2+2γ) < 3

10(n+2γ).
If G is 2-cell embedded in Sγ with γ = 0 (i.e., the sphere), Conjecture 4 tells us
that ∇(G) may be no more than 3n

2g . So we propose the following conjecture as
a generalization of Conjecture 4.

Conjecture 26. Let G be a connected graph of n vertices with girth at least g
which is 2-cell embedded in the orientable surface Sγ. Then ∇(G) ≤ 3

2g (n+ 2γ).

For the non-orientable surfaces, we have a similar conjecture.
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Conjecture 27. Let G be a connected graph of n vertices with girth at least

g which is 2-cell embedded in the non-orientable surface Nγ̄. Then ∇(G) ≤
3
2g (n+ γ̄).

We observe that for the complete bipartite graph Kn,n (n ≥ 3), Conjectures
26 and 27 hold. It is known that the decycling number of Kn,n is n − 1 [6]
and that Kn,n can be 2-cell embedded in the orientable surface S⌈

(n−2)2

4

⌉ (or the

non-orientable surface N⌈

(n−2)2

2

⌉) [24, 25]. Obviously, the girth of Kn,n is four. If

n = 3, then 3
4

⌈

(n−2)2

4

⌉

−
(

n
4 − 1

)

= 3
4−

3
4+1 > 0. If n ≥ 4, then 3

4

⌈

(n−2)2

4

⌉

−
(

n
4 −

1
)

≥ 3(n−2)2

16 − n
4 + 1 ≥ 3(n−2)

8 − n
4 + 1 = n

8 + 1
4 > 0. So 3

8

(

2n+ 2
⌈

(n−2)2

4

⌉)

=

3n
4 + 3

4

⌈

(n−2)2

4

⌉

> 3n
4 + n

4 − 1 = n − 1. Similarly, 3
8

(

2n+
⌈

(n−2)2

2

⌉)

≥ 3n
4 +

n
4 − 1 = n − 1. Thus ∇(Kn,n) ≤ 3

8

(

2n+ 2
⌈

(n−2)2

4

⌉)

if n ≥ 3. Similarly,

∇(Kn,n) ≤
3
8

(

2n+
⌈

(n−2)2

2

⌉)

if n ≥ 3.

Figure 2. (1) the graph H, (2) a 2-cell embedding of H in the torus.

We now give another example. The graph H shown in Figure 2(1) comes
from [10]. It is easy to check that the vertices represented by black squares in
Figure 2(1) form a decycling set of H. So ∇(H) ≤ 4. Notice that any subgraph of
H obtained by deleting three vertices has 11 vertices and at least 12 edges which
has at least one cycle. So we have ∇(H) > 3. Thus ∇(H) = 4. On the other
hand, H can be 2-cell embedded in the torus (see Figure 2(2)) and the girth of
H is six. So 3

2g (n+ 2γ) = 4. Hence Conjecture 26 holds for the graph H.
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