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Abstract

For s < r, let Br,s be the graph consisting of two copies of Kr, which
share exactly s vertices. Denote by ex(n,Kr, Br,s) the maximum number
of copies of Kr in a Br,s-free graph on n vertices. About fifty years ago,
Erdős and Sós determined ex(n,K3, B3,1). Recently, Gowers and Janzer
showed that ex(n,Kr, Br,r−1) = nr−1−o(1). It is a natural question to ask
for ex(n,Kr, Br,s) for general r and s. In this paper, we mainly consider
the problem for s = 1. Utilizing Zykov’s symmetrization, we determine
the exact value of ex(n,K4, B4,1) for n ≥ 4. For r ≥ 5 and n sufficiently
large, by the Füredi’s structure theorem we show that ex(n,Kr, Br,1) =
N (Kr−2, Tr−2(n− 2)), where N (Kr−2, Tr−2(n− 2)) represents the number
of copies of Kr−2 in the (r − 2)-partite Turán graph on n− 2 vertices.
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1. Introduction

Let T be a graph and F be a family of graphs. We say that a graph G is F-free if
it does not contain any graph from F as a subgraph. Let ex(n, T,F) denote the
maximum possible number of copies of T in an F-free graph on n vertices. The
problem of determining ex(n, T,F) is often called the generalized Turán problem.
When T = K2, it reduces to the classical Turán number ex(n,F). For simplicity,
we often write ex(n, T, F ) for ex(n, T, {F}).

Let T be a graph on t vertices. The s-blow-up of T is the graph obtained by
replacing each vertex v of T by an independent set Wv of size s, and each edge uv
of T by a complete bipartite graph between the corresponding two independent
sets Wu and Wv. Alon and Shikhelman [1] showed that ex(n, T, F ) = Θ(nt) if
and only if for any positive integer s, F is not a subgraph of the s-blow-up of T .
Otherwise, there exists some ǫ(T, F ) > 0 such that ex(n, T, F ) ≤ nt−ǫ(T,F ).

For integers s < r, let Br,s be the graph consisting of two copies of Kr, which
share exactly s vertices. Erdős and Sós in [3] determined the maximum number
of hyperedges in a 3-uniform hypergraph without two hyperedges intersecting in
exactly one vertex. From their result, it is easy to deduce the following theorem.

Theorem 1 (Erdős and Sós [3]). For all n,

ex(n,K3, B3,1) =







n, n ≡ 0 (mod 4);
n− 1, n ≡ 1 (mod 4);
n− 2, n ≡ 2 or 3 (mod 4).

The celebrated Ruzsa-Szemerédi theorem [13] implies that ex(n,K3, B3,2) =
n2−o(1). Recently, Gowers and Janzer [10] proposed a natural generalization of
the Ruzsa-Szemerédi Theorem, and proved the following result.

Theorem 2 (Gowers and Janzer [10]). For each 2 ≤ s < r,

ex(n,Kr, {Br,s, Br,s+1, . . . , Br,r−1}) = ns−o(1).

For a graph G, let V (G) and E(G) be the vertex set and edge set of G,
respectively. The join of two graphs G1 and G2, denoted by G1 ∨G2, is defined
as V (G1 ∨G2) = V (G1) ∪ V (G2) and E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {xy : x ∈
V (G1), y ∈ V (G2)}. The r-partite Turán graph on n vertices, denoted by Tr(n),
is a complete r-partite graph where the sizes of each part differ by at most one.
Denote by N (T,G) the number of copies of T in G.

In this paper, by using Zykov’s symmetrization [18] we determine ex(n,K4,
B4,1) for n ≥ 4.
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Theorem 3. For 4 ≤ n ≤ 6, ex(n,K4, B4,1) =
(

n
4

)

. For n = 7, ex(n,K4, B4,1) =
(

6
4

)

. For 8 ≤ n ≤ 16, ex(n,K4, B4,1) = 4n− 15. For n ≥ 17,

ex(n,K4, B4,1) =

⌊

(n− 2)2

4

⌋

,

and K2 ∨ T2(n− 2) is the unique graph attaining the maximum number of copies

of K4.

Then, by using Füredi’s structure theorem [7], we determine ex(n,Kr, Br,1)
for r ≥ 5 and n sufficiently large.

Theorem 4. For r ≥ 5 and sufficiently large n,

ex(n,Kr, Br,1) = N (Kr−2, Tr−2(n− 2)),

and K2∨Tr−2(n−2) is the unique graph attaining the maximum number of copies

of Kr.

Note that Br,0 consists of two disjoint copies of Kr. We determine ex(n,K3,
B3,0) for n ≥ 3.

Theorem 5. For n ≤ 5, ex(n,K3, B3,0) =
(

n
3

)

. For 6 ≤ n ≤ 10, ex(n,K3, B3,0) =

3n− 8. For n ≥ 11, ex(n,K3, B3,0) =
⌊

(n−1)2

4

⌋

.

By applying Füredi’s structure theorem, we determine ex(n,Kr, Br,0) for
r ≥ 4 and n sufficiently large.

Theorem 6. For r ≥ 4 and sufficiently large n,

ex(n,Kr, Br,0) = N (Kr−1, Tr−1(n− 1)),

and K1∨Tr−1(n−1) is the unique graph attaining the maximum number of copies

of Kr.

Let r, s be positive integers with s < r. An integer vector (a1, a2, . . . , at) is
called a partition of r if a1 ≥ a2 ≥ · · · ≥ at > 0 and

∑t
i=1 ai = r. Let P = (a1, a2,

. . . , at) be a partition of r. If
∑

i∈I ai 6= s holds for every I ⊂ {1, 2, . . . , t}, then
we call P an s-sum-free partition of r. Denote by βr,s the maximum length of an
s-sum-free partition of r.

Theorem 7. For any r > s ≥ 2, if r ≥ 2s+ 1,

ex(n,Kr, Br,s) = Θ
(

nr−s−1
)

;

if r ≤ 2s, then there exist positive reals c1 and c2 such that

c1n
βr,s ≤ ex(n,Kr, Br,s) ≤ c2n

s.
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It seems hard to determine the exact value of βr,s for all r and s. The
following proposition gives some bounds on βr,s and exact values of βr,s for s ≤ 4
and when r is even, s is odd.

Proposition 8. (i) For 6 ≤ s+ 1 ≤ r ≤ 2s, r − s ≤ βr,s ≤ r/2.

(ii)

βr,1 =
⌊r

2

⌋

, βr,2 = 1 +

⌊

r − 1

3

⌋

.

βr,3 =

{

max
{

2 +
⌊

r−2
4

⌋

, r/2
}

, r is even;

max
{

2 +
⌊

r−2
4

⌋

, 1 + r−5
2

}

, r is odd.

βr,4 = max

{

3 +

⌊

r − 3

5

⌋

, 1 +

⌊

r − 2

3

⌋}

.

(iii) Suppose that r is even, s is odd and 6 ≤ s+ 1 ≤ r ≤ 2s, then βr,s = r/2.

Utilizing the graph removal lemma, we establish an upper bound on ex(n,K4,
B4,2).

Theorem 9. For sufficiently large n,

n2 − 25

12
≤ ex(n,K4, B4,2) ≤

n2

9
+ o(n2).

We should mention that several papers considered related problems after
the first version of this paper appeared on the arxiv. Gerbner and Patkós
[9] determined ex(n,Kk, Br,0) and ex(n,Kk, Br,1) for all values of k, r if n is
large enough. Zhang, Chen, Győri and Zhu [16] determined the exact value of
ex(n,Kr, (k+1)Kr) for all k, r if n is large enough, where (k+1)Kr consists of k+1
disjoint copies of Kr. Some more related results can be found in [8, 11, 15, 17].

The rest of this paper is organized as follows. In Section 2, we prove Theorem
3 and Theorem 5. In Section 3, we prove Theorems 4 and 6. In Section 4, we
prove Theorem 7. In Section 5, we prove Theorem 9.

2. The Values of ex(n,K4, B4,1) and ex(n,K3, B3,0)

Zykov [18] introduced a useful tool to prove Turán’s theorem, which is called
Zykov’s symmetrization. In this section, by using Zykov’s symmetrization we
first determine ex(n,K4, {B4,1, H1,K5}), where H1 is a graph on seven vertices
as shown in Figure 1. Then, we show that a B4,1-free graph can be reduced to a
{B4,1, H1,K5}-free graph by deleting vertices and this happens without a loss of
too many K4’s, which leads to a proof of Theorem 3.



The Generalized Turán Problem of Two Intersecting Cliques 569

Figure 1. A graph H1 on seven vertices.

For S ⊂ V (G), let G[S] denote the subgraph of G induced by S, and let
G− S denote the subgraph of G induced by V (G) \ S.

Lemma 10. For n ≥ 2,

ex(n,K4, {B4,1, H1,K5}) =

⌊

(n− 2)2

4

⌋

,

and K2 ∨ T2(n− 2) is the unique graph attaining the maximum number of K4’s.

Proof. Assume that G is a {B4,1, H1,K5}-free graph with the maximum number
of copies of K4. We may further assume that each edge of G is contained in at
least one copy of K4, since otherwise we can delete it without decreasing the
number of copies of K4. For each e ∈ E(G), let K4(e) denote the set of copies of
K4 in G containing e. Let

E1 =
{

e ∈ E(G) : there exist K,K ′ ∈ K4(e) such that E(K) ∩ E(K ′) = {e}
}

and let G1 be the subgraph of G induced by E1.

Claim 11. E1 is a matching of G.

Proof. Suppose to the contrary that there exists a path of length two in G1,
say vuw. Since uv ∈ E1, there exist distinct vertices a1, b1, a2, b2 so that both
G[{u, v, a1, b1}] and G[{u, v, a2, b2}] are copies of K4. Since uw ∈ E1, there exist
distinct vertices c1, d1, c2, d2 so that both G[{u,w, c1, d1}] and G[{u,w, c2, d2}]
are copies of K4.

Case 1. w ∈ {a1, b1, a2, b2} or v ∈ {c1, d1, c2, d2}. Since the two cases are
symmetric, we only consider the case w ∈ {a1, b1, a2, b2}. By symmetry, we
may assume that a1 = w. Now G[{u, v, w, b1}] and G[{u, v, a2, b2}] are both
copies of K4. Clearly, we have either v /∈ {c1, d1} or v /∈ {c2, d2}. Without
loss of generality, assume that v /∈ {c1, d1}. If {c1, d1} ∩ {a2, b2} = ∅, then
G[{u, v, w, a2, b2, c1, d1}] contains a copy of B4,1, which contradicts the assump-
tion that G is B4,1-free. If |{c1, d1} ∩ {a2, b2}| = 1, by symmetry we assume that
c1 = a2, then G[{u, v, w, b1, a2, b2, d1}] contains a copy of H1, a contradiction. If
{c1, d1} = {a2, b2}, then G[{u, v, w, a2, b2}] is a copy of K5, a contradiction.
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Case 2. w /∈ {a1, b1, a2, b2} and v /∈ {c1, d1, c2, d2}. For i, j ∈ {1, 2}, we
claim that |{ai, bi} ∩ {cj , dj}| = 1. If {ai, bi} ∩ {cj , dj} = ∅, then G[{u, v,
w, ai, bi, cj , dj}] contains B4,1 as a subgraph, a contradiction. If {ai, bi} = {cj , dj},
then G[{u, v, w, ai, bi, ci, di}] contains B4,1 as a subgraph, a contradiction. Hence
|{ai, bi} ∩ {cj , dj}| = 1. It follows that {a1, b1, a2, b2} = {c1, d1, c2, d2}. Then
G[{u, v, w, a1, b1, a2, b2}] contains H1 as a subgraph, a contradiction. Thus, the
claim holds.

Let G2 = G− V (G1). For two distinct vertices u, v ∈ V (G) with uv /∈ E(G),
define Cuv(G) to be the graph obtained by deleting edges incident to u and adding
edges in {uw : w ∈ N(v)}.

Claim 12. For two distinct vertices u, v ∈ V (G2) with uv /∈ E(G), Cuv(G) is a

{B4,1, H1,K5}-free graph.

Proof. Let G̃ = Cuv(G). Since uv /∈ E(G), clearly we have uv /∈ E(G̃). We first
claim that G̃ is K5-free. Otherwise, since G is K5-free, there is a vertex set K
containing u such that G̃[K] ∼= K5. Then v /∈ K since uv /∈ E(G̃). It follows that
K \ {u} ∪ {v} induces a copy of K5 in G, a contradiction.

a2

v

a3

c

u

b3

b2

Figure 2. A copy of B4,1 in G̃.

If G̃ contains a copy of B4,1, let S = {a1, a2, a3, b1, b2, b3, c} be a subset of
V (G̃) such that both G̃[{a1, a2, a3, c}] and G̃[{b1, b2, b3, c}] are copies of K4. If
u /∈ S, then G[S] is a copy of B4,1, a contradiction. If u ∈ S but v /∈ S, then
G[(S \{u})∪{v}] is a copy of B4,1, a contradiction. If u, v ∈ S, since uv /∈ E(G̃),
by symmetry we may assume that a1 = v and b1 = u. Since u is a “clone” of v in
G̃, we have vb2, vb3 ∈ E(G) (as shown in Figure 2). Then both G[{v, c, a2, a3}]
and G[{v, c, b2, b3}] are copies of K4 in G. It follows that vc is an edge in E1 in
G, which contradicts the assumption that v ∈ V (G)\V (G1). Thus G̃ is B4,1-free.

If G̃ contains a copy ofH1, let T = {h, i, j, k, l,m, n} be a subset of V (G̃) such
that G̃[{h, i, j, k}], G̃[{i, j, k,m}], G̃[{i, k, l,m}] and G̃[{j, k,m, n}] are all copies
of K4 as shown in Figure 3. Similarly, we have u, v ∈ T . Since uv /∈ E(G̃), by
symmetry we have to consider three cases: (i) h = u, n = v; (ii) h = u, m = v or
(iii) h = v, m = u. If h = u and n = v, then vi ∈ E(G) since ui ∈ E(G̃). It follows
that {i, j, k,m, v} induces a copy of K5 in G, which contradicts the assumption
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l m n

k
i j

h

Figure 3. A copy of H1 in G̃.

that G is K5-free. If h = u and m = v, then kv ∈ E1 since both G[{k, v, i, l}]
and G[{k, v, j, n}] are copies of K4, which contradicts the fact that v ∈ V (G2). If
h = v and m = u, then vl, vn ∈ E(G) since ul, un ∈ E(G̃). It follows that both
G[{k, v, i, l}] and G[{k, v, j, n}] are copies of K4, which contradicts the fact that
v ∈ V (G2). Hence G̃ is H1-free.

By Zykov symmetrization, we prove the following claim.

Claim 13. G2 is a complete r-partite graph with r ≤ 4.

Proof. Recall that G is a {B4,1, H1,K5}-free graph with the maximum number
of copies of K4 and each edge of G is contained in at least one copy of K4. We
define a binary relation R in V (G2) as follows: for any two vertices x, y ∈ V (G2),
xRy if and only if xy /∈ E(G). We shall show that R is an equivalence relation.
Since G is loop-free, it follows that R is reflexive. Since G is a undirected graph,
it follows that R is symmetric.

Now we show that R is transitive. Suppose to the contrary that there exist
x, y, z ∈ V (G2) such that xy, yz /∈ E(G2) but xz ∈ E(G2). For u, v ∈ V (G2),
let k4(u) be the number of copies of K4 in G containing u, and k4(u, v) be the
number of copies of K4 in G containing u and v.

Case 1. k4(y) < k4(x) or k4(y) < k4(z). Since the two cases are symmetric,
we only consider the case k4(y) < k4(x). Let G̃ = Cyx(G). By Claim 12, G̃ is
{B4,1, H1,K5}-free since G is {B4,1, H1,K5}-free. But now we have

N (K4, G̃) = N (K4, G)− k4(y) + k4(x) > N (K4, G),

which contradicts the assumption that G is a {B4,1, H1,K5}-free graph with the
maximum number of copies of K4.

Case 2. k4(y) ≥ k4(x) and k4(y) ≥ k4(z). Let G
∗ = Cxy(Czy(G)). By Claim

12, G∗ is {B4,1, H1,K5}-free. Since each edge in G is contained in at least one
copies of K4, it follows that

N (K4, G
∗) = N (K4, G)− (k4(x) + k4(z)− k4(x, z)) + 2k4(y)

≥ N (K4, G) + k4(x, z) > N (K4, G),
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which contradicts the assumption that G is a {B4,1, H1,K5}-free graph with the
maximum number of copies of K4. Thus, we conclude that xz /∈ E(G) and R
is transitive. Since R is an equivalence relation on V (G2) and G is K5-free, it
follows that G2 is a complete r-partite graph with r ≤ 4.

Claim 14. For any copy K of K4 in G and any uv ∈ E1, |V (K) ∩ {u, v}| 6= 1.

Proof. Suppose for contradiction that there exists {a, b, c, d, v} ⊂ V (G) such
that G[{a, b, c, d}] is isomorphic to K4 and bv is an edge in E1, as shown in
Figure 4.

a

d

b

c

v

Figure 4. An edge in E1 is attached to a copy of K4.

Since bv ∈ E1, there exist distinct vertices x1, y1, x2, y2 such that both
G[{b, v, x1, y1}] and G[{b, v, x2, y2}] are copies of K4 in G. Then either |{x1, y1}∩
{a, c, d}| ≤ 1 or |{x2, y2} ∩ {a, c, d}| ≤ 1 holds since x1, y1, x2, y2 are distinct. By
symmetry, we assume that |{x1, y1} ∩ {a, c, d}| ≤ 1. If {x1, y1} ∩ {a, c, d} = ∅,
then G[{b, v, x1, y1, a, c, d}] contains a copy of B4,1, a contradiction. If |{x1, y1}∩
{a, c, d}| = 1, without loss of generality, we assume that x1 = a. Since both
G[{a, b, x2, v}] and G[{a, b, c, d}] are copies of K4, it follows that ab ∈ E1, which
contradicts Claim 11. Thus, we conclude that |V (K) ∩ {u, v}| 6= 1 for any copy
K of K4 in G and any uv ∈ E1.

Now let K be a copy of K4 in G. Recall that E1 is a matching in G and G1 is
the graph induced by E1. If |V (K)∩V (G1)| = 1 or 3, then we will find an edge in
E1 attached to K, which contradicts Claim 14. Thus |V (K)∩V (G1)| ∈ {0, 2, 4}.
Moreover, if |V (K) ∩ V (G1)| = 2, let {x, y} = V (K) ∩ V (G1), then by Claim14
we have xy ∈ E1. Recall that K4(e) represents the set of copies of K4 in G
containing e for e ∈ E(G). Define

K0(G) = {K : K is a copy of K4 in G and V (K) ⊂ V (G1)};

K1(G) = {K : K is a copy of K4 in G and V (K) ⊂ V (G2)};

K2(G) = {K : K ∈ K4(e) for some e ∈ E1 and |V (K) ∩ V (G1)| = 2}.

Let |V (G1)| = n1, |V (G2)| = n− n1 = n2. Since E1 is a matching, it follows
that n1 is even. By Claim 14, for any K ∈ K0(G) we have E(K) ∩ E1 is a
matching of size 2. To derive an upper bound on |K0(G)|, we define a graph H
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with V (H) = E1 as follows. For any e1, e2 ∈ E1, e1e2 is an edge of H if and only
if there exists a copy of K4 containing both e1 and e2. Since G is K5-free, it is
easy to see that H is triangle-free. Moreover, each copy of K4 in G corresponds
to an edge in H. Thus, by Mantel’s Theorem [12] we have

|K0(G)| = e(H) ≤

⌊

|E1|
2

4

⌋

=

⌊

n2
1

16

⌋

.

We have shown that G2 is a complete r-partite graph with r ≤ 4 in Claim
13. If r ≤ 1, then K1(G) = K2(G) = ∅. Thus, we have

N (K4, G) = |K0(G)| ≤

⌊

n2
1

16

⌋

≤

⌊

n2

16

⌋

≤

⌊

(n− 2)2

4

⌋

,

where the equalities hold if and only if n = 4 and G is isomorphic to K4.
If r = 2, then K1(G) = ∅. If n1 = 0, then we have N (K4, G) = 0. Hence we

may assume that n1 ≥ 2. We claim that each edge in E(G2) is contained in at
most one copy of K4 in K2(G). Otherwise, by the definition of K2(G), there exists
an edge e ∈ E(G2) contained in two distinct copies of K4, which contradicts the
fact that e /∈ E1. Then

|K2(G)| ≤ e(G2) ≤

⌊

n2
2

4

⌋

.

Thus, we have

N (K4, G) = |K0(G)|+ |K2(G)| ≤

⌊

n2
1

16

⌋

+

⌊

n2
2

4

⌋

.

For even integer x with 2 ≤ x ≤ n, let

f(x) =

⌊

x2

16

⌋

+

⌊

(n− x)2

4

⌋

.

Then

f(x− 2) =

⌊

(x− 2)2

16

⌋

+

⌊

(n− x+ 2)2

4

⌋

≥

⌊

x2

16

⌋

−
x− 1

4
− 1 +

⌊

(n− x)2

4

⌋

+ n− x+ 1 ≥ f(x) + n−
5x− 1

4

and

f(x− 2) ≤

⌊

x2

16

⌋

−
x− 1

4
+ 1 +

⌊

(n− x)2

4

⌋

+ n− x+ 1 ≤ f(x) + n−
5x− 9

4
.
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Thus, f(x−2) ≥ f(x) for x ≤ 4n+1
5 and f(x−2) ≤ f(x) for x ≥ 4n+9

5 . Therefore,
for even n we have

N (K4, G) ≤ max{f(2), f(n)} = max

{⌊

(n− 2)2

4

⌋

,

⌊

n2

16

⌋}

≤

⌊

(n− 2)2

4

⌋

,

where the equality holds if and only if G is isomorphic to K2 ∨ T2(n − 2). For
odd n we have

N (K4, G) ≤ max{f(2), f(n−1)} = max

{⌊

(n−2)2

4

⌋

,

⌊

(n−1)2

16

⌋}

≤

⌊

(n−2)2

4

⌋

,

where the equality holds if and only if G is isomorphic to K2 ∨ T2(n− 2).
If r = 3, there exists a triangle xyz in G2. Since each edge in G is contained

in at least one copy of K4, by Claim 14 there exist ab, cd ∈ E1 such that both
G[{x, y, a, b}] and G[{y, z, c, d}] are copies of K4 in G. Since E1 is a matching,
we have either {a, b} = {c, d} or {a, b} ∩ {c, d} = ∅. If {a, b} = {c, d}, then
G[{x, y, z, a, b}] is a copy of K5, a contradiction. If {a, b} ∩ {c, d} = ∅, then
G[{x, y, z, a, b, c, d}] contains B4,1, a contradiction. Thus, we conclude that r 6= 3.

If r = 4, let V1, V2, V3, V4 be four vertex classes of G2. Since G is B4,1-
free, at least two of |Vi|’s equal one. Without loss of generality, we assume that
|V3| = |V4| = 1. Let V3 = {u} and V4 = {v}. Since uv /∈ E1, it follows that one
of |V1| and |V2| equal one. By symmetry let |V2| = 1. Then, we have

|K1(G)| = |V1| = n2 − 3.

Moreover, we claim that K2(G) = ∅. Otherwise, assume that there exists K ∈
K2(G) such that V (K) ∩ V (G2) = {x, y}. Since x, y also contained in some
K ′ ∈ K1(G), it follows that E(K) ∩ E(K ′) = {xy}, which contradicts the fact
that xy /∈ E1. Since 4 ≤ n2 ≤ n, we have

N (K4, G) = |K0(G)|+ |K1(G)| ≤

⌊

n2
1

16

⌋

+ n2 − 3

≤ max

{⌊

(n− 4)2

16

⌋

+ 1, n− 3

}

≤

⌊

(n− 2)2

4

⌋

,

in which the equality holds if and only if n = 4 and G ∼= K4 or n = 5 and
G ∼= K2 ∨ T2(3). Thus, the lemma holds.

Now we are in position to prove Theorem 3.

Proof of Theorem 3. For 4 ≤ n ≤ 6, Kn is B4,1-free. Then ex(n,K4, B4,1) =
(

n
4

)

.
Now we assume that n ≥ 7. Let G be a B4,1-free graph on n vertices. We

will show that G can be made {B4,1, H1,K5}-free by deleting vertices, and such
an operation will not lose too many copies of K4.
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Claim 15. There exists a subset V1 ⊂ V (G) such that G1 = G − V1 is K6-free

and N (K4, G1) ≥ N (K4, G)− 2.5|V1|.

Proof. Assume thatG containsK6 as a subgraph. SinceG isB4,1-free, noK4 can
intersect theK6 in 1, 2, 3 vertices. By deleting the 6 vertices ofK6 from G, we lose
(

6
4

)

= 15 copies of K4. Repeating this process, we arrive at a K6-free graph G1.
Let V1 be the set of deleted vertices. Clearly, N (K4, G1) ≥ N (K4, G)−2.5|V1|.

Claim 16. Let H2 be a graph on six vertices as shown in Figure 5. There exists

a subset V2 ⊂ V (G1) such that G2 = G1 − V2 is {H1, H2}-free and N (K4, G2) ≥
N (K4, G1)− 4|V2|.

b

a

c

e

f
d

Figure 5. A graph H2 on six vertices.

Proof. Assume that G1 contains H2 as a subgraph. Without loss of generality,
we further assume that A = {a, b, c, d, e, f} is a subset of V (G1) such that G1[A]
contains H2 (see Figure 5). We first claim that V (K) ⊂ A for each copy K
of K4 containing f . Otherwise, if |V (K) ∩ A| = 1, then K and G1[{c, d, e, f}]
are both copies of K4 that share exactly one vertex f , contradicting the fact
that G1 is B4,1-free. If |V (K) ∩ A| = 2, by symmetry we may assume that
V (K) ∩A = {e, f}. Then K and G1[{b, c, d, e}] are both copies of K4 that share
exactly one vertex e, a contradiction. If |V (K)∩A| = 3, by symmetry we assume
that V (K)∩A = {d, e, f}. Then K and G1[{a, b, c, e}] are both copies of K4 that
share exactly one vertex e, a contradiction. Thus, we conclude V (K) ⊂ A for
each copy K of K4 containing f . Since G1 is K6-free, f has at most 4 neighbours
within A. Now we delete f fromG1 to destroy a copy ofH2. By doing this, we lose
at most

(

4
3

)

= 4 copies of K4 since they are contained in A. We do it iteratively
until the resulting graph is H2-free. Let G

′
1 be the resulting graph and X1 be the

set of deleted vertices. Clearly, we have N (K4, G
′
1) ≥ N (K4, G1)− 4|X1|.

Now G′
1 is {B4,1, H2}-free. Assume that G′

1 contains H1 as a subgraph.
Let B = {h, i, j, k, l,m, n} be a subset of V (G′

1) such that G′
1[B] contains H1

(see Figure 3). It is easy to see that hm is not an edge in G′
1. Otherwise,

G′
1[{h, i, j, k,m}] is a copy of K5 and G′

1[{h, i, j, k,m, l}] contains a copy of H2,
a contradiction. Similarly, in and jl are not present in G′

1.
Now we claim that V (K) ⊂ B \ {m} for each copy K of K4 in G′

1 containing
h. Otherwise, we have one of the following cases.
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• If V (K) ∩B ⊂ {h, l, n}, then K and G′
1[{h, i, j, k}] form a copy of B4,1;

• if |V (K) ∩ {i, j, k}| = 1, then K and G′
1[{i, j, k,m}] form a copy of B4,1;

• if V (K) ∩ B = {h, i, j} or {h, i, k}, then K and G′
1[{j, k,m, n}] form a copy

of B4,1;

• if V (K) ∩B = {h, j, k}, then K and G′
1[{i, k, l,m}] form a copy of B4,1.

Since G′
1 is B4,1-free, each of these cases leads to a contradiction.

By deleting h from G′
1, we destroy a copy of H1 and lose at most 4 copies

of K4. We do it iteratively until the resulting graph is H1-free. Let G2 be
the resulting graph and X2 be the set of deleted vertices. Clearly, we have
N (K4, G2) ≥ N (K4, G

′
1)− 4|X2|.

Let V2 = X1∪X2. Clearly, G2 is {H1, H2}-free andN (K4, G2) ≥ N (K4, G1)−
4|V2|.

Claim 17. There exists a subset V3 ⊂ V (G2) such that G3 = G2 − V3 is K5-free

and N (K4, G3) ≥ N (K4, G2)− 4|V3|.

Proof. Since G2 is {B4,1, H2}-free, it is easy to see that each pair of copies
of K5 in G2 is vertex-disjoint. Let T be a copy of K5 in G2. We claim that
V (K) ⊂ V (T ) for each copy K of K4 in G2 with V (T )∩V (K) 6= ∅. Otherwise, if
|V (K)∩V (T )| ≤ 2, then it is easy to find a copy of B4,1 in G2, a contradiction. If
|V (K)∩V (T )| = 3, then we will find a copy ofH2 inG2, a contradiction. Thus, we
conclude that V (K) ⊂ V (T ) for each copy K of K4 in G2 with V (T )∩V (K) 6= ∅.
By deleting a vertex x ∈ V (T ) from G2, we lose 4 copies of K4. Repeating this
process, finally we arrive at a K5-free graph G3. Let V3 be the set of deleted
vertices. Clearly, we have G3 is K5-free and N (K4, G3) ≥ N (K4, G2)− 4|V3|.

Let x = |V1| and y = |V2 ∪ V3|. If n− x = 4, N (K4, G) ≤ 15⌊n6 ⌋+ 1. And if
n− x ≤ 3, N (K4, G) ≤ 15⌊n6 ⌋.

For n−x ≥ 5, we have n−x− y ≥ 4 since in Claim 16 and Claim 17 we only
delete one vertex per operation. Note that G3 is {B4,1, H1,K5}-free. By Lemma
10 we have

N (K4, G3) ≤

⌊

(n− x− y − 2)2

4

⌋

.

By Claims 16 and 17, we have

N (K4, G) ≤

⌊

(n− x− y − 2)2

4

⌋

+ 2.5x+ 4y =

⌊

(n− x− y − 2)2

4
+ 2.5x+ 4y

⌋

≤

⌊

(n− x− y − 2)2

4
+ 4(x+ y)

⌋
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Let z = x+y. Since f(z) = (n−z−2)2

4 +4z is a convex function and 0 ≤ z ≤ n−4,
it follows that

N (K4, G) ≤ max

{⌊

(n− 2)2

4

⌋

, 4n− 15

}

.

For n = 7, 15⌊n6 ⌋ =
(

6
4

)

≥ max
{⌊

(n−2)2

4

⌋

, 4n− 15
}

and
(

[6]
4

)

is B4,1-free.

Then ex(7,K4, B4,1) =
(

6
4

)

= 15.

For 8 ≤ n ≤ 16, 4n − 15 ≥ max
{⌊

(n−2)2

4

⌋

, 15⌊n6 ⌋+ 1
}

. K4 ∨ Kc
n−4 is a

B4,1-free graph with 4n − 15 copies of K4, where Kc
n−4 is an empty graph with

n− 4 vertices. Then ex(n,K4, B4,1) = 4n− 15 for 8 ≤ n ≤ 16.

For n ≥ 17,
⌊

(n−2)2

4

⌋

> max
{

4n− 15, 15⌊n6 ⌋+ 1
}

. K2 ∨ T2(n − 2) is a

B4,1-free graph with
⌊

(n−2)2

4

⌋

copies of K4. Then ex(n,K4, B4,1) =
⌊

(n−2)2

4

⌋

for

n ≥ 17. Moreover, by Lemma 10, the equality holds if and only if G is isomorphic
to K2 ∨ T2(n− 2). Thus, the theorem holds.

By a similar argument, we can determine ex(n,K3, B3,0).

Proof of Theorem 5. For n ≤ 5, Kn is B3,0-free. Then ex(n,K3, B3,0) =
(

n
3

)

for 3 ≤ n ≤ 5.
Let G be a B3,0-free graph on vertex set [n]. If G contains K5 as a subgraph,

let A be a subset of V (G) such that G[A] is a copy of K5. Since G is B3,0-
free, every copy of K3 is included in G[A]. Thus N (K3, G) =

(

5
3

)

= 10 ≤

min
{

3n− 8,
⌊

(n−1)2

4

⌋}

for n ≥ 6.

Now we assume that G is K5-free and n ≥ 6.

a

d

b

c

e

Figure 6. A graph H3 on five vertices.

Claim 18. There exists a subset V ′ ⊂ V (G) such that G′ = G−V ′ is {B3,0,K4}-
free and N (K3, G

′) ≥ N (K3, G)− 3|V ′|.

Proof. Let H3 be a graph on five vertices as shown in Figure 6. If G contains
H3 as subgraph, let A = {a, b, c, d, e} ⊂ V (G) and G[A] contains a copy of H3.
Since G is K5-free, V (K) ⊂ A for each copy K of K3 containing e and e has at
most 3 neighbours in {a, b, c, d}. So the number of copies of K3 containing e is
at most 3. Delete the vertex e from G and we lose at most 3 copies of K3. We
do it iteratively until the resulting graph G̃ is H3-free.
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If G̃ contains K4 as subgraph, let B = {v1, v2, v3, v4} ⊂ V (G̃) and G̃[B] is a
copy of K4. Since G̃ is {H3, B3,0}-free, V (K) ⊂ B for each copy K of K3 with
V (K) ∩ V (B) 6= ∅. Now we delete the vertex v1 from G̃ and we lose 3 copies of
K3. Repeating this process, we arrive at a K4-free graph G′.

Let V ′ be the set of vertices removed in the above two steps. Clearly,
N (K3, G

′) ≥ N (K3, G)− 3|V ′|.

Let |V (G′)| = n′. Then n′ ≥ 3 by Claim 18.

Claim 19. For n′ ≥ 3, N (K3, G
′) ≤

⌊

(n′−1)2

4

⌋

.

Proof. Let v be a vertex in G′ with the maximal degree and N ⊂ V (G′) be the
neighborhood of v. Since G′ is K4-free, G

′[N ] is K3-free.
If |N | ≤ 3, d(x) ≤ 3 for any x ∈ V (G′). For every x ∈ V (G′), the number of

copies of K3 containing x is at most 2. Thus N (K3, G
′) ≤

⌊

2n′

3

⌋

≤
⌊

(n′−1)2

4

⌋

for

n′ ≥ 4. For n′ = 3, N (K3, G
′) ≤ 1 ≤

⌊

(n′−1)2

4

⌋

. So we assume that |N | ≥ 4.

If there are three pairwise disjoint edges in G′[N ], every copy of K3 in G′

contains v. Thus N (K3, G
′) =

⌊

|N |2

4

⌋

≤
⌊

(n−1)2

4

⌋

.

If the matching number of G′[N ] is 2, let v1u1 and v2u2 be two disjoint
edges in G′[N ]. Every edge in G′[N ] intersects {v1, v2, u1, u2}. Since G′[N ] is
K3-free, there are at most |N | − 4 edges in {e ∈ E(G′) : |e ∩ {vi, ui}| = 1, |e ∩
(N \ {v1, v2, u1, u2})| = 1}, i = 1, 2. Moreover there are at most 4 edges in
G′[{v1, v2, u1, u2}]. Thus the number of edges in G′[N ] is at most 2(|N |−4)+4 =
2(|N | − 2). For each copy K of K3 in G′ with v /∈ V (K), N [K] ∩ {v1, u1} 6=
∅, N [K] ∩ {v2, u2} 6= ∅ and K contains a vertex u ∈ V (G′) \ N \ {v}. Since
G′[{v, v2, u2}] is a copy of K3, u has at most one neighbor among v1 and u1.
Analogously u has at most one neighbor among v2 and u2. Then for each u ∈
V (G′) \ N \ {v}, there is at most one triangle containing u and the number of
copies of K3 that does not contain v is at most n′ − |N | − 1. Thus,

N (K3, G
′) ≤ 2(|N | − 2) + (n′ − |N | − 1) = n′ + |N | − 5 ≤

⌊

(n′ − 1)2

4

⌋

.

If the matching number of G′[N ] is 1, G′[N ] is a star since G′[N ] is K3-free.
Let u be the center of G′[N ]. Since |N | ≥ 4, if K is a copy of K3 that does not
contain v, then u ∈ V (K). Note that d(v) ≥ d(u). The neighborhood of u is
N \ {u} ∪ {v} and there are no edges in G′[N \ {u}]. Then every copy of K3

contains v. Thus N (K3, G
′) ≤ |N − 1| ≤ n′ − 2 ≤

⌊

(n′−1)2

4

⌋

.

Let |V ′| = x. Combining Claim 18 and Claim 19, we have

N (K3, G) ≤ 3x+

⌊

(n− x− 1)2

4

⌋

=

⌊

3x+
(n− x− 1)2

4

⌋

.
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Since f(x) = 3x+ (n−x−1)2

4 is a convex function and 0 ≤ x ≤ n− 3,

N (K3, G) ≤ max

{⌊

(n− 1)2

4

⌋

, 3n− 8

}

.

When 6 ≤ n ≤ 10, 3n− 8 ≥
⌊

(n−1)2

4

⌋

. When n ≥ 11, 3n− 8 ≤
⌊

(n−1)2

4

⌋

.

Moreover, K1 ∨ Tr−1(n− 1) is a B3,0-free graph with
⌊

(n−1)2

4

⌋

copies of K3,

and K3 ∨Kc
n−3 is a B3,0-free graph with 3n− 8 copies of K3, where Kc

n−3 is an
empty graph with n− 3 vertices. Thus ex(n,K3, B3,0) = 3n− 8 for 6 ≤ n ≤ 10;

and ex(n,K3, B3,0) =
⌊

(n−1)2

4

⌋

for n ≥ 11.

3. The Values of ex(n,Kr, Br,1) and ex(n,Kr, Br,0)

By using Füredi’s structure theorem, Frankl and Füredi [4] determined the max-
imum number of hyperedges in an r-uniform hypergraph without two hyper-
edges sharing exactly s vertices for r ≥ 2s + 2. In this section, we determine
ex(n,Kr, Br,1) and ex(n,Kr, Br,0) by following a similar approach.

First, we recall a result due to Frankl and Füredi in the intersection closed
family (Lemma 5.5 in [4]). Let X be a finite set and 2X be the family of all
the subsets of X. We say that I ⊂ 2X is intersection closed if for any I, I ′ ∈ I,
I ∩ I ′ ∈ I. We say I ⊂ X is covered by I if there exists an I ′ ∈ I such that
I ⊆ I ′.

Theorem 20 (Frankl and Füredi [4]). Let r and s be positive integers with

r ≥ 2s + 3 and let F be an r-element set. Suppose that I ⊂ 2F \ {F} is an

intersection closed family such that |I| 6= s for any I ∈ I and all the (r − s− 2)-
element subsets of F are covered by I. Then there exists an (s+1)-element subset

A(F ) of F such that

{I : A(F ) ⊂ I ( F} ⊂ I.

We use [n] to denote the set {1, . . . , n} and use
(

[n]
r

)

to denote the collection

of all r-element subsets of [n]. Let F ⊂
(

[n]
r

)

be a hypergraph. We call F r-partite
if there exists a partition [n] = X1∪ · · · ∪Xr such that |F ∩Xi| = 1 for all F ∈ F
and i ∈ {1, 2, . . . , r}.

We adopt the statement of Füredi’s structure theorem given by Frankl and
Tokushige in [5]. For clarity purpose, we recall some definitions from [5]. Let
F ⊂

(

[n]
r

)

be an r-partite hypergraph with partition [n] = X1 ∪ · · · ∪Xr. For any
F ∈ F , define the restriction of F on F by

I(F,F) = {F ′ ∩ F : F ′ ∈ F \ {F}}.
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A set of p hyperedges F1, . . . , Fp in F is called a p-sunflower if Fi ∩ Fj = C for
every 1 ≤ i < j ≤ p and some set C. The set C is called center of the p-sunflower.

Füredi [7] proved the following fundamental result, which was conjectured
by Frankl. It roughly says that every r-uniform hypergraph F contains a large
r-partite subhypergraph F∗ satisfying that I(F,F∗) is isomorphic to I(F ′,F∗)
for any F, F ′ ∈ F∗.

Theorem 21 (Füredi [7]). For positive integers r and p, there exists a positive

constant c = c(r, p) such that every hypergraph F ⊂
(

[n]
r

)

contains an r-partite
subhypergraph F∗ with partition [n] = X1 ∪ · · · ∪Xr satisfying (i)–(iv).

(i) |F∗| ≥ c|F|.

(ii) For any F1, F2 ∈ F∗, I(F1,F
∗) is isomorphic to I(F2,F

∗).

(iii) For F ∈ F∗, I(F,F∗) is intersection closed.

(iv) For F ∈ F∗ and every I ∈ I(F,F∗), I is the center of a p-sunflower in F∗.

We need the following two results. The first one is due to Deza, Erdős and
Frankl [2].

Lemma 22 (Deza, Erdős and Frankl [2]). Suppose that {E1, . . . , Er+1} and

{F1, . . . , Fr+1} are both (r+1)-sunflowers in r-uniform hypergraphs with centers

C1 and C2, respectively. Then there exist i and j such that Ei ∩ Fj = C1 ∩ C2.

The second one is due to Zykov [18]. He showed that the Turán graph
maximizes the number of s-cliques in n-vertex Kt+1-free graphs for s ≤ t.

Theorem 23 (Zykov [18]). For s ≤ t,

ex(n,Ks,Kt+1) = N (Ks, Tt(n)),

and Tt(n) is the unique graph attaining the maximum number of copies of Ks.

Let F ⊂
(

[n]
r

)

be a hypergraph and x ∈ [n]. Define

NF (x) =

{

T ∈

(

[n] \ {x}

r − 1

)

: T ∪ {x} ∈ F

}

.

The degree of x in F , denoted by degF (x), is the cardinality of NF (x).
Now we are ready to prove Theorem 4.

Proof of Theorem 4. Let G be a Br,1-free graph on [n] with the maximum
number of copies of Kr. Since K2 ∨ Tr−2(n− 2) is Br,1-free, we may assume that
N (Kr, G) ≥ N (Kr−2, Tr−2(n− 2)).

Let

F =

{

F ∈

(

[n]

r

)

: G[F ] is a clique

}

.
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Clearly, |F1 ∩ F2| 6= 1 for any F1, F2 ∈ F since G is Br,1-free. Now we apply
Theorem 21 with p = r + 1 to F and obtain F1 = F∗ satisfying (i)–(iv). Then
apply Theorem 21 to F − F1 to obtain F2 = (F − F1)

∗, in the i-th step we
obtain Fi = (F − (F1 ∪ · · · ∪ Fi−1))

∗. We stop if there is an F0 ∈ Fi and an
(r−3)-element subset B0 of F0 such that B0 is not covered by I(F0,Fi). Suppose
that the procedure stops in the m-th step. By Theorem 21(ii), for every F ∈ Fm

there is an (r−3)-element subset B of F such that B is not covered by I(F,Fm).

Claim 24. |F − (F1 ∪ · · · ∪ Fm−1)| ≤ c′
(

n
r−3

)

for some c′ > 0.

Proof. For any F ∈ Fm, let B be an (r − 3)-element subset of F that is not
covered by I(F,Fm). Then it follows that B * E∩F for any E ∈ Fm \{F}, that
is, F is the only hyperedge in Fm that contains B. Thus |Fm| ≤

(

n
r−3

)

. Now by
Theorem 21(i),

|F − (F1 ∪ · · · ∪ Fm−1)| ≤ c−1|Fm| ≤ c′
(

n

r − 3

)

.

Let i ∈ {1, 2, . . . ,m − 1} and F ∈ Fi. By Theorem 21(iii), I(F,Fi) is inter-
section closed. Since |F1 ∩ F2| 6= 1 for any F1, F2 ∈ Fi, |I| 6= 1 for each I ∈
I(F,Fi). Now apply Theorem 20 with s = 1 to I(F,Fi), we obtain a 2-element
subset A(F ) of F such that

{I : A(F ) ⊂ I ( F} ⊂ I(F,Fi).

Let A1, A2, . . . , Ah be the list of 2-element sets for which Aj = A(F ) for some
F ∈ F1 ∪ · · · ∪ Fm−1. For j = 1, . . . , h, let

Hj = {F ∈ F1 ∪ · · · ∪ Fm−1 : A(F ) = Aj}

and

V (Hj) =
⋃

F∈Hj

F.

Claim 25. V (H1), . . . , V (Hh) are pairwise disjoint.

Proof. Suppose for contradiction that |V (H1) ∩ V (H2)| ≥ 1. It follows that
there exist F1 ∈ H1 and F2 ∈ H2 such that |F1 ∩ F2| ≥ 1. Then we can find two
sets C1 and C2 satisfying A1 ⊂ C1 ( F1, A2 ⊂ C2 ( F2 and |C1 ∩ C2| = 1 in the
following way. If |A1 ∩ A2| = 1, then let C1 = A1 and C2 = A2. If A1 ∩ A2 = ∅,
then let C1 = A1 ∪ {x} and C2 = A2 ∪ {x} for some x ∈ F1 ∩ F2.

Since F1 ∈ Fi for some i ∈ {1, . . . ,m− 1} and

C1 ∈ {I : A1 ⊂ I ( F1} ⊂ I(F1,Fi),
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by Theorem 21(iv) C1 is the center of an (r + 1)-sunflower in Fi. Therefore
C1 is the center of an (r + 1)-sunflower in F . Similarly, C2 is also the center
of an (r + 1)-sunflower in F . By Lemma 22, there exist F ′

1, F
′
2 ∈ F satisfying

|F ′
1 ∩ F ′

2| = |C1 ∩ C2| = 1, which contradicts the fact that |F1 ∩ F2| 6= 1 for any
F1, F2 ∈ F . Thus the claim holds.

Assume that Ai = {ui, vi} for i = 1, . . . , h. Let Gi be the graph on the vertex
set V (Hi) with the edge set

E(Gi) = {uv : {u, v} ⊂ F ∈ Hi} .

Obviously, Gi is a subgraph of G and vui, vvi, uivi ∈ E(Gi) for each v ∈ V (Hi) \
Ai.

Claim 26. Gi −Ai is Kr−1-free for i = 1, . . . , h.

Proof. By symmetry, we only need to show that G1 −A1 is Kr−1-free. Suppose
for contradiction that {a1, a2, . . . , ar−1} ⊂ V (G1)\{u1, v1} induces a copy ofKr−1

in G1 − A1. Since u1aj ∈ E(G1) for each j = 1, . . . , r − 1, {u1, a1, a2, . . . , ar−1}
induces a copy of Kr in G. Note that A1 = {u1, v1} is the center of an (r + 1)-
sunflower in F . Let F1, F2, . . . , Fr+1 be such a sunflower with center A1. Then
there exists some Fj with (Fj \ A1) ∩ {a1, a2, . . . , ar−1} = ∅. It follows that
Fj ∩ {u1, a1, a2, . . . , ar−1} = {u1}. By the definition of F , the subgraph of G
induced by Fj ∪ {u1, a1, a2, . . . , ar−1} contains Br,1. This contradicts the fact
that G is Br,1-free and the claim follows.

Let xi = |V (Hi)| for i = 1, 2, . . . , h and assume that x1 ≥ x2 ≥ · · · ≥ xh. By
Claim 25, x1 + · · ·+ xh ≤ n.

Claim 27. x1 ≥ n− c′′, for some constant c′′ > 0.

Proof. By Claim 26 and Theorem 23, the number of copies of Kr−2 in Gi − Ai

is at most N (Kr−2, Tr−2(xi − 2)). It follows that

|Hi| ≤ N (Kr−2, Tr−2(xi − 2))

for each i = 1, . . . , h. By Claims 24 and 25,

N (Kr, G) = |F − (F1 ∪ · · · ∪ Fm−1)|+ |(F1 ∪ · · · ∪ Fm−1)|

= |F − (F1 ∪ · · · ∪ Fm−1)|+ |H1|+ · · ·+ |Hh|(1)

≤ c′
(

n

r − 3

)

+
h
∑

i=1

N (Kr−2, Tr−2(xi − 2)).
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Since

N (Kr−2, Tr−2(xi − 2)) ≤

(

xi − 2

r − 2

)r−2

,

we have

N (Kr, G) ≤ c′
(

n

r − 3

)

+
h
∑

i=1

(

xi − 2

r − 2

)r−2

≤ c′
(

n

r − 3

)

+

h
∑

i=1

(xi − 2) ·
(x1 − 2)r−3

(r − 2)r−2
(2)

≤ c′
(

n

r − 3

)

+
(x1 − 2)r−3(n− 2)

(r − 2)r−2
.

By our assumption,

N (Kr, G) ≥ N (Kr−2, Tr−2(n− 2)) ≥

(

n− r

r − 2

)r−2

.(3)

Combining (2) and (3), we obtain that

1 ≤ c′
(

n

r − 3

)(

r − 2

n− r

)r−2

+
n− 2

n− r
·

(

x1 − 2

n− r

)r−3

.

Since n is sufficiently large, we get x1 ≥ (1− o(1))n.
Let n1, n be two integers with 0 < n1 < n and let H be an r-partite Turán

graph on n vertices with vertex classes V1, V2, . . . , Vr. Then there exist partitions
Vj = Vj,1 ∪ Vj,2 for each j = 1, 2, . . . , r such that

r
∑

j=1

|Vj,1| = n1

and both H
[
⋃r

j=1 Vj,1

]

and H
[
⋃r

j=1 Vj,2

]

are Turán graphs. There are N (Kr,

Tr(n1)) copies of Kr in H
[
⋃r

j=1 Vj,1

]

, and N (Kr, Tr(n − n1)) copies of Kr in

H
[
⋃r

j=1 Vj,2

]

. Moreover, the number of copies of Kr in H with
∣

∣V (K)∩
(
⋃r

j=1 Vj,1

)∣

∣ = r − 1 and
∣

∣V (K) ∩
(
⋃r

j=1 Vj,2

)∣

∣ = 1 is at most
⌊

n−n1

r

⌋

· N (Kr−1,
Tr(n1)). Thus,

(4)

N (Kr, Tr(n)) > N (Kr, Tr(n1)) +N (Kr, Tr(n− n1))

+

⌊

n− n1

r

⌋

· N (Kr−1, Tr(n1)).
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Apply the inequality (4) inductively, we have

h
∑

i=2

N (Kr−2, Tr−2(xi − 2)) < N (Kr−2, Tr−2(n− x1)).(5)

By (1) and (5), we see that

N (Kr, G) ≤c′
(

n

r − 3

)

+N (Kr−2, Tr−2(x1 − 2)) +N (Kr−2, Tr−2(n− x1)).

Apply the inequality (4) again, we obtain that
(6)

N (Kr, G)

≤ c′
(

n

r − 3

)

+N (Kr−2, Tr−2(n−2))−

⌊

n−x1+2

r

⌋

· N (Kr−3, Tr−2(x1−2))

≤ N (Kr−2, Tr−2(n− 2)) + c′
(

n

r − 3

)

−
n−x1 − r

r
· (r − 2)

(

x1−r

r−2

)r−3

.

It follows from (3) and (6) that

c′
(

n

r − 3

)

≥
n− x1 − r

r
· (r − 2)

(

x1 − r

r − 2

)r−3

.

Since x1 ≥ (1− o(1))n, we arrive at

c′
(

n

r − 3

)

≥
n− x1 − r

r
· (r − 2)

(

n− o(n)− r

r − 2

)r−3

.

It follows that x1 ≥ n− c′′ for some c′′ > 0.

Let us define

K =

{

F ∈ F :
A1 ⊂ F and for each I with A1 ⊂ I ( F,
I is the center of an (r + 1)-sunflower in F

}

.

Obviously, we have H1 ⊂ K. Define

A = {F ∈ F : A1 ⊂ F, F /∈ K} and B = F −K −A.

Note that V (K) =
⋃

F∈K F and V (B) =
⋃

F∈B F . We claim that V (K)∩V (B) = ∅.
Otherwise, there exist F1 ∈ K and F2 ∈ B with |F1 ∩F2| ≥ 1. Note that A1 ⊂ F1

and A1 6⊂ F2. If F2∩A1 = ∅, let C = A1∪{x} with x ∈ F1∩F2. If F2∩A1 6= ∅, then
let C = A1. It is easy to see that |C ∩ F2| = 1 in both of the two cases. Clearly,
we have A1 ⊂ C ( F1. By the definition of K, C is center of an (r+1)-sunflower
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in F . Let E1, E2, . . . , Er+1 be such a sunflower. Since |F2 \ C| < r, there exists
some Ej such that (Ej \C)∩(F2 \C) = ∅. Then we have |Ej ∩F2| = |C∩F2| = 1,
a contradiction. Thus V (K) ∩ V (B) = ∅.

By Claim 27, we have

|V (B)| ≤ n− V (K) ≤ n− V (H1) ≤ c′′.(7)

Let C = {F ∈ A : F ∩ V (B) = ∅}, K′ = K ∪ C and A′ = A \ C. Clearly, V (K′) ∩
V (B) = ∅, F ∩ V (K′) ⊃ A1 and F ∩ V (B) 6= ∅ for each F ∈ A′.

Claim 28. B = ∅.

Proof. Suppose for contradiction that there exists B ∈ B. We first show that
the degree of each vertex x in B is small. By (7), we have

degB(x) ≤

(

|V (B)|

r − 1

)

≤

(

c′′

r − 1

)

.

Note that A1 ⊂ F for any F ∈ F \B and |F ∩F ′| 6= 1 for any F, F ′ ∈ F . We have
A1 ⊂ B′ and |B′ ∩ B| ≥ 2 for any B′ ∈ F \ B with x ∈ B′. Thus, the number
of hyperedges containing x in F \ B is at most |B \ {x}| ·

(

n
r−4

)

= (r − 1)
(

n
r−4

)

.
Therefore,

degF (x) ≤ degB(x) + (r − 1)

(

n

r − 4

)

≤

(

c′′

r − 1

)

+ (r − 1)

(

n

r − 4

)

.

Let u ∈ V (K′) \A1 be the vertex with

degK′(u) = max
{

degK′(v) : v ∈ V (K′) \A1

}

.

We show that degK′(u) ≥ c′′′nr−3 for some constant c′′′ > 0. Since F ∩ V (B) 6= ∅
for each F ∈ A′, we have

|A′|+ |B| ≤
∑

v∈V (B)

degF (v).

If degK′(u) = o(nr−3), then

N (Kr, G) = |K′|+ |A′|+ |B| ≤
1

r − 2

∑

v∈V (K′)\A1

degK′(v) +
∑

v∈V (B)

degF (v)

≤ o(nr−2) + c′′
(

(r − 1)

(

n

r − 4

)

+

(

c′′

r − 1

))

,

which contradicts the assumption that N (Kr, G) ≥ N (Kr−2, Tr−2(n− 2)). Thus
degK′(u) ≥ c′′′nr−3 for some constant c′′′ > 0.
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Since n is sufficiently large, for each x ∈ B we have

degF (u) ≥ degK′(u) ≥ c′′′nr−3 > degF (x).

We claim that there exists x0 ∈ B such that ux0 is not an edge of G. Otherwise, if
ux ∈ E(G) for all x ∈ B, then {u}∪T induces a copy ofKr in G for any T ∈

(

B
r−1

)

.

Since degK′(u) ≥ c′′′nr−3, there exists an hyperedge K in K′ containing u. Recall
that V (K′) ∩ V (B) = ∅. Then {u} ∪ T ∪ K induces a copy of Br,1 in G, a
contradiction. Thus, there exists x0 ∈ B such that ux0 is not an edge of G.

Now let G′ be a graph obtained from G by deleting edges incident to x0 and
adding edges in {x0w : w ∈ N(u)}. We claim that G′ is Br,1-free. Otherwise,
there exist two copies K,K ′ of Kr in G′ with V (K) ∩ V (K ′) = {y} for some
y ∈ V (G′). Since G is Br,1-free, we may assume that x0 ∈ V (K). If u /∈ V (K ′),
then V (K) ∪ V (K ′) \ {x0} ∪ {u} induces a copy of Br,1 in G, a contradiction. If
u ∈ V (K ′), then y 6= x0 since x0y is not an edge in G′. Moreover, V (K ′) /∈ B
and V (K) \ {x0} ∪ {u} /∈ B since u ∈ V (K′). By the definition of K′ and A′,
we see that both V (K ′) and V (K) \ {x0} ∪ {u} contains A1. But now we have
V (K) ∩ V (K ′) ⊃ A1 since u, x0 /∈ A1, which contradicts our assumption that
V (K) ∩ V (K ′) = {y}. Thus G′ is Br,1-free.

Since degF (u) > degF (x0), we have

N (Kr, G
′) = N (Kr, G)− degF (x0) + degF (u) > N (Kr, G),

which contradicts the maximality of the number of copies of Kr in G. Thus, the
claim follows.

By Claim 28, A1 is contained in every hyperedge of F . Recall that A1 =
{u1, v1}. It follows that xu1, xv1 ∈ E(G) for any x ∈ V (G) \ A1. We claim that
G \ A1 is Kr−1-free. Otherwise, let {a1, a2, . . . , ar−1} ⊂ V (G) \ A1 be a set that
induces a copy of Kr−1 in G− A1. Since u1aj ∈ E(G) for each j = 1, . . . , r − 1,
{u1, a1, a2, . . . , ar−1} induces a copy of Kr in G. Note that A1 is the center of
an (r + 1)-sunflower in F . Let F1, F2, . . . , Fr+1 be such a sunflower with center
A1. Then there exists some Fj with (Fj \A1) ∩ {a1, a2, . . . , ar−1} = ∅. It follows
that Fj ∩{u1, a1, a2, . . . , ar−1} = {u1}. By the definition of F , the subgraph of G
induced by Fj ∪{u1, a1, a2, . . . , ar−1} contains Br,1, a contradiction. Thus G−A1

is Kr−1-free.
By Theorem 23, there are at most N (Kr−2, Tr−2(n − 2)) copies of Kr−2 in

G−A1 and Turán graph Tr−2(n−2) is the unique graph attaining the maximum
number. Thus, the number of Kr in G is at most N (Kr−2, Tr−2(n − 2)) and
K2 ∨ Tr−2(n − 2) is the unique graph attaining the maximum number of copies
of Kr.

Now we prove Theorem 6 using Füredi’s structure theorem.
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Proof of Theorem 6. Let G be a Br,0-free graph on vertex set [n] and let

F =

{

F ∈

(

[n]

r

)

: G[F ] is a clique

}

.

Since G is Br,0-free, F is an intersecting family. We apply Theorem 21 with
p = r + 1 to F and obtain F∗. Let I = I(F,F∗) for some fixed F ∈ F∗. From
Theorem 21(iv) and Lemma 22, we have |I ∩ I ′| ≥ 1 for any I, I ′ ∈ I. Let I0 be
a minimal set in I. Since I is intersection closed, I0 ⊂ I for all I ∈ I. Otherwise
we have I0 ∩ I ∈ I and |I ∩ I0| < |I0|, which contradicts the minimality of I0.
Now we distinguish two cases.

Case 1. |I0| = 1. Let I0 = {v}. By Theorem 21(iv), {v} is center of an
(r + 1)-sunflower in F∗. Let F1, F2, . . . , Fr+1 be hyperedges in such an (r + 1)-
sunflower. If there is a hyperedge F in F with v /∈ F , then it is easy to find
some j such that Fj ∩F = ∅, which contradicts the fact that F is an intersecting
family. Thus, v is contained in every hyperedge of F . Let G′ = G[N(v)]. Since
each copy of Kr in G contains v, G′ is Kr-free. By Theorem 23, we have

N (Kr, G) ≤ N (Kr−1, G
′) ≤ N (Kr−1, Tr−1(n− 1)),

and the equality holds if and only if G ∼= K1 ∨ Tr−1(n− 1).

Case 2. |I0| ≥ 2. We claim that F \I0 is not covered by I. Otherwise, assume
that F \ I0 ⊂ I∗ for some I∗ ∈ I. Since I0 ⊂ I for all I ∈ I, we have I0 ⊂ I∗.
It follows that I∗ = F , which contradicts the fact that F /∈ I. Hence F \ I0
is not covered by I. It follows that F is the only hyperedge in F∗ containing
F \ I0. Theorem 21(ii) shows that I(F,F∗) is isomorphic to I(F ′,F∗) for any
F, F ′ ∈ F∗. For any E ∈ F∗, there is an (r−|I0|)-element subset T of E such that
E is the only hyperedge in F∗ containing T . Since |I0| ≥ 2, we have |F∗| ≤

(

n
r−2

)

.
By Theorem 21(i), for sufficiently large n, we have

N (Kr, G) = |F| ≤ c−1|F∗| ≤ c−1

(

n

r − 2

)

< N (Kr−1, Tr−1(n− 1)).

This completes the proof.

4. Bounds on ex(n,Kr, Br,s) for General r and s

Let B
(r)
s be an r-uniform hypergraph consisting of two hyperedges that share

exactly s vertices. Let exr(n,B
(r)
s ) denote the maximum number of hyperedges

in an r-uniform B
(r)
s -free hypergraph on n vertices. In [4], Frankl and Füredi

proved the following theorem.
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Theorem 29 (Frankl and Füredi [4]). For r ≥ 2s+ 2 and n sufficiently large,

exr(n,B
(r)
s ) =

(

n− s− 1

r − s− 1

)

.

For r ≤ 2s+ 1, exr(n,B
(r)
s ) = O(ns).

Now we prove Theorem 7 by using Theorem 29.

Proof of Theorem 7. Notice that ex(n,Kr, Br,s) ≤ exr(n,B
(r)
s ), by Theorem

29 we have

ex(n,Kr, Br,s) = O(nmax{s,r−s−1}).(8)

For r ≥ 2s+ 1, it is easy to see that Ks+1 ∨ Tr−s−1(n− s− 1) is a Br,s-free
graph. Then

ex(n,Kr, Br,s) ≥ N (Kr−s−1, Tr−s−1(n− s− 1)).

By (8), we have ex(n,Kr, Br,s) = Θ(nr−s−1).
For r ≤ 2s, we present the following lower bound construction. Let P =

(a1, a2, . . . , at) be an s-sum-free partition of r. Define a graph GP on the vertex
set V (G) = X1 ∪X2 ∪ · · · ∪Xt with Xi = ⌊n/t⌋ or ⌈n/t⌉ for each i = 1, 2, . . . , t.
Let GP [Xi] be the union of |Xi|/ai vertex-disjoint copies of Kai for each i = 1, 2,
. . . , t and GP [Xi, Xj ] be a complete bipartite graph for 1 ≤ i < j ≤ t.

We claim that GP is Br,s-free. Let K,K ′ be two copies of Kr in GP . Since
GP [Xi] is a union of vertex-disjoint copies of Kai , we have |V (K)∩Xi| ≤ ai and
|V (K ′)∩Xi| ≤ ai. It follows that |V (K)∩Xi| = ai and |V (K ′)∩Xi| = ai because
of a1+ · · ·+ at = r. Since P is s-sum-free, we conclude that |V (K)∩V (K ′)| 6= s.
Thus, GP is Br,s-free. Moreover,

N (Kr, GP ) =
t
∏

i=1

⌊

n

tai

⌋

≈

(

tt
t
∏

i=1

ai

)−1

nt.

Note that βr,s is defined to be the maximum length t in an s-sum-free partition of
r. Thus, the construction gives that ex(n,Kr, Br,s) = Ω(nβr,s) for r ≤ 2s. This
completes the proof.

Let a1, a2, . . . , ak be a sequence of integers and let m =
∑

1≤i≤k ak. Let

S(a1, a2, . . . , ak) =

{

∑

i∈I

ai : ∅ 6= I ⊆ [k]

}

.

If S(a1, a2, . . . , ak) = [m], then we call a1, a2, . . . , ak a sum-complete sequence.
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Fact 1. Let a1, a2, . . . , ak be a sequence of integers with each ai ∈ {1, 2}. If at

least one of ai equals 1, then a1, a2, . . . , ak is a sum-complete sequence.

Proof. Suppose that a1, a2, . . . , ak is not sum-complete. Then let h be the small-
est integer such that h /∈ S(a1, a2, . . . , ak). Clearly h > 1. Then h− 1 ∈ S(a1, a2,
. . . , ak). Let h − 1 =

∑

i∈I ai. It follows that ai = 2 for all i ∈ [k] \ I. Since
h− 1 < m, there exists j ∈ [k] \ I such that aj = 2. Let i0 ∈ I, ai0 = 1, and let
I ′ = I \ {i0} ∪ {j}. Then h =

∑

i∈I′ ai, a contradiction.

Fact 2. Let a1, a2, . . . , ak be a sum-complete sequence with
∑

1≤i≤k ai = m and

let ak+1 ≤ m+ 1. Then a1, a2, . . . , ak, ak+1 is also sum-complete.

Proof. Since a1, a2, . . . , ak is sum-complete, then S(a1, a2, . . . , ak) = [m] and

S(a1, a2, . . . , ak) + ak+1 = [ak+1 + 1, ak+1 +m].

Since ak+1 ≤ m+ 1, we conclude that

S(a1, a2, . . . , ak, ak+1) = [m] ∪ [ak+1 + 1, ak+1 +m] ∪ {ak+1} = [ak+1 +m].

Now we prove Proposition 8.

Proof of Proposition 8. (i) Since r ≤ 2s, r− (s+1) ≤ s− 1. The partition of
r consisting of r− (s+1) “1” and one “s+1” is s-sum-free. And there are r− s
integers in the partition (1, 1, . . . , 1, s+ 1). Then βr,s ≥ r − s.

Let P = (a1, a2, . . . , at) be an s-sum-free partition of r. If ai ≥ 2 for all
i = 1, 2, . . . , t, it is easy to see that t ≤ r/2.

Now we assume that ai = 1 for some i ∈ [t]. Let (ai : i ∈ I) be a sum-
complete subsequence of P with |I| maximum. Clearly |I| ≥ 1. Let m =

∑

i∈I ai.
We claim that m ≤ r − s− 1. Indeed, if m ≥ r − s, then r − s ∈ S(ai : i ∈ I) by
definition of m, so

∑

i∈I′ ai = r− s for some I ′ ⊂ I and the complement has sum
r − (r − s) = s, a contradiction. Thus m ≤ r − s− 1.

By Fact 2, aj ≥ m+ 2 for all j ∈ [t] \ I. Note that |I| ≤ m. Thus,

r =
∑

1≤i≤t

ai =
∑

i∈I

ai +
∑

i/∈I

ai ≥ m+ (t− |I|)(m+ 2) ≥ m+ (t−m)(m+ 2).

It follows that t ≤ r−m
m+2 +m =: f(m). It can be checked that f(m) = m−1+ r+2

m+2
is a convex function. Since 1 ≤ m ≤ r − s− 1, we conclude that

t ≤ max

{

r + 2

3
, r − (s+ 1) +

s+ 1

r − s+ 1

}

.

Since r ≥ 6, r+2
3 ≤ r

2 . Let g(r) = r− (s+1)+ s+1
r−s+1 −

r
2 . Since g(r) is convex and

g(s−1) = g(2s) = 0, we have g(r) = r−(s+1)+ s+1
r−s+1−

r
2 ≤ 0 for s+1 ≤ r ≤ 2s.

So we have r − (s+ 1) + s+1
r−s+1 ≤ r

2 . Thus, βr,s ≤ t ≤ r
2 .
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(ii) For s = 1, “1” is not present in the 1-sum-free partition of r. Then
βr,1 ≥

⌊

r
2

⌋

. (2, 2, . . . , 2, 2) for r being even (or (2, 2, . . . , 2, 3) for r being odd) is
a 1-sum-free partition of r. Thus βr,1 =

⌊

r
2

⌋

.

For s = 2, the 2-sum-free partition of r contains at most one “1” and does
not contain “2”. Then βs,2 ≤ 1 +

⌊

r−1
3

⌋

. Moreover, for s = 3k, (3, 3, . . . , 3)
is a 2-sum-free partition of r. For s = 3k + 1, (1, 3, 3, . . . , 3) is a 2-sum-free
partition of r. For s = 3k + 2, (1, 3, 3, . . . , 3, 4) is a 2-sum-free partition of r.
Thus βs,2 = 1 +

⌊

r−1
3

⌋

.

For s = 3, let (a1, a2, . . . , at) be a 3-sum-free partition of r. If ai = 1 for
some i ∈ [t], “2” does not appear in the partition and there are at most two
“1” in the partition. Then t ≤ 2 +

⌊

r−2
4

⌋

and (1, 1, 4, 4, . . . , 4, t) is a 3-sum-free
partition of r where t = 4, 5, 6, 7. If ai 6= 1 for all i ∈ [t], it is easy to see that
t ≤ r/2. And for r being even, (2, 2, . . . , 2) is a 3-sum-free partition of r with
length r/2. When r is odd, there exists an integer ai in the partition that is odd
and ai ≥ 5. For r being odd, t ≤ 1+ r−5

2 . (2, 2, . . . , 2, 5) is a 3-sum-free partition
of r with length 1+ r−5

2 . Thus, βr,3 = max
{

2 +
⌊

r−2
4

⌋

, r/2
}

when r is even, and
βr,3 = max

{

2 +
⌊

r−2
4

⌋

, 1 + r−5
2

}

when r is odd.

For s = 4 and r ≥ 4, let (a1, a2, . . . , at) be a 4-sum-free partition of r. If
ai = 1 for some i ∈ [t], aj 6= 3 for all j ∈ [t] and the sum of all “1” and “2” in the
partition does not exceed 3. Then t ≤ 3 + ⌊ r−3

5 ⌋. If ai 6= 1 for all i ∈ [t], there is
at most one “2” in the partition and all other elements in the partition must be at
least 3. Then we have t ≤ 1+

⌊

r−2
3

⌋

. (1, 1, 1, 5, 5, . . . , 5, x) is a 4-sum-free partition
of r with length 3 +

⌊

r−3
5

⌋

, where x ∈ {5, 6, 7, 8, 9}. (3, 3, . . . , 3), (2, 3, 3, . . . , 3, 5)
and (2, 3, 3, . . . , 3) are 4-sum-free partition of r with length 1 +

⌊

r−2
3

⌋

for r =
3k, 3k + 1, 3k + 2. Thus βr,4 = max

{

3 +
⌊

r−3
5

⌋

, 1 +
⌊

r−2
3

⌋}

.

(iii) From (i), βr,s ≤
r
2 . If r is even and s is odd, (2, 2, . . . , 2) is an s-sum-free

partition of r with length r/2. Thus we have βr,s =
r
2 .

5. Bounds on ex(n,K4, B4,2)

In this section, we derive an upper bound on ex(n,K4, B4,2) by utilizing the graph
removal lemma.

Let G = (V,E) be a graph. For any E′ ⊂ E(G), let G[E′] denote the
subgraph of G induced by the edge set E′, and let G − E′ denote the subgraph
of G induced by E(G) \ E′. We use v(G) to denote the number of vertices in a
graph G.

Lemma 30 (Graph removal lemma [6]). For any graph H and any ǫ > 0, there
exists δ > 0 such that any graph on n vertices which contains at most δnv(H)

copies of H may be made H-free by removing at most ǫn2 edges.
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Proof of Theorem 9. The lower bound in the theorem is due to the following
construction. Suppose that n = 6m+t with t ≤ 5, let G∗ be a graph on n vertices
consisting of a set V of size 3m, whose induced subgraph is a union of m disjoint
copies of triangles, and an independent set U of size 3m + t as well as all the
edges between V and U . Then, it is easy to see that G∗ is B4,2-free and

N (K4, G
∗) = m(3m+ t) =

n2 − t2

12
≥

n2 − 25

12
.

Thus, we are left with the proof of the upper bound.
Let G be a B4,2-free graph on n vertices. We may further assume that each

edge of G is contained in at least one copy of K4.

Claim 31. There is a subset E′ ⊂ E(G) with |E′| = o(n2) such that G′ = G−E′

is K5-free, and N (K4, G) = N (K4, G
′) + o(n2).

Proof. For any edge e in G, there is at most one copy of K5 containing e,
since otherwise we shall find a copy of B4,2. Thus, the number of K5 in G is
O(n2) = o(n5). By the graph removal lemma, we can delete o(n2) edges to make
G K5-free. Let E

′ be the set of the deleted edges.
Note that the edge deletion is to remove the copy of K5 in G, so the deleted

edges are contained in some K5 in G. Moreover, for any e ∈ E′, there is exactly
one copy of K5 in G containing e. We denote it by K. Then each copy of K4

containing e is a subgraph of K, otherwise we shall find a copy of B4,2. Thus,
there are at most three copies K4 in G containing e. Thus, edge deletion reduces
at most o(n2) copies of K4.

Let R be a subset of E(G′) consisting of all the edges contained in at least
two copies of K4 in G′, and let B = E(G′) \R.

Claim 32. There is a subset T ⊂ B with |T | = o(n2) such that G′[B \ T ] is
K4-free, and N (K4, G

′) = N (K4, G
′ − T ) + o(n2).

Proof. By the definition of the set B, each edge in B is contained in at most
one copy of K4 in G′. Thus, the number of copies of K4 in G′[B] is at most
O(n2) = o(n4). By the graph removal lemma, we can delete o(n2) edges to make
G′[B] K4-free. Moreover, for any deleted edge e, since e ∈ B it follows that e is
contained in exactly one copy of K4 in G′. By deleting the edges, at most o(n2)
copies of K4 are removed.

Let G∗ = G′ − T , B∗ = B \ T . Then the edge set of G∗ consists of R and
B∗, and G∗[B∗] is K4-free. In Claim 32, the edge deletion is to remove the copy
of K4 in G′[B], and each deleted edge is contained in exactly one copy of K4 in
G′[B]. Then each edge in R is still contained in at least two copies of K4 in G∗

and every edge in B∗ is contained in at most one copy of K4 in G∗. We say a
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copy of K4 in G∗ is right-colored if three of its edges form a triangle in G∗[R] and
the other three edges form a star in G∗[B∗].

Claim 33. All the copies of K4 in G∗ are right-colored.

Proof. Suppose that S = {v1, v2, v3, v4} induces a copy of K4 in G∗. Clearly,
at least one edge in G∗[S] is contained in R. Without loss of generality, assume
that v1v2 be such an edge. Since v1v2 is contained in at least two copies of K4

in G∗, assume that G∗[{v1, v2, vs, vt}] be another copy of K4 containing v1v2. If
{vs, vt} ∩ {v3, v4} = ∅, then we find a copy of B4,2 in G∗, a contradiction. Thus,
we have |{vs, vt} ∩ {v3, v4}| = 1. Assume that vs = v3, then both v1v3 and v2v3
are contained in at least two copies of K4. It follows that v1v3 and v2v3 are edges
in R. Thus, there are three edges in G∗[S] belonging to R that form a triangle
in G∗.

Next we show that v1v4, v2v4 and v3v4 are all edges in B∗. If not, assume
that v3v4 ∈ R. Then, all the copies of K4 containing v1v2 should also contain v3
or v4, otherwise we shall find a copy of B4,2. Without loss of generality, assume
that all the copies of K4 containing v1v2 contain v3 as well. Let G

∗[{v1, v2, v3, v4}]
and G∗[{v1, v2, v3, v5}] be two such copies of K4. Similarly, all the copies of K4

containing v3v4 should also contain v1 or v2. Without loss of generality, assume
that G∗[{v3, v4, v1, v2}] and G∗[{v3, v4, v1, v6}] be two such copies of K4. Clearly,
we have v5 6= v6 for G∗ is K5-free. However, at this time both G∗[{v1, v3, v4, v6}]
and G∗[{v1, v3, v2, v5}] form a copy of K4, which implies G∗[{v1, v2, v3, v4, v5, v6}]
contains a copy of B4,2, a contradiction. Thus, v3v4 ∈ B∗.

Similarly, we can deduce that v1v4 and v2v4 are edges in B∗. Therefore,
G∗[S] is right-colored and the claim holds.

Since G∗[B∗] is K4-free, by Turán theorem [14] there are at most n2

3 edges
in G∗[B∗]. Moreover, since all the copies of K4 in G∗ are right-colored, it follows
that each copy of K4 in G∗ contains three edges in B∗. Thus, we have

N (K4, G
∗) ≤

|B∗|

3
≤

n2

9
.

From Claims 31 and 32, it follows that

N (K4, G) = N (K4, G
∗) + o(n2) ≤

n2

9
+ o(n2),

which completes the proof.
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