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Abstract

A broadcast on a connected graph G with vertex set V (G) is a function
f : V (G) → {0, 1, . . . ,diam(G)} such that f(v) ≤ e(v) (the eccentricity of
v) for all v ∈ V (G). A vertex v is said to be broadcasting if f(v) > 0, with
the set of all such vertices denoted V +

f . A vertex u hears f from v ∈ V +
f if

dG(u, v) ≤ f(v). The broadcast f is hearing independent if no broadcasting
vertex hears another. If, in the broadcast f , any vertex u that hears f from
multiple broadcasting vertices satisfies f(v) ≤ dG(u, v) for all v ∈ V +

f , it is
said to be boundary independent.

The cost of f is σ(f) =
∑

v∈V (G) f(v). The minimum cost of a maximal
boundary independent broadcast on G, called the lower bn-independence
number, is denoted by ibn(G). The lower h-independence number ih(G) is
defined analogously for hearing independent broadcasts. We prove that for
an arbitrary connected graph G, either parameter equals the minimum of
the corresponding parameter among that of the spanning trees of G. We use
these results to prove that ibn(G) ≤ ih(G) for all graphs G. We also show
that ih(G)/ibn(G) is bounded.
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1. Introduction

There are several methods by which the concept of independent sets may be
generalized to broadcast independence. If we require that no broadcasting vertex
hears another, we obtain the definition of cost independent broadcasts introduced
by Erwin in [5], which we refer to as hearing independent. The definition of
boundary independent broadcasts, in which no broadcasts overlap on edges, was
introduced by Neilson [16] and Mynhardt and Neilson [13] as an alternative to
hearing independence. We further investigate the lower parameters ih(G) and
ibn(G) on general graphs and trees.

We present broadcast definitions in Section 2, and preliminary results and
observations in Section 3. In Section 4, we prove that for any connected graph G,

ibn(G) = min{ibn(T ) : T is a spanning tree of G},

and

ih(G) = min{ih(T ) : T is a spanning tree of G}.

We use these results to prove our main result in Theorem 9, namely that ibn(G) ≤
ih(G) for any graph G. In Section 5 we show that ih(G)/ibn(G) ≤ 5

4 for all graphs
G. Open problems and directions for further research are discussed in Section 6.
For terminology and general concepts in graphs theory not defined in this paper,
see Chartrand, Lesniak, and Zhang [3].

2. Definitions and Background

Erwin [5] defined a broadcast on a connected graph G as a function f : V (G) →
{0, 1, . . . ,diam(G)} such that f(v) is at most the eccentricity e(v) for all vertices
v. We say a vertex v is broadcasting if f(v) ≥ 1, and that f(v) is the strength of
f from v. The cost or weight of f is σ(f) =

∑
v∈V (G) f(v).

Given a broadcast f on G and a broadcasting vertex v, a vertex u hears f
from v if dG(u, v) ≤ f(v). We define the f -neighbourhood of v, denoted by Nf [v],
as the set of all vertices which hear f from v (including v itself).

The f -private neighbourhood of v, denoted by PNf (v), consists of those ver-
tices that hear f only from v. The f -boundary of v is Bf (v) = {u ∈ Nf [v] | d(u, v)
= f(v)}. The f -private boundary PBf (v) is defined analogously. In particular,
PBf (v) = PNf (v) ∩ Bf (v). If u ∈ Nf [v]\Bf (v), v is said to overdominate u by
k, where k = f(v)− dG(u, v). A vertex which does not broadcast or hear f from
any broadcasting vertex is undominated.

We partition the set of broadcasting vertices V +
f into V 1

f = {v ∈ V (G) | f(v) =
1} and V ++

f = {v ∈ V (G) | f(v) > 1}. We denote the set of undominated vertices
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by Uf . A broadcast f is dominating if Uf = ∅. The broadcast domination num-
ber, γb(G), is the minimum weight of such a broadcast. A broadcast f is a radial
broadcast if V +

f = {c}, where c is a central vertex of G, and f(c) = rad(G). An
overview of broadcast domination in graphs is given by Henning, MacGillivray,
and Yang in [9].

We say an edge e = uv hears f or is covered by w ∈ V +
f if u, v ∈ Nf [w] and

at least one endpoint does not lie on the f -boundary of w. If no such vertex w
exists, then e is uncovered. The set of uncovered edges is denoted UE

f .

An independent set on a graph G is a set of pairwise nonadjacent vertices.
The minimum cardinality of a maximal independent set, called the independent
domination number of G, is denoted by i(G). A broadcast f is hearing indepen-
dent, abbreviated h-independent, if x /∈ Nf [v] for any x, v ∈ V +

f . A broadcast f
is boundary independent, abbreviated bn-independent, if Nf [v]\Bf (v) ⊆ PNf (v)
for all v ∈ V +

f . It follows directly from the definitions that any bn-independent
broadcast is also h-independent, but the converse is false. A bn-independent
broadcast f is illustrated in Figure 1, where the broadcasting vertices v1 and v2
are indicated in red. Here, f(v1) = 1 and f(v2) = 2.

v1 uv2 w1 w2

Figure 1. A bn-independent broadcast f on a tree. Vertices v1 and v2 broadcast at
strengths 1 and 2, respectively. The vertex v2 overdominates u by 1, whereas w1 and w2

are undominated.

Maximal independent broadcasts are those for which the broadcast strength
cannot be increased at any vertex without violating the independence condition.
If f and g are broadcasts on a graph G, we say that g ≤ f if g(v) ≤ f(v)
for all v ∈ V (G). If in addition g(v) < f(v) for some v, we write g < f . A
bn-independent broadcast f is maximal bn-independent if there exists no bn-
independent broadcast g such that g > f . The bn-independent broadcast f
illustrated in Figure 1 is not maximal bn-independent, because the broadcast
g obtained from f by broadcasting from w1 with a strength of 1 is also bn-
independent, and g > f . In turn, g is not maximal h-independent, because the
broadcast h obtained from f by broadcasting from w1 with a strength of 2 is also
h-independent, and h > g.

Mynhardt and Neilson [13] defined ibn(G) as the minimum weight of a max-
imal bn-independent broadcast on G, the lower bn-independence number. The
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minimum weight of a maximal h-independent broadcast, denoted by ih(G), is the
lower h-independence number. We refer to a maximal h-independent broadcast
of minimum cost as an ih-broadcast, and to a maximal bn-independent broadcast
of minimum cost as an ibn-broadcast.

To illustrate the above-mentioned concepts, we depict a tree T and a broad-
cast f that is both bn-independent and h-independent in Figure 2. It can be
seen (and will follow from Propositions 2 and 3, respectively) that f is maximal
bn-independent but not maximal h-independent; broadcasting with a strength of
2 instead of 1 from v yields an h-independent broadcast g such that g > f . It can
also be verified that f is an ibn-broadcast while g is an ih-broadcast; we leave the
details to the reader. Hence, T is a tree with ibn(T ) < ih(T ). As shown in [10,
Proposition 2.2.1], the difference ih(G)− ibn(G) can be arbitrary, even for trees.

Hearing independence was further studied by Bessy and Rautenbach [1, 2]
and by Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi [4]. The more recent
study of bn-independent broadcasts was continued by Mynhardt and Neilson in
[12, 14, 15] and by Marchessault and Mynhardt in [11].

21 1 1

v

Figure 2. A tree with ibn(T ) = 5 and ih(T ) = rad(T ) = 6.

3. Preliminaries

Observe that if a broadcast f is h-independent or bn-independent but not dom-
inating on a graph G, then f may be extended to a dominating broadcast g
by successively broadcasting at strength 1 from an undominated vertex in V (G)
until no such vertices remain. We state this fact below for reference.

Observation 1. If f is a maximal bn-independent or maximal h-independent
broadcast, then f is dominating.

Mynhardt and Neilson [13] extended Observation 1 to a necessary and suffi-
cient condition for a bn-independent broadcast to be maximal bn-independent.

Proposition 2 [13]. Let f be a bn-independent broadcast on a connected graph
G. Then f is maximal bn-independent if and only if f is dominating, and either

(i) |V +
f | = 1, or
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(ii) Bf (v) \PBf (v) ̸= ∅ for each v ∈ V +
f .

It is natural to consider the analogous result for maximal hearing indepen-
dence.

Proposition 3. Let f be an h-independent broadcast on a connected graph G.
Then f is maximal hearing independent if and only if f is dominating, and either

(i) |V +
f | = 1, or

(ii) for each v ∈ V +
f there exist u ∈ Bf (v) and w ∈ V +

f \ {v} such that uw ∈
E(G), i.e., each broadcasting vertex has a vertex on its boundary that is
adjacent to another vertex in V +

f .

To illustrate Proposition 3(ii), observe that in Figure 3, the dominating h-
independent broadcast f cannot be increased at v, otherwise the vertex w ∈ V +

f

adjacent to u ∈ Bf (v) would hear f from v. Similarly, f cannot be increased at
either vertex broadcasting at strength 1.

1

12

v

wu

x

Figure 3. A dominating maximal h-independent broadcast f with |V +
f | = 3.

Proof. Let f be a maximal h-independent broadcast on G. By Observation 1,
f is dominating. Suppose there exists v ∈ V +

f such that uw /∈ E(G) for all

u ∈ Bf (v) and w ∈ V +
f \ {v}. Then either |V +

f | = 1 (in which case f(v) = e(v),
where e(v) denotes the eccentricity of v), or we may define a new broadcast f ′

where f ′(v) = f(v)+1 and f ′(x) = f(x) for all x ̸= v. Since f ′ is dominating and
no broadcasting vertex hears another, f ′ is h-independent on G, contradicting
the maximality of f .

Conversely, let f be a dominating h-independent broadcast such that (i) or
(ii) hold. If |V +

f | = 1 and V +
f = {v}, then f(v) = e(v), otherwise f would not be

dominating. Suppose, for a contradiction, that f satisfies (ii) and is not maximal
h-independent. Then there exists v ∈ V +

f such that increasing the strength of the
broadcast on v by 1 results in a new h-independent broadcast f ′. By (ii), since
v ∈ V +

f , there exists u ∈ Bf (u) adjacent to a broadcasting vertex w ∈ V +
f \ {v}.

But then w ∈ Bf ′(v), a contradiction. Hence f is maximal h-independent.

If v and w are vertices in V +
f such that w is adjacent to a vertex in Bf (v),
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we write w → v and say that w provides a certificate that the broadcast cannot
be increased at v, or, in short, that w certifies v.

Observation 4. By definition, w → v if and only if d(v, w) = f(v)+1. Suppose
w → v. Since f(w) < d(v, w), f(w) ≤ f(v). Thus, if v ̸→ w, then f(w) < f(v).

From Proposition 3, we derive conditions satisfied by a maximal h-independent
broadcast that is also bn-independent.

Corollary 5. Let f be a maximal h-independent broadcast on a connected graph
G. If f is bn-independent, then either |V +

f | = 1 or, for each v ∈ V +
f , there exists

u ∈ Bf (v) adjacent to a vertex in V 1
f . Moreover, f is maximal bn-independent.

Proof. Suppose f is a maximal h-independent broadcast on G such that f is
bn-independent; that is, no edge of G hears more than one broadcasting vertex.
The statement is obvious if |V +

f | = 1, hence assume that |V +
f | ≥ 2.

By Proposition 3(ii), for every v ∈ V +
f there exists w ∈ V +

f such that w → v,

that is, v has a vertex u on its f -boundary that is adjacent to w ∈ V +
f . If f(w) ≥

2, then w overdominates u, hence Nf [v] and Nf [w] intersect on an edge, which
is a contradiction. Therefore f(w) = 1. Moreover, statement (ii) of Proposition
2 holds. Since f is dominating, the result follows.

The following results of Marchessault and Mynhardt [11] will be used through-
out this section. For a path P in a tree T , let d(v, P ) denote the minimum dis-
tance from a vertex v ∈ V (T ) to a vertex on P . The proposition is illustrated in
Figure 4.

3

1

2

P

Figure 4. Vertices broadcasting to a path P of a tree. Observe that each broadcasting
vertex v covers at most 2(f(v)− d(v, P )) edges of P .

Proposition 6 [11]. Let P be a path in a tree T and let f be a broadcast on
T. Let Touch (P ) denote the set of broadcasting vertices whose f -neighbourhoods
intersect P , and let Off (P ) denote the remaining broadcasting vertices, that is,
those that do not broadcast to any vertex of P . Suppose

σ1 =
∑

v∈Touch(P ) d(v, P ) and σ2 =
∑

v∈Off(P ) f(v).
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Then

1. f covers at most 2
(∑

v∈Touch(P ) f(v)− σ1

)
edges of P , and

2. if f covers b edges of P, then σ(f) ≥
⌈
b
2

⌉
+ σ1 + σ2.

In particular, if D is a diametrical path of a tree T and f covers every edge
of D, then σ(f) ≥ rad(T ).

Recall that UE
f denotes the set of edges uncovered by a broadcast f .

Proposition 7 [11]. Let f be a bn-independent broadcast on a connected graph
G such that |V +

f | ≥ 2. Then f is maximal bn-independent if and only if each

component of G− UE
f contains at least two broadcasting vertices.

Note that if each component of G − UE
f contains at least one broadcasting

vertex, then f is dominating, since G−UE
f is a spanning subgraph of G. We next

show that the first direction of Proposition 7 also holds for hearing independence.

Proposition 8. Let f be a maximal h-independent broadcast on a connected
graph G such that |V +

f | ≥ 2. Then each component of G − UE
f contains at least

two broadcasting vertices.

Proof. If some component C ofG−UE
f contains only a single broadcasting vertex

v, then all edges between G − C and Bf (v) are uncovered. But then increasing
the broadcast strength of v by 1 results in a new h-independent broadcast of
greater cost, a contradiction.

On the other hand, if f is an h-independent broadcast on a connected graph
G such that |V +

f | ≥ 2 and all components of G−UE
f contain at least two broad-

casting vertices, then f is not necessarily maximal h-independent as broadcasts
may overlap on edges within components. Such a broadcast is illustrated in
Figure 5.

2

221

e

v

Figure 5. An h-independent broadcast f such that the removal of the f -uncovered edge e
leaves two components, each of which contains two broadcasting vertices. As increasing
the strength of the broadcast from v by 1 does not result in any broadcasting vertex
hearing another, f is not maximal h-independent.
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4. The Comparability of ibn and ih

Two graph parameters p and q are incomparable if there exist graphs G,G′ for
which p(G) < q(G) and p(G′) > q(G′). We write this as p ⋄ q. In [13], Mynhardt
and Neilson observed that i ⋄ ibn and i ⋄ ih.

It is natural to ask whether ih(G) and ibn(G) are comparable or not. Suppose
there exists a graph G with two or more vertices of high degree (i.e., many vertices
could hear a broadcast of relatively small strength from these vertices) such that
broadcasts from each of these vertices will dominate G only if some broadcasts
may overlap on edges. Assuming a radial broadcast on G is not an ibn-broadcast,
it seems reasonable to imagine a case in which a maximal h-independent broadcast
has lower cost than a maximal bn-independent broadcast. We proceed to show
that this is impossible, solving an open problem posed in [11].

Theorem 9. For any graph G, ibn(G) ≤ ih(G).

Since the cost of a broadcast is equal to the sum of the costs of the broadcasts
on each of its components, it suffices to consider connected graphs. We begin by
proving special cases of broadcasts or graphs, including when G is a tree. The
proof of Theorem 9 is presented in Section 4.3.

We first consider the case in which no vertices broadcast at strength greater
than 1.

Proposition 10. Let f be a broadcast on G such that |V ++
f | = 0. Then f is

maximal bn-independent if and only if it is maximal h-independent.

Proof. Suppose f is a maximal bn-independent or maximal h-independent (and
hence dominating) broadcast onG such that V +

f = V 1
f . If |V

+
f | = 1, then f is both

maximal bn-independent and maximal h-independent by part (i) of Propositions
2 and 3.

Otherwise, suppose |V 1
f | ≥ 2 and let v ∈ V 1

f . Then Bf (v) \PBf (v) ̸= ∅ if and
only if v has a vertex on its boundary adjacent to another vertex broadcasting
at strength 1, in other words, Proposition 2(ii) is equivalent to Proposition 3(ii).
Therefore f is both maximal bn-independent and maximal h-independent.

4.1. Trees

Let ℓ(P ) denote the length of the path P . The following result is a consequence
of Proposition 6, and is stated here for clarity.

Corollary 11. Let f be a broadcast on a tree T that covers all edges of T . Then
σ(f) ≥ rad(T ).

Proof. LetD be a diametrical path of T . By part 2 of Proposition 6 withD = P ,

σ(f) ≥
⌈
ℓ(D)
2

⌉
≥ rad(T ).
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As in Proposition 6, given a path P in a tree, let Touch(P ) denote the set
of broadcasting vertices whose f -neighbourhoods intersect P . Recall that for
v ∈ Touch(P ), we use d(v, P ) to denote the minimum distance from v to a vertex
on P .

Proposition 12. Let P be a path of a tree T and let f be a broadcast on T . If f
covers b edges of P , and k edges are covered more than once, then σ(f) ≥

⌈
b+k
2

⌉
.

Proof. Consider v ∈ Touch(P ) and let u be the vertex on P for which the
distance to v is smallest (possibly, u = v). Since T is a tree, there exists a unique
u − v path Puv which, by choice of u, intersects P only on u. Thus, v covers at
most 2(f(v)− d(u, v)) edges of P . It follows that

b+ k ≤
∑

v∈Touch(P )

2(f(v)− d(v, P )) ≤
∑

v∈Touch(P )

2f(v) ≤
∑
v∈V +

f

2f(v),

hence σ(f) ≥ b+k
2 . As σ(f) is an integer, we have that σ(f) ≥

⌈
b+k
2

⌉
.

We show next that Theorem 9 holds for trees.

Theorem 13. For any tree T , ibn(T ) ≤ ih(T ).

Proof. Suppose T is a tree such that ih(T ) < ibn(T ) and let f be an ih-broadcast
on T . By Corollary 11, if f covers every edge of T , then σ(f) ≥ rad(T ). Since
ibn(T ) ≤ rad(T ), the cost of f is strictly less than rad(T ), hence some edge of T
is uncovered. In particular, T − UE

f contains at least two components.

Let T1, T2, . . . , Tk be the components of T − UE
f and let fi denote the re-

striction of f to Ti. By Proposition 8, since f is maximal h-independent, each
component Ti contains at least two broadcasting vertices. Hence, if fi is bn-
independent, then Proposition 7 implies that it is maximal bn-independent. Since
ih(T ) < ibn(T ), at least one restricted broadcast fi is not bn-independent.

Assume without loss of generality that f1 is not bn-independent on T1. Then,
since no edge of T1 is uncovered, at least one edge hears more than one broad-
casting vertex. If this edge lies along a diametrical path of T1, then σ(f1) ≥⌈
diam(T1)+1

2

⌉
by Proposition 12. If no edge along the diametrical path is covered

by multiple broadcasts, then some vertex off the diametrical path is broadcast-

ing. By part 2 of Proposition 6, we again have that σ(f1) ≥
⌈
diam(T1)

2

⌉
+ 1 ≥⌈

diam(T1)+1
2

⌉
.

Since T − UE
f has at least two components, for some i ̸= 1 there exist y ∈

V (Ti) and x ∈ V (T1) such that xy ∈ E(T ). If
⌈
diam(T1)+1

2

⌉
> rad(T1), then

d(c, x) ≤ rad(T1) < σ(f1) for any central vertex c of T1. In the case where
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⌈
diam(T1)+1

2

⌉
= rad(T1), such as illustrated in Figure 6, diam(T1) is odd, and so

we may choose a central vertex c such that d(c, x) < rad(T1). Let g1 be the
broadcast on T defined by

g1(v) =


f(v) if v ∈ V (T ) \V (T1),
0 if v ∈ V (T1) \ {c},
σ(f1) if v = c.

Observe that V (T1) ⊆ Ng1 [c] and, by choice of c, the vertex y hears g1 from c.

T1

Ti
2 2

c yx

Figure 6. A component T1 with σ(f1) = rad(T1) = 4. A broadcast of strength 4 from c
will cover the edge xy joining T1 to Ti.

Let G2 be the component of T − UE
g1 that contains T1. As y hears g1 from

a vertex in T1, G2 must also contain the component of T − UE
f containing y. It

follows that |UE
g1 | < |UE

f | and that T − UE
g1 has fewer components than T − UE

f .

Let h2 be the restriction of g1 to G2. Note that h2 covers all edges of G2,
and all other components of T − UE

g1 are trees Ti. In particular, each component

of T − UE
g1 contains at least two vertices of V +

g1 . Since σ(g1) = σ(f) < ibn(T ),

g1 is not bn-independent, and so there exists at least one component of T − UE
g1

containing an edge that hears two broadcasting vertices. Assume without loss of
generality that G2 contains such an edge. Repeating the process, we again have

that σ(h2) ≥
⌈
diam(G2)+1

2

⌉
.

Because T is finite, we may apply this recursive procedure during which
the number of uncovered edges strictly decreases until we eventually obtain a
broadcast gℓ on T such that UE

gℓ
= ∅. By Corollary 11, σ(gℓ) = σ(f) = rad(T ), a

contradiction.

4.2. Spanning trees

Our aim in this subsection is to show that the lower bn-independent and lower h-
independent domination numbers of a graph G are given by the minimum of these
parameters, respectively, among all spanning trees of G. We begin by proving a
result that is used frequently in the rest of this section.
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Proposition 14. Let f be a dominating broadcast on a connected graph G. If
G − UE

f is connected, then σ(f) ≥ rad(G). If, in addition, an edge of G hears
a broadcast from more than one vertex, then for any vertex p of G, there ex-
ists a dominating broadcast gp on G such that σ(gp) = σ(f), |V +

gp | = 1 and gp
overdominates p.

Proof. Suppose f is a dominating broadcast of G such that H0 = G − UE
f

is connected. If |V +
f | = 1, then σ(f) ≥ rad(G), so assume that |V +

f | ≥ 2.
Let p be an arbitrarily chosen vertex of G. Our goal is to define a sequence
of equal-cost dominating broadcasts f0 = f, f1, f2, . . . , fk = gp on G such that
|V +

f1
| > |V +

f2
| > · · · > |V +

fk
| = 1. By careful construction of broadcasts, we will

ensure that if an edge of G hears f from more than one broadcasting vertex, then
some broadcast fi in the sequence overdominates p. Furthermore, we will show
that if p is overdominated in fi, then p is overdominated in fj for all i ≤ j ≤ k,
such that the resulting radial broadcast fk overdominates p.

Since f is dominating, there exists a vertex w0 ∈ V +
f such that p ∈ Nf [w0].

Since H0 is connected and |V +
f | ≥ 2, there exists a vertex u0 ∈ V +

f such that
Nf [u0] ∩ Nf [w0] ̸= ∅. Then d(u0, w0) ≤ f(u0) + f(w0). Let Pu0w0 be a u0 − w0

geodesic in H0. If an edge hears f from both u0 and w0, then Pu0w0 contains
such an edge, in which case d(u0, w0) < f(u0) + f(w0).

Let w1 be the vertex on Pu0w0 at distance f(w0) from u0 (and hence distance
at most f(u0) from w0). Observe that if d(u0, w0) < f(u0) + f(w0), then w1 is
at distance at most f(u0)− 1 from w0. Define the broadcast f1 by

f1(v) =


f(v) if v ∈ V (G) \ {u0, w0, w1},
0 if v ∈ {u0, w0},
f(u0) + f(w0) if v = w1.

Clearly, σ(f1) = σ(f) and |V +
f1
| = |V +

f | − 1. Since f is dominating, to prove that
f1 is dominating, it suffices to show that each vertex in Nf [u0]∪Nf [w0] hears f1.
For any v ∈ Nf [u0],

d(v, w1) ≤ d(v, u0) + d(u0, w1) ≤ f(u0) + f(w0) = f1(w1),

hence v hears f1 from w1. Similarly, any vertex in Nf [w0] hears w1. In particular,
p hears w1, and if an edge hears f from both u0 and w0, then w1 overdominates
p (because d(u0, w0) < f(u0) + f(w0) and w1 is at distance at most f(u0) − 1
from w0).

Let H1 = G−UE
f1
. Note that UE

f1
⊆ UE

f and that H0 is a spanning subgraph
of H1. Thus H1 is connected. Moreover, by the definition of f1, regardless of
whether an edge hears f from both u0 and w0,

• if w0 overdominates p, then w1 overdominates p, and
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• if an edge e of H0 hears f from two (or more) vertices, at least one of which
belongs to V +

f \ {u0, w0}, then e hears f1 from two vertices.

For i ≥ 1, if |V +
fi
| ≥ 2, we repeat the above procedure. Since Hi is connected,

there exists a vertex ui ∈ V +
f1

such that Nf [ui] ∩ Nf [wi] ̸= ∅. As in the case of
f1, we define a dominating broadcast fi by

fi(v) =


fi−1(v) if v ∈ V (G) \ {ui−1, wi−1, wi},
0 if v ∈ {ui−1, wi−1},
fi−1(ui−1) + fi−1(wi−1) if v = wi.

Let Hi = G−UE
fi
. Then Hi is connected, σ(fi) = σ(fi−1), |V +

fi
| = |V +

fi−1
|− 1, the

vertex p hears wi, and if an edge hears fi−1 from both ui−1 and wi−1, then, as in
the case of w1, wi overdominates p. Moreover,

• if wi−1 overdominates p, then wi overdominates p, and

• if an edge e of Hi−1 hears fi−1 from two (or more) vertices, at least one of
which belongs to V +

fi−1
\ {ui−1, wi−1}, then e hears fi from two vertices.

Since G is finite, there exists an integer k such that V +
k = {wk}. Since fk

is dominating, σ(fk) = fk(wk) ≥ rad(G). Since σ(f) = σ(fk), σ(f) ≥ rad(G),
which proves the first part of the proposition. Furthermore, if an edge of G hears
f from more than one broadcasting vertex, then the above procedure ensures
that a ui −wi geodesic Puiwi , for some i = 0, 1, . . . , k− 1, contains such an edge,
and that wk overdominates p. This proves the second part of the proposition.

Let G be an arbitrary connected graph and v ∈ V (G). A spanning tree T of G
is distance preserving from v if dT (u, v) = dG(u, v) for each u ∈ V (G). As shown
in [3, page 75], any connected graph G has a spanning subtree that is distance
preserving from a chosen vertex v. We use this fact in the proof of Theorem 15,
in which we show that the lower boundary independence number of an arbitrary
connected graph G equals the minimum lower boundary independence number
among those of its spanning trees.

Theorem 15. For any connected graph G,

ibn(G) = min{ibn(T ) : T is a spanning tree of G}.

Proof. Suppose there exists a spanning tree T of G such that ibn(T ) < ibn(G),
and let f ′ be an ibn-broadcast on T . Then σ(f ′) < ibn(G) ≤ rad(G). Let f
be the corresponding broadcast on G. Since T is a spanning tree of G, f is a
dominating broadcast onG. If |V +

f ′ | = 1, then σ(f ′) ≥ rad(T ) ≥ rad(G) ≥ ibn(G),

a contradiction. Hence we may assume that |V +
f ′ | = |V +

f | ≥ 2.

Suppose f is bn-independent on G and consider any v ∈ V +
f = V +

f ′ . Since
f ′ is maximal bn-independent on T , Proposition 2(ii) implies that there exist
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a vertex w ∈ V +
f ′ and a vertex x ∈ Bf ′(v) ∩ Bf ′(w). Observe that dT (v, w) =

f ′(v) + f ′(w) = f(v) + f(w). If dG(v, w) < dT (v, w), then an edge incident with
x hears f from both v and w, contradicting f being bn-independent. Therefore
x ∈ Bf (v) ∩ Bf (w). Again by Proposition 2, f is maximal bn-independent. But
then ibn(G) ≤ σ(f) = σ(f ′) < ibn(G), a contradiction. We deduce that f is not
bn-independent on G.

Thus some edge of G is covered by two or more vertices in V +
f . Moreover,

since σ(f) < ibn(G) ≤ rad(G), Proposition 14 implies that G − UE
f is discon-

nected. Let H1 be a component of G − UE
f containing an edge covered by two

or more vertices in V +
f and let h1 be the restriction of f to H1. Since G − UE

f

is disconnected, there exists a vertex x1 of H1 that is adjacent to a vertex y1 of
G −H1. By Proposition 14, there exists a dominating broadcast g1 on H1 such
that σ(g1) = σ(h1), V

+
g1 = {b1} for some b1 ∈ V (H1), and b1 covers the edge x1y1.

Define a new broadcast f1 on G by

f1(x) =


f(x) if x ∈ V (G) \ V (H1),
0 if x ∈ V (H1) \ {b1},
σ(g1) if x = b1.

Then f1 is dominating, σ(f1) = σ(f), and G − UE
f1

has fewer components

than G − UE
f . Note that f1 is not bn-independent on G, otherwise we obtain a

contradiction as in the case of f . By Proposition 14, we may repeat the process
until we obtain a dominating broadcast fk such that σ(fk) = σ(f) and G−UE

fk
is

connected. But then σ(fk) = σ(f ′) ≥ rad(G) (Proposition 14), a contradiction.
It remains to show that there exists a tree T spanning G such that ibn(T ) =

ibn(G). Let f be an ibn-broadcast on G and suppose V +
f = {v1, . . . , vk}. For

i = 1, . . . , k, consider the subgraph Gi of G induced by Nf [vi]. Let Ti be a
spanning subtree of Gi that is distance preserving from vi. Then the restriction
of f to Ti, denoted by fi, covers all edges of Ti. Let H be the subgraph of G
induced by

⋃k
i=1E(Ti).

Suppose H contains a cycle C. By construction, the edges of C are covered
by a set of broadcasting vertices VC ⊆ V +

f such that |VC | ≥ 2. Observe that
each vi ∈ VC covers an even number of edges on C. In particular, there exist
vi, vj ∈ VC such that Bf (vi) ∩ Bf (vj) contains a vertex b ∈ V (C). Let a be the
vertex on C adjacent to b in Ti and let H1 = H − ab. (See Figure 7.) Since
Bf (vi) ∩ C contains at least two vertices, there exists b′ ∈ V (Bf (vi) ∩ C) \ {b}
lying on the boundary of another broadcasting vertex in H1. The same holds for
vj . Thus, f is maximal bn-independent on H1.

If H1 contains a cycle, repeat the process, successively removing edges from
cycles until the resulting graph Hr is acyclic. If Hr is connected, let T = Hr.
Otherwise, since G is connected, we may add edges of G − Hr to Hr joining
components of Hr without creating cycles until we obtain a tree T spanning G.
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2
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b b

b′

2

1

1

aa

b′

Figure 7. Two cycles whose edges are covered by multiple broadcasting vertices. We may
always remove an edge ab from such a cycle without violating the maximal boundary
independence condition.

Since f is maximal bn-independent on Hr, the construction ensures that f
is a maximal bn-independent broadcast on T , as Bf (v) \PBf (v) ̸= ∅ in Hr for
each v ∈ V +

f . Hence ibn(T ) ≤ σ(f) = ibn(G). But we have already shown that
ibn(G) ≤ ibn(T

′) for any spanning tree T ′ of G. Consequently, ibn(G) = ibn(T ) =
min{ibn(T ′) : T ′ is a spanning tree of G}.

To prove a result similar to Theorem 15 for h-independent broadcasts, we
now define two graphs and a digraph associated with a graph G and a broadcast
f on G.

• The neighbourhood graph Nf (G) has V +
f as its vertex set, and two vertices

u, v ∈ V +
f are adjacent in Nf (G) if and only if Nf [u] ∩Nf [v] ̸= ∅.

• The certification digraph
−→
C f (G) has as its vertex set the set V +

f , and (v, u)

is an arc of
−→
C f (G) if and only if v → u. Note that if (v, u) is an arc of

−→
C f (G), then (u, v) may or may not be an arc as well. We say that (v, u) is a
double arc if (u, v) is also an arc, otherwise we say that (v, u) is a single arc.

Note that if (v, u) is an arc of
−→
C f (G), then (v, u) is a double arc if and only

if f(v) = f(u).

As is standard terminology, the underlying graph of
−→
C f (G) (or of a subgraph

−→
C′

f (G) of
−→
C f (G)) is the graph obtained by replacing arcs of

−→
C f (G) (or

−→
C′

f (G))

by edges and identifying double edges; the underlying graph of
−→
C f (G) shown in

Figure 8 is a triangle. Note that the underlying graph of
−→
C f (G) need not contain

all edges of Nf (G). For example, let G be the graph depicted in Figure 3, and
let g be the broadcast on G defined by g(v) = 2 = g(x) and g(y) = 0 otherwise.
Then Ng(G) = K2, but neither broadcasting vertex certifies the other, hence the

underlying graph of
−→
C g(G) is K2.
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3

22

G Nf (G) −→
C f (G)

u

v

w

Figure 8. A maximal h-independent broadcast f on a graph G along with the correspond-
ing neighbourhood graph and certification digraph. Observe that v is certified by u and
w, and u and w certify each other.

Proposition 16. If f is a maximal h-independent broadcast on G such that
|V +

f | ≥ 2, then each vertex u ∈ V +
f is adjacent, in Nf (G), to a vertex v ∈ V +

f

such that f(v) ≤ f(u).

Proof. Let u ∈ V +
f . By Proposition 3, since f is maximal h-independent, there

exists v ∈ V +
f such that v → u. By Observation 4, f(v) ≤ f(u). Moreover, u and

v are adjacent in Nf (G).

Proposition 17. Let f be an h-independent broadcast on G such that |V +
f | ≥ 2.

Then f is maximal h-independent if and only if f is dominating and each vertex

of
−→
C f (G) has positive in-degree.

Proof. If v has in-degree 0 for some v ∈
−→
C f (G), by definition of

−→
C f (G), no

vertex on the f -boundary of v is adjacent to a vertex in V +
f \ {v}. By part (ii)

of Proposition 3, f is not maximal.

Conversely, if f is dominating and every vertex of
−→
C f (G) has positive in-

degree, then f is maximal by part (ii) of Proposition 3.

Proposition 18. Let f be a maximal h-independent broadcast on G such that

|V +
f | ≥ 2. Suppose C is a cycle in the underlying graph of

−→
C f (G). Then the

subgraph of
−→
C f (G) with arcs corresponding to E(C) contains a directed cycle of

length at least 3 if and only if every edge of C corresponds to a double arc.

Proof. Suppose the subgraph of
−→
C f (G) corresponding to C contains a directed

cycle. Label the vertices of C as v1, v2, . . . , vk, where k ≥ 3, such that vi → vi+1

for all 1 ≤ i ≤ k − 1 and vk → v1. By Observation 4, f(vi) ≤ f(vi+1) for all
1 ≤ i ≤ k − 1 and f(vk) ≤ f(v1).

Without loss of generality, suppose to the contrary that v1 → v2 but v2 ̸→ v1.
(See Figure 9.) Since (v1, v2) is a single arc if and only if f(v1) < f(v2), we have
that
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f(v2) > f(v1) ≥ f(vk) ≥ f(vk−1) ≥ · · · ≥ f(v2),

which is impossible. The converse is obvious.

v1

v3

v2

v4

Figure 9. An example of the situation considered in Proposition 18. Since (v1, v2) is a
single arc, we have that f(v1) < f(v2), contradicting f(v2) = f(v3) = f(v4) = f(v1)
along the double arcs.

Corollary 19. Let f be a maximal h-independent broadcast on G such that

|V +
f | ≥ 2, and suppose C is a cycle in the underlying graph of

−→
C f (G). If C

contains an edge e that does not corresponds to a double arc in
−→
C f (G), then C

contains an edge e′ corresponding to a single arc such that e and e′ are oriented

in opposite directions in the subgraph of
−→
C f (G) with arcs corresponding to the

edges of C.

Proof. Suppose not. Then the vertices of C may be labelled v1, v2, . . . , vk such
that e correspond to the single arc (vk, v1), and for all 1 ≤ i ≤ k − 1, vi certifies

vi+1. But then the subgraph of
−→
C f (G) contains a directed cycle v1 → v2 → · · · →

vk → v1, contradicting Proposition 18.

As mentioned before, any graph has a spanning subtree that is distance
preserving from a chosen vertex v. In particular, by choosing v to be a central
vertex of the graph G, we see that G has a spanning subtree T such that rad(T ) =
rad(G). We use this fact in the proof of Theorem 20.

Theorem 20. For any connected graph G,

ih(G) = min{ih(T ) : T is a spanning tree of G}.

Proof. Suppose there exists a tree T spanning G such that ih(T ) < ih(G), and
let f ′ be an ih-broadcast on T . Then σ(f ′) < ih(G) ≤ rad(G). Let f be the
corresponding broadcast on G. Since T is a spanning tree of G, f is a dominating
broadcast on G. Suppose f is h-independent on G. Then f is maximal h-
independent on G because f ′ is maximal h-independent on T – the same vertex
that certifies v ∈ V +

f ′ in T also certifies v ∈ V +
f in G. But then ih(G) ≤ σ(f) =
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σ(f ′) = ih(T ) < ih(G), a contradiction. We deduce that f is not h-independent
on G. Since f is dominating but not h-independent on G, there exist vertices
u, v ∈ V +

f such that dG(u, v) ≤ f(v). Thus some edge of G is covered by two

or more vertices in V +
f . Moreover, since σ(f) < ih(G) ≤ rad(G), Proposition 14

implies that G − UE
f is disconnected. Proceed as in the proof of Theorem 15

to obtain a dominating broadcast fk on G such that σ(fk) = σ(f ′) ≥ rad(G), a
contradiction.

To show there exists a spanning tree T of G such that ih(T ) = ih(G), let f be
an ih-broadcast on G and let G0 = G−UE

f . If |V +
f | = 1, then the minimality of f

implies that V +
f = {c}, where c is a central vertex of G, and f(c) = rad(G). We

may then choose T to be a spanning subtree of G that is distance preserving from
c. Therefore we assume that |V +

f | ≥ 2. By Proposition 3(ii), for each v ∈ V +
f

there exists u ∈ V +
f such that u → v. Let Pu→v denote an arbitrarily chosen

u− v geodesic in G0, which exists because every edge on a shortest u− v-path is
covered by f .

We aim construct T such that it contains at least one geodesic Pu→v for every
v ∈ V +

f , so that the restriction of f to T , denoted fT , is a dominating broadcast
on T . Then Proposition 3(ii) will imply that fT is a maximal h-independent
broadcast on T such that σ(f) = σ(fT ).

Consider the certification digraph
−→
C f (G0) of G0, and letH0 be its underlying

graph. Suppose C0 is a cycle in H0. The following two cases are illustrated in
Figure 10.

x y x y

Figure 10. The two cases considered. In either case, both x and y have positive in-degree

in
−→
H1.

If C0 corresponds to a directed cycle in
−→
C f (G0), then each of its arcs cor-

responds to a double arc by Proposition 18. Let xy be an arbitrary edge of C0

and let
−→
H1 be the subgraph of

−→
C f (G0) obtained by deleting the arcs (x, y) and

(y, x).

If C0 does not correspond to a directed cycle, then by Corollary 19, there
exist two single arcs (x, y) and (x′, y′) oriented in opposite directions along the
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subgraph of
−→
C f (G0) corresponding to C0. We may select (x, y) and (x′, y′) such

that either y = y′ or all edges between y and y′ on C0 correspond to double

arcs, so that y and y′ each has in-degree at least 2 in
−→
C f (G0). Let

−→
H1 be the

subgraph obtained by deleting (x, y). By Proposition 17, every vertex of
−→
C f (G0)

has positive in-degree, hence x is certified by w for some w ∈ V +
f \ {x, y} (which

may or may not lie on C0.)

Repeat the process: at each step i, if the underlying graph Hi of
−→
H i contains

a cycle Ci, delete corresponding arcs as described for C0. Eventually, we obtain

a spanning subgraph
−→
Hk of

−→
C f (G0) such that its underlying graph Hk is acyclic.

Construct T as follows. For each arc (u, v) of
−→
Hk, let Pu→v be a u−v geodesic

in G, where only one such path is chosen if (u, v) is a double arc. Since Hk is
acyclic, so is the spanning subgraph T0 of G obtained by removing all edges of G
not lying on one of the chosen paths.

By the construction of
−→
Hk, Hk and T0, if a component of T0 does not contain

a vertex in V +
f , then this component consists of an isolated vertex. Denote the

restriction of f to T0 by fT0 . Suppose that T0 contains at least two components
dominated by fT0 . If there exists an edge a0b0 ∈ E(G) joining these two compo-
nents, let T1 = T0 ∪ {a0b0} and let fT1 denote the restriction of f to T1. Repeat
the process. At each step i, we construct a spanning forest Ti of G such that
Ti = Ti−1∪{ai−1bi−1} for some edge ai−1bi−1 joining two components dominated
by fTi−1 .

3

2

v1

u12

u11

v2

Figure 11. Isolated vertices are joined by geodesics to broadcasting vertices in Tk.

Eventually we obtain a spanning subgraph Tk of G consisting of a tree dom-
inated by fTk

, and a set of undominated isolated vertices S. If S = ∅, let
T = Tk. Otherwise, let v1 ∈ V +

f be a vertex of Tk that broadcasts to ver-
tices u11, u12, . . . , u1s ∈ S. Join each u1i to v1 by a u1i − v1 geodesic P1i to form
the graph F1 in which each u1i hears v1. See Figure 11. This can be done with-
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out creating cycles: suppose the subgraph induced by P1i ∪ P1j contains a cycle
C = (x1, x2, . . . , xr = ys, ys−1, . . . , y1 = x1). Since P1i and P1j are geodesics,
r = s, and the deletion of the edge ys−1ys, assuming that this is an edge of C
farthest from v1, does not result in some u1ℓ becoming undominated by v1. Let
S1 = S \ V (F1).

Repeat this procedure with S1 and a vertex v2 ∈ V +
f of Tk that broadcasts

to vertices in S1, etc., until no undominated vertices in S remain. Let T be the
resulting spanning tree of G.

Let fT be the restriction of f to T . Note that |V +
fT
| = |V +

f | and fT (v) = f(v)
for each v ∈ V (G). Since f is h-independent and dominating, so is fT . Thus,

since each vertex of
−→
Hk has positive in-degree, Proposition 17 implies that fT is

maximal h-independent. Therefore ih(T ) ≤ σ(fT ) = σ(f) = ih(G). But we have
already shown in the first part of the proof that ih(T ) ≥ ih(G). Consequently,
ih(G) = ih(T ) = min{ih(T ′) : T ′ is a spanning tree of G}.

If H is a disconnected spanning subgraph of a connected graph G, then it
is possible that ibn(H) < ibn(G). The same is true for ih(H) and ih(G). For
example, since ih(P3) = ibn(P3) = 1, ih(2P3) = ibn(2P3) = 2, but ih(P6) =
ibn(P6) = 3. The situation is different for connected spanning subgraphs.

Corollary 21. If H is a connected spanning subgraph of a graph G, then ibn(H) ≥
ibn(G) and ih(H) ≥ ih(G).

Proof. If H is a connected spanning subgraph of G, then min{ih(T ) : T is a
spanning tree of H} ⊆ min{ih(T ) : T is a spanning tree of G}, and the result
follows from Theorem 20. Similarly, by Theorem 15, ibn(H) ≥ ibn(G).

4.3. Proof of Theorem 9

The proof of Theorem 9, the main result of the paper, now follows by combining
Theorems 13, 15 and 20.

Theorem 9. For any graph G, ibn(G) ≤ ih(G).

Proof. By Theorem 20, ih(G) = min{ih(T ) : T is a spanning tree of G}. Let
T0 be a spanning tree of G such that ih(T0) = ih(G). By Theorem 13, ih(T0) ≥
ibn(T0). Hence

ih(G) = min{ih(T ) : T is a spanning tree of G} = ih(T0) ≥ ibn(T0)

≥ min{ibn(T ) : T is a spanning tree of G} = ibn(G),

where the last identity follows from Theorem 15.
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5. The Ratio ih(G)/ibn(G)

In [11], Marchessault and Mynhardt asked whether the difference ih(G)− ibn(G)
may be arbitrarily large. A construction of such an infinite family of graphs is
presented in [10, Proposition 2.2.1]. Marchessault and Mynhardt also posed the
problem of bounding the ratio ih(G)/ibn(G) for general graphs, which we consider
in this section.

Recall that i ⋄ ibn and i ⋄ ih. The ratios
i(G)

ibn(G) and
i(G)
ih(G) , in general, may be

arbitrarily large: for example, i(Kn,n) = n whereas ibn(Kn,n) = ih(Kn,n) = 2 for

all n ≥ 2. In [11], Marchessault and Mynhardt found that ibn(G) ≤
⌈
4i(G)

3

⌉
and

asked whether the ratio ih(G)
ibn(G) may be similarly bounded.

In the previous section, we found that ih and ibn are comparable. In partic-
ular, since ibn(G) ≤ ih(G) for all G, ibn(G)

ih(G) ≤ 1. We now prove that ih(G)
ibn(G) ≤ 5

4
for all graphs G.

Proposition 22 [11]. If T ′ is a subtree of a tree T , then ibn(T
′) ≤ ibn(T ).

Recall that Pn denotes the path on n vertices. Since a tree T with diameter
d contains the path Pd+1 as a subtree, we may bound ibn(T ) below by the value
ibn(Pd+1), which was determined exactly by Neilson in [16].

Proposition 23 [16]. For any n ̸= 3, ibn(Pn) =
⌈
2n
5

⌉
.

The exception is P3, which admits a maximal bn-independent broadcast of
cost 1.

Theorem 24. For any graph G, 1 ≤ ih(G)/ibn(G) ≤ 5/4.

Proof. Since ibn(G) is equal to the sum of the costs of ibn-broadcasts on all
components of G, it suffices to consider graph with one component, so assume
G is connected. By Theorem 15, there exists a tree T spanning G such that
ibn(T ) = ibn(G).

Let d = diam(T ) and let D ∼= Pd+1 be a diametrical path of T . It follows

from Propositions 22 and 23 that ibn(T ) ≥
⌈
2(d+1)

5

⌉
≥ 2(d+1)

5 . Since T spans G,

rad(G) ≤ rad(T ). Finally, since ih(G) ≤ rad(G) for any connected graph G, we
have that

ih(G)

ibn(G)
=

ih(G)

ibn(T )
≤ 5 · rad(G)

2(d+ 1)
≤ 5 · rad(G)

4 · rad(T )
≤ 5 · rad(T )

4 · rad(T )
=

5

4
.

The lower bound follows from Theorem 9.
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6. Open problems

It is unknown whether there exists a graph G for which ih(G)
ibn(G) = 5

4 . As there

exist graphs with ibn(G) = 5 and ih(G) = 6 (see Figure 2), a sharp upper bound

for ih(G)
ibn(G) must lie between 6

5 and 5
4 .

Problem 1. Improve the bound ih(G)
ibn(G) ≤ 5

4 , or show it is best possible for an
infinite family of graphs.

Recall that γb(G) denotes the minimum cost of a dominating broadcast on
G. Neilson showed in [16] that γb(G) ≤ ibn(G) for all graphs G. Since ibn(G) ≤
ih(G) ≤ rad(G), we have that ibn(G) = ih(G) for all G such that γb(G) = rad(G),
known as radial graphs. Radial trees were characterized by Herke and Mynhardt
in [8].

Let f be an ibn-broadcast on a graph G. If |V +
f | = 1, or if V +

f = V 1
f , then

ih(G) = ibn(G) and f is an ih-broadcast on G. In particular, ibn(G) = ih(G)
for paths and cycles. Equality also holds for graphs G such that rad(G) ≤ 5,
if f is an ibn-broadcast with σ(f) ≤ 4, then G − UE

f consists of either a single
component (in which case σ(f) = rad(G)), or two components, each with two
broadcasts of strength 1. It would be of interest to further classify graphs for
which these parameters are equal.

Question 1. For which graphs G is ibn(G) = ih(G)?

Trees with exactly one branch vertex are known as generalized spiders. The
generalized spider S = S(n1, n2, . . . , nk) consists of a branch vertex b of degree
k, and k ≥ 3 paths or ‘legs’ L1, . . . , Lk, each with one endpoint at b, such that
ℓ(Li) = ni for all 1 ≤ i ≤ k. It was shown in [10] that generalized spiders satisfy
the equality in Question 6.2.

Theorem 25 [10]. Let S = S(n1, n2, . . . , nk) be a generalized spider. Then
ibn(S) = ih(S).

However, a closed formula to determine the exact values of these parameters
remains unknown.

Problem 2. Determine ibn(S) for all generalized spiders S.

The problem of determining γ(G) for a given graph G is known to be NP-
complete [6]. In [7], however, Heggernes and Lokshtanov showed that the mini-
mum broadcast domination problem is solvable in polynomial time for all graphs.

Problem 3. Study the complexity of determining ibn(G) and ih(G) for trees or
other graph classes.
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