DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

J.I. Hoepner

Julia Ingrid Hoepner

Department of Mathematics and Statistics
University of Victoria
Victoria, BC

email: julesihoepner@gmail.com

G. MacGillivray

Gary MacGillivray

University of Victoria

email: gmacgill@uvic.ca

0000-0001-8123-8931

C.M. Mynhardt

Christina M. Mynhardt

University of Victoria, Victoria

email: kmynhardt@gmail.com

0000-0001-6981-676X

Title:

Lower boundary independent and hearing independent broadcasts in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 45(2) (2025) 653-675

Received: 2023-05-31 , Revised: 2024-04-26 , Accepted: 2024-05-01 , Available online: 2024-06-13 , https://doi.org/10.7151/dmgt.2546

Abstract:

A broadcast on a connected graph $G$ with vertex set $V(G)$ is a function $f:V(G)\rightarrow \{0, 1,\dots, \operatorname{diam}(G)\}$ such that $f(v)\leq e(v)$ (the eccentricity of $v$) for all $v\in V(G)$. A vertex $v$ is said to be broadcasting if $f(v)>0$, with the set of all such vertices denoted $V_f^+$. A vertex $u$ hears $f$ from $v\in V_f^+$ if $d_G(u, v)\leq f(v)$. The broadcast $f$ is hearing independent if no broadcasting vertex hears another. If, in the broadcast $f$, any vertex $u$ that hears $f$ from multiple broadcasting vertices satisfies $f(v)\leq d_G(u, v)$ for all $v\in V_f^+$, it is said to be boundary independent. The cost of $f$ is $\sigma(f)=\sum_{v\in V(G)}f(v)$. The minimum cost of a maximal boundary independent broadcast on $G$, called the lower bn-independence number, is denoted by $i_{bn}(G)$. The lower h-independence number $i_h(G)$ is defined analogously for hearing independent broadcasts. We prove that for an arbitrary connected graph $G$, either parameter equals the minimum of the corresponding parameter among that of the spanning trees of $G$. We use these results to prove that $i_{bn}(G)\leq i_h(G)$ for all graphs $G$. We also show that $i_h(G)/i_{bn}(G)$ is bounded.

Keywords:

broadcast domination, broadcast independence, boundary independence, hearing independence

References:

  1. S. Bessy and D. Rautenbach, Girth, minimum degree, independence, and broadcast independence, Commun. Comb. Optim. 4 (2019) 131–139.
    https://doi.org/10.22049/CCO.2019.26346.1098
  2. S. Bessy and D. Rautenbach, Relating broadcast independence and independence, Discrete Math. 342(12) (2019) 111589.
    https://doi.org/10.1016/j.disc.2019.07.005
  3. G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 6th Ed. (Chapman & Hall/CRC, New York, 2015).
    https://doi.org/10.1201/b19731
  4. J.E. Dunbar, D.J. Erwin, T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi, Broadcasts in graphs, Discrete Appl. Math. 154 (2006) 59–75.
    https://doi.org/10.1016/j.dam.2005.07.009
  5. D.J. Erwin, Cost Domination in Graphs, PhD Thesis (Western Michigan University, Kalamazoo, MI, USA, 2001).
  6. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York, NY, USA, 1979).
  7. P. Heggernes and D. Lokshtanov, Optimal broadcast domination in polynomial time, Discrete Math. 36 (2006) 3267–3280.
    https://doi.org/10.1016/j.disc.2006.06.013
  8. S. Herke and C.M. Mynhardt, Radial trees, Discrete Math. 309 (2009) 5950–5962.
    https://doi.org/10.1016/j.disc.2009.04.024
  9. M.A. Henning, G. MacGillivray and F. Yang, Broadcast domination in graphs, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Dev. Math. 66, (Springer, Cham, Switzerland, 2021) 15–46.
    https://doi.org/10.1007/978-3-030-58892-2_2
  10. J.I. Hoepner, Boundary Independent Broadcasts in Graphs, Master's Thesis (University of Victoria, Victoria, BC, Canada, 2022).
  11. E. Marchessault and C.M. Mynhardt, Lower boundary independent broadcasts in trees, Discuss. Math. Graph Theory 44 (2024) 75–99.
    https://doi.org/10.7151/dmgt.2434
  12. C.M. Mynhardt and L. Neilson, A sharp upper bound for the boundary independence broadcast number of a tree (2021).
    arXiv: 2104.02266v2
  13. C.M. Mynhardt and L. Neilson, Boundary independent broadcasts in graphs, J. Combin. Math. Combin. Comput. 116 (2021) 79–100.
  14. C.M. Mynhardt and L. Neilson, Comparing upper broadcast domination and boundary independence broadcast numbers of graphs, Trans. Comb. 13 (2024) 105–126.
    https://doi.org/10.22108/toc.2023.127904.1836
  15. C.M. Mynhardt and L. Neilson, Lower bound and exact values for the boundary independence broadcast number of a tree (2021).
    arXiv: 2105.02312v1
  16. L. Neilson, Broadcast Independence in Graphs, PhD Thesis (University of Victoria, Victoria, BC, Canada, 2019).

Close