DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

E.L.L Liu

Erica Liu

Tianjin University of Technology and Education

email: liulingling@tute.edu.cn

J. Wang

Jian Wang

Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024

email: wangjian01@tyut.edu.cn

Title:

The generalized Turán problem of two intersecting cliques

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-10-03 , Revised: 2024-04-15 , Accepted: 2024-04-15 , Available online: 2024-04-29 , https://doi.org/10.7151/dmgt.2544

Abstract:

For $s<r$, let $B_{r,s}$ be the graph consisting of two copies of $K_r$, which share exactly $s$ vertices. Denote by $ex(n, K_r, B_{r,s})$ the maximum number of copies of $K_r$ in a $B_{r,s}$-free graph on $n$ vertices. About fifty years ago, Erdős and Sós determined $ex(n,K_3,B_{3,1})$. Recently, Gowers and Janzer showed that $ex(n,K_r,B_{r,r-1})=n^{r-1-o(1)}$. It is a natural question to ask for $ex(n,K_r,B_{r,s})$ for general $r$ and $s$. In this paper, we mainly consider the problem for $s=1$. Utilizing Zykov's symmetrization, we determine the exact value of $ex(n,K_4, B_{4,1})$ for $n\geq 4$. For $r\geq 5$ and $n$ sufficiently large, by the Füredi's structure theorem we show that $ex(n,K_r,B_{r,1})=\mathcal{N}(K_{r-2},T_{r-2}(n-2))$, where $\mathcal{N} (K_{r-2},T_{r-2}(n-2))$ represents the number of copies of $K_{r-2}$ in the $(r-2)$-partite Turán graph on $n-2$ vertices.

Keywords:

generalized Turán number, Zykov's symmetrization, Füredi's structure theorem

References:

  1. N. Alon and C. Shikhelman, Many $T$ copies in $H$-free graphs, J. Combin. Theory Ser. B 121 (2016) 146–172.
    https://doi.org/10.1016/j.jctb.2016.03.004
  2. M. Deza, P. Erdős and P. Frankl, Intersection properties of systems of finite sets, Proc. Lond. Math. Soc. (3) 36 (1978) 369–384.
    https://doi.org/10.1112/plms/s3-36.2.369
  3. P. Erdős, Problems and results in graph theory and combinatorial analysis, in: Proc. 5th British Combin. Conf. (1975) 169–192.
  4. P. Frankl and Z. Füredi, Forbidding just one intersection, J. Combin. Theory Ser. A 39 (1985) 160–176.
    https://doi.org/10.1016/0097-3165(85)90035-4
  5. P. Frankl and N. Tokushige, Extremal Problems for Finite Sets, Stud. Math. Libr. 86 (American Mathematical Society, Providence, 2018).
    https://doi.org/10.1090/stml/086
  6. J. Fox, A new proof of the graph removal lemma, Ann. of Math. (2) 174 (2011) 561–579.
    https://doi.org/10.4007/annals.2011.174.1.17
  7. Z. Füredi, On finite set-systems whose every intersection is a kernel of a star, Discrete Math. 47 (1983) 129–132.
    https://doi.org/10.1016/0012-365X(83)90081-X
  8. D. Gerbner, Generalized Turán results for disjoint cliques, Discrete Math. 347(7) (2024) 114024.
    https://doi.org/10.1016/j.disc.2024.114024
  9. D. Gerbner and B. Patkós, Generalized Turán results for intersecting cliques, Discrete Math. 347(1) (2024) 113710.
    https://doi.org/10.1016/j.disc.2023.113710
  10. W.T. Gowers and B. Janzer, Generalizations of the Ruzsa-Szemerédi and rainbow Turán problems for cliques, Combin. Probab. Comput. 30 (2021) 591–608.
    https://doi.org/10.1017/S0963548320000589
  11. Z. Lv, E. Győri, Z. He, N. Salia, C. Tompkins, K. Varga and X. Zhu, Generalized Turán numbers for the edge blow-up of a graph, Discrete Math. 347(1) (2024) 113682.
    https://doi.org/10.1016/j.disc.2023.113682
  12. M. Mantel, Problem 28, Wiskundige Opgaven 10 (1907) 60–61.
  13. I.Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in: Combinatorics, Proc. Fifth Hungarian Colloq. Keszthely (1976), Colloq. Math. Soc. J. Bolyai 18, (North Holland, Amsterdam-New York, 1978) 939–945..
  14. P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452.
  15. X. Yuan and W. Yang, On generalized Turán number of two disjoint cliques, Graphs Combin. 38(4) (2022) #116.
    https://doi.org/10.1007/s00373-022-02518-7
  16. F. Zhang, Y. Chen, E. Győri and X. Zhu, Maximum cliques in a graph without disjoint given subgraph, Discrete Math. 347(4) (2024) 113863.
    https://doi.org/10.1016/j.disc.2023.113863
  17. X. Zhu, Y. Chen, D. Gerbner, E. Győri and H.H. Karim, The maximum number of triangles in $F_k$-free graphs, European J. Combin. 114 (2023) 103793.
    https://doi.org/10.1016/j.ejc.2023.103793
  18. A.A. Zykov, On some properties of linear complexes, Mat. Sb. (N.S.) 24(66) (1949) 163–188.

Close