THE GENERALIZED TURÁN PROBLEM OF TWO INTERSECTING CLIQUES

Erica L.L. Liu
School of Science
Tianjin University of Technology and Education Tianjin 300222, P.R. China
Center for Applied Mathematics, Tianjin University
Tianjin 300072, P.R. China
e-mail: liulingling@tute.edu.cn

AND

Jian Wang
Department of Mathematics
Taiyuan University of Technology
Taiyuan 030024, P.R. China
e-mail: wangjian01@tyut.edu.cn

Abstract

For $s<r$, let $B_{r, s}$ be the graph consisting of two copies of K_{r}, which share exactly s vertices. Denote by $e x\left(n, K_{r}, B_{r, s}\right)$ the maximum number of copies of K_{r} in a $B_{r, s}$-free graph on n vertices. About fifty years ago, Erdős and Sós determined ex $\left(n, K_{3}, B_{3,1}\right)$. Recently, Gowers and Janzer showed that $e x\left(n, K_{r}, B_{r, r-1}\right)=n^{r-1-o(1)}$. It is a natural question to ask for $e x\left(n, K_{r}, B_{r, s}\right)$ for general r and s. In this paper, we mainly consider the problem for $s=1$. Utilizing Zykov's symmetrization, we determine the exact value of $e x\left(n, K_{4}, B_{4,1}\right)$ for $n \geq 4$. For $r \geq 5$ and n sufficiently large, by the Füredi's structure theorem we show that $e x\left(n, K_{r}, B_{r, 1}\right)=$ $\mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)$, where $\mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)$ represents the number of copies of K_{r-2} in the $(r-2)$-partite Turán graph on $n-2$ vertices.

Keywords: generalized Turán number, Zykov's symmetrization, Füredi's structure theorem.
2020 Mathematics Subject Classification: 05C35.

1. Introduction

Let T be a graph and \mathcal{F} be a family of graphs. We say that a graph G is \mathcal{F}-free if it does not contain any graph from \mathcal{F} as a subgraph. Let $\operatorname{ex}(n, T, \mathcal{F})$ denote the maximum possible number of copies of T in an \mathcal{F}-free graph on n vertices. The problem of determining $e x(n, T, \mathcal{F})$ is often called the generalized Turán problem. When $T=K_{2}$, it reduces to the classical Turán number $\operatorname{ex}(n, \mathcal{F})$. For simplicity, we often write $e x(n, T, F)$ for $e x(n, T,\{F\})$.

Let T be a graph on t vertices. The s-blow-up of T is the graph obtained by replacing each vertex v of T by an independent set W_{v} of size s, and each edge $u v$ of T by a complete bipartite graph between the corresponding two independent sets W_{u} and W_{v}. Alon and Shikhelman [1] showed that $e x(n, T, F)=\Theta\left(n^{t}\right)$ if and only if for any positive integer s, F is not a subgraph of the s-blow-up of T. Otherwise, there exists some $\epsilon(T, F)>0$ such that $\operatorname{ex}(n, T, F) \leq n^{t-\epsilon(T, F)}$.

For integers $s<r$, let $B_{r, s}$ be the graph consisting of two copies of K_{r}, which share exactly s vertices. Erdős and Sós in [3] determined the maximum number of hyperedges in a 3 -uniform hypergraph without two hyperedges intersecting in exactly one vertex. From their result, it is easy to deduce the following theorem.

Theorem 1 (Erdős and Sós [3]). For all n,

$$
\operatorname{ex}\left(n, K_{3}, B_{3,1}\right)= \begin{cases}n, & n \equiv 0 \quad(\bmod 4) \\ n-1, & n \equiv 1 \quad(\bmod 4) \\ n-2, & n \equiv 2 \text { or } 3 \quad(\bmod 4)\end{cases}
$$

The celebrated Ruzsa-Szemerédi theorem [13] implies that ex $\left(n, K_{3}, B_{3,2}\right)=$ $n^{2-o(1)}$. Recently, Gowers and Janzer [10] proposed a natural generalization of the Ruzsa-Szemerédi Theorem, and proved the following result.

Theorem 2 (Gowers and Janzer [10]). For each $2 \leq s<r$,

$$
e x\left(n, K_{r},\left\{B_{r, s}, B_{r, s+1}, \ldots, B_{r, r-1}\right\}\right)=n^{s-o(1)}
$$

For a graph G, let $V(G)$ and $E(G)$ be the vertex set and edge set of G, respectively. The join of two graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is defined as $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\{x y: x \in$ $\left.V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. The r-partite Turán graph on n vertices, denoted by $T_{r}(n)$, is a complete r-partite graph where the sizes of each part differ by at most one. Denote by $\mathcal{N}(T, G)$ the number of copies of T in G.

In this paper, by using Zykov's symmetrization [18] we determine $e x\left(n, K_{4}\right.$, $B_{4,1}$) for $n \geq 4$.

Theorem 3. For $4 \leq n \leq 6$, ex $\left(n, K_{4}, B_{4,1}\right)=\binom{n}{4}$. For $n=7$, ex $\left(n, K_{4}, B_{4,1}\right)=$ $\binom{6}{4}$. For $8 \leq n \leq 16$, ex $\left(n, K_{4}, B_{4,1}\right)=4 n-15$. For $n \geq 17$,

$$
e x\left(n, K_{4}, B_{4,1}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor,
$$

and $K_{2} \vee T_{2}(n-2)$ is the unique graph attaining the maximum number of copies of K_{4}.

Then, by using Füredi's structure theorem [7], we determine ex $\left(n, K_{r}, B_{r, 1}\right)$ for $r \geq 5$ and n sufficiently large.

Theorem 4. For $r \geq 5$ and sufficiently large n,

$$
e x\left(n, K_{r}, B_{r, 1}\right)=\mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right),
$$

and $K_{2} \vee T_{r-2}(n-2)$ is the unique graph attaining the maximum number of copies of K_{r}.

Note that $B_{r, 0}$ consists of two disjoint copies of K_{r}. We determine $e x\left(n, K_{3}\right.$, $B_{3,0}$) for $n \geq 3$.
Theorem 5. For $n \leq 5$, ex $\left(n, K_{3}, B_{3,0}\right)=\binom{n}{3}$. For $6 \leq n \leq 10, e x\left(n, K_{3}, B_{3,0}\right)=$ $3 n-8$. For $n \geq 11$, ex $\left(n, K_{3}, B_{3,0}\right)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$.

By applying Füredi's structure theorem, we determine $e x\left(n, K_{r}, B_{r, 0}\right)$ for $r \geq 4$ and n sufficiently large.

Theorem 6. For $r \geq 4$ and sufficiently large n,

$$
e x\left(n, K_{r}, B_{r, 0}\right)=\mathcal{N}\left(K_{r-1}, T_{r-1}(n-1)\right),
$$

and $K_{1} \vee T_{r-1}(n-1)$ is the unique graph attaining the maximum number of copies of K_{r}.

Let r, s be positive integers with $s<r$. An integer vector $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ is called a partition of r if $a_{1} \geq a_{2} \geq \cdots \geq a_{t}>0$ and $\sum_{i=1}^{t} a_{i}=r$. Let $P=\left(a_{1}, a_{2}\right.$, $\left.\ldots, a_{t}\right)$ be a partition of r. If $\sum_{i \in I} a_{i} \neq s$ holds for every $I \subset\{1,2, \ldots, t\}$, then we call P an s-sum-free partition of r. Denote by $\beta_{r, s}$ the maximum length of an s-sum-free partition of r.

Theorem 7. For any $r>s \geq 2$, if $r \geq 2 s+1$,

$$
e x\left(n, K_{r}, B_{r, s}\right)=\Theta\left(n^{r-s-1}\right) ;
$$

if $r \leq 2 s$, then there exist positive reals c_{1} and c_{2} such that

$$
c_{1} n^{\beta_{r, s}} \leq e x\left(n, K_{r}, B_{r, s}\right) \leq c_{2} n^{s} .
$$

It seems hard to determine the exact value of $\beta_{r, s}$ for all r and s. The following proposition gives some bounds on $\beta_{r, s}$ and exact values of $\beta_{r, s}$ for $s \leq 4$ and for r is even, s is odd.

Proposition 8. (i) For $6 \leq s+1 \leq r \leq 2 s, r-s \leq \beta_{r, s} \leq r / 2$.
(ii)

$$
\begin{aligned}
& \beta_{r, 1}=\left\lfloor\frac{r}{2}\right\rfloor, \quad \beta_{r, 2}=1+\left\lfloor\frac{r-1}{3}\right\rfloor . \\
& \beta_{r, 3}= \begin{cases}\max \left\{2+\left\lfloor\frac{r-2}{4}\right\rfloor, r / 2\right\}, & r \text { is even } ; \\
\max \left\{2+\left\lfloor\frac{r-2}{4}\right\rfloor, 1+\frac{r-5}{2}\right\}, & r \text { is odd. }\end{cases} \\
& \beta_{r, 4}=\max \left\{3+\left\lfloor\frac{r-3}{5}\right\rfloor, 1+\left\lfloor\frac{r-2}{3}\right\rfloor\right\} .
\end{aligned}
$$

(iii) Suppose that r is even, s is odd and $6 \leq s+1 \leq r \leq 2 s$, then $\beta_{r, s}=r / 2$.

Utilizing the graph removal lemma, we establish an upper bound on $e x\left(n, K_{4}\right.$, $B_{4,2}$).

Theorem 9. For sufficiently large n,

$$
\frac{n^{2}-25}{12} \leq e x\left(n, K_{4}, B_{4,2}\right) \leq \frac{n^{2}}{9}+o\left(n^{2}\right)
$$

We should mention that several papers considered related problems after the first version of this paper appeared on the arxiv. Gerbner and Patkós [9] determined $e x\left(n, K_{k}, B_{r, 0}\right)$ and $e x\left(n, K_{k}, B_{r, 1}\right)$ for all values of k, r if n is large enough. Zhang, Chen, Győri and Zhu [16] determined the exact value of $e x\left(n, K_{r},(k+1) K_{r}\right)$ for all k, r if n is large enough, where $(k+1) K_{r}$ consists of $k+1$ disjoint copies of K_{r}. Some more related results can be found in $[8,11,15,17]$.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 3 and Theorem 5. In Section 3, we prove Theorems 4 and 6. In Section 4, we prove Theorem 7. In Section 5, we prove Theorem 9.

2. The Values of $e x\left(n, K_{4}, B_{4,1}\right)$ and $e x\left(n, K_{3}, B_{3,0}\right)$

Zykov [18] introduced a useful tool to prove Turán's theorem, which is called Zykov's symmetrization. In this section, by using Zykov's symmetrization we first determine $e x\left(n, K_{4},\left\{B_{4,1}, H_{1}, K_{5}\right\}\right)$, where H_{1} is a graph on seven vertices as shown in Figure 1. Then, we show that a $B_{4,1}-$ free graph can be reduced to a $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free graph by deleting vertices and this happens without a loss of too many $K_{4} \mathrm{~S}$, which leads to a proof of Theorem 3.

Figure 1. A graph H_{1} on seven vertices.

For $S \subset V(G)$, let $G[S]$ denote the subgraph of G induced by S, and let $G-S$ denote the subgraph of G induced by $V(G) \backslash S$.

Lemma 10. For $n \geq 2$,

$$
e x\left(n, K_{4},\left\{B_{4,1}, H_{1}, K_{5}\right\}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor,
$$

and $K_{2} \vee T_{2}(n-2)$ is the unique graph attaining the maximum number of K_{4} 's.
Proof. Assume that G is a $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free graph with the maximum number of copies of K_{4}. We may further assume that each edge of G is contained in at least one copy of K_{4}, since otherwise we can delete it without decreasing the number of copies of K_{4}. For each $e \in E(G)$, let $\mathcal{K}_{4}(e)$ denote the set of copies of K_{4} in G containing e. Let

$$
E_{1}=\left\{e \in E(G): \text { there exist } K, K^{\prime} \in \mathcal{K}_{4}(e) \text { such that } E(K) \cap E\left(K^{\prime}\right)=\{e\}\right\}
$$

and let G_{1} be the subgraph of G induced by E_{1}.
Claim 11. E_{1} is a matching of G.
Proof. Suppose to the contrary that there exists a path of length two in G_{1}, say vuw. Since $u v \in E_{1}$, there exist distinct vertices $a_{1}, b_{1}, a_{2}, b_{2}$ so that both $G\left[\left\{u, v, a_{1}, b_{1}\right\}\right]$ and $G\left[\left\{u, v, a_{2}, b_{2}\right\}\right]$ are copies of K_{4}. Since $u w \in E_{1}$, there exist distinct vertices $c_{1}, d_{1}, c_{2}, d_{2}$ so that both $G\left[\left\{u, w, c_{1}, d_{1}\right\}\right]$ and $G\left[\left\{u, w, c_{2}, d_{2}\right\}\right]$ are copies of K_{4}.

Case 1. $w \in\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$ or $v \in\left\{c_{1}, d_{1}, c_{2}, d_{2}\right\}$. Since the two cases are symmetric, we only consider the case $w \in\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$. By symmetry, we may assume that $a_{1}=w$. Now $G\left[\left\{u, v, w, b_{1}\right\}\right]$ and $G\left[\left\{u, v, a_{2}, b_{2}\right\}\right]$ are both copies of K_{4}. Clearly, we have either $v \notin\left\{c_{1}, d_{1}\right\}$ or $v \notin\left\{c_{2}, d_{2}\right\}$. Without loss of generality, assume that $v \notin\left\{c_{1}, d_{1}\right\}$. If $\left\{c_{1}, d_{1}\right\} \cap\left\{a_{2}, b_{2}\right\}=\emptyset$, then $G\left[\left\{u, v, w, a_{2}, b_{2}, c_{1}, d_{1}\right\}\right]$ contains a copy of $B_{4,1}$, which contradicts the assumption that G is $B_{4,1}$-free. If $\left|\left\{c_{1}, d_{1}\right\} \cap\left\{a_{2}, b_{2}\right\}\right|=1$, by symmetry we assume that $c_{1}=a_{2}$, then $G\left[\left\{u, v, w, b_{1}, a_{2}, b_{2}, d_{1}\right\}\right]$ contains a copy of H_{1}, a contradiction. If $\left\{c_{1}, d_{1}\right\}=\left\{a_{2}, b_{2}\right\}$, then $G\left[\left\{u, v, w, a_{2}, b_{2}\right\}\right]$ is a copy of K_{5}, a contradiction.

Case 2. $w \notin\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$ and $v \notin\left\{c_{1}, d_{1}, c_{2}, d_{2}\right\}$. For $i, j \in\{1,2\}$, we claim that $\left|\left\{a_{i}, b_{i}\right\} \cap\left\{c_{j}, d_{j}\right\}\right|=1$. If $\left\{a_{i}, b_{i}\right\} \cap\left\{c_{j}, d_{j}\right\}=\emptyset$, then $G[\{u, v$, $\left.\left.w, a_{i}, b_{i}, c_{j}, d_{j}\right\}\right]$ contains $B_{4,1}$ as a subgraph, a contradiction. If $\left\{a_{i}, b_{i}\right\}=\left\{c_{j}, d_{j}\right\}$, then $G\left[\left\{u, v, w, a_{i}, b_{i}, c_{i}, d_{i}\right\}\right]$ contains $B_{4,1}$ as a subgraph, a contradiction. Hence $\left|\left\{a_{i}, b_{i}\right\} \cap\left\{c_{j}, d_{j}\right\}\right|=1$. It follows that $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}=\left\{c_{1}, d_{1}, c_{2}, d_{2}\right\}$. Then $G\left[\left\{u, v, w, a_{1}, b_{1}, a_{2}, b_{2}\right\}\right]$ contains H_{1} as a subgraph, a contradiction. Thus, the claim holds.

Let $G_{2}=G-V\left(G_{1}\right)$. For two distinct vertices $u, v \in V(G)$ with $u v \notin E(G)$, define $C_{u v}(G)$ to be the graph obtained by deleting edges incident to u and adding edges in $\{u w: w \in N(v)\}$.

Claim 12. For two distinct vertices $u, v \in V\left(G_{2}\right)$ with $u v \notin E(G), C_{u v}(G)$ is a $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free graph.

Proof. Let $\tilde{G}=C_{u v}(G)$. Since $u v \notin E(G)$, clearly we have $u v \notin E(\tilde{G})$. We first claim that \tilde{G} is K_{5}-free. Otherwise, since G is K_{5}-free, there is a vertex set K containing u such that $\tilde{G}[K] \cong K_{5}$. Then $v \notin K$ since $u v \notin E(\tilde{G})$. It follows that $K \backslash\{u\} \cup\{v\}$ induces a copy of K_{5} in G, a contradiction.

Figure 2. A copy of $B_{4,1}$ in \tilde{G}.
If \tilde{G} contains a copy of $B_{4,1}$, let $S=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c\right\}$ be a subset of $V(\tilde{G})$ such that both $\tilde{G}\left[\left\{a_{1}, a_{2}, a_{3}, c\right\}\right]$ and $\tilde{G}\left[\left\{b_{1}, b_{2}, b_{3}, c\right\}\right]$ are copies of K_{4}. If $u \notin S$, then $G[S]$ is a copy of $B_{4,1}$, a contradiction. If $u \in S$ but $v \notin S$, then $G[(S \backslash\{u\}) \cup\{v\}]$ is a copy of $B_{4,1}$, a contradiction. If $u, v \in S$, since $u v \notin E(\tilde{G})$, by symmetry we may assume that $a_{1}=v$ and $b_{1}=u$. Since u is a "clone" of v in \tilde{G}, we have $v b_{2}, v b_{3} \in E(G)$ (as shown in Figure 2). Then both $G\left[\left\{v, c, a_{2}, a_{3}\right\}\right]$ and $G\left[\left\{v, c, b_{2}, b_{3}\right\}\right]$ are copies of K_{4} in G. It follows that $v c$ is an edge in E_{1} in G, which contradicts the assumption that $v \in V(G) \backslash V\left(G_{1}\right)$. Thus \tilde{G} is $B_{4,1}$-free.

If \tilde{G} contains a copy of H_{1}, let $T=\{h, i, j, k, l, m, n\}$ be a subset of $V(\tilde{G})$ such that $\tilde{G}[\{h, i, j, k\}], \tilde{G}[\{i, j, k, m\}], \tilde{G}[\{i, k, l, m\}]$ and $\tilde{G}[\{j, k, m, n\}]$ are all copies of K_{4} as shown in Figure 3. Similarly, we have $u, v \in T$. Since $u v \notin E(\tilde{G})$, by symmetry we have to consider three cases: (i) $h=u, n=v$; (ii) $h=u, m=v$ or (iii) $h=v, m=u$. If $h=u$ and $n=v$, then $v i \in E(G)$ since $u i \in E(\tilde{G})$. It follows that $\{i, j, k, m, v\}$ induces a copy of K_{5} in G, which contradicts the assumption

Figure 3. A copy of H_{1} in \tilde{G}.
that G is K_{5}-free. If $h=u$ and $m=v$, then $k v \in E_{1}$ since both $G[\{k, v, i, l\}]$ and $G[\{k, v, j, n\}]$ are copies of K_{4}, which contradicts the fact that $v \in V\left(G_{2}\right)$. If $h=v$ and $m=u$, then $v l, v n \in E(G)$ since $u l, u n \in E(\tilde{G})$. It follows that both $G[\{k, v, i, l\}]$ and $G[\{k, v, j, n\}]$ are copies of K_{4}, which contradicts the fact that $v \in V\left(G_{2}\right)$. Hence \tilde{G} is H_{1}-free.

By Zykov symmetrization, we prove the following claim.
Claim 13. G_{2} is a complete r-partite graph with $r \leq 4$.
Proof. Recall that G is a $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free graph with the maximum number of copies of K_{4} and each edge of G is contained in at least one copy of K_{4}. We define a binary relation R in $V\left(G_{2}\right)$ as follows: for any two vertices $x, y \in V\left(G_{2}\right)$, $x R y$ if and only if $x y \notin E(G)$. We shall show that R is an equivalence relation. Since G is loop-free, it follows that R is reflexive. Since G is a undirected graph, it follows that R is symmetric.

Now we show that R is transitive. Suppose to the contrary that there exist $x, y, z \in V\left(G_{2}\right)$ such that $x y, y z \notin E\left(G_{2}\right)$ but $x z \in E\left(G_{2}\right)$. For $u, v \in V\left(G_{2}\right)$, let $k_{4}(u)$ be the number of copies of K_{4} in G containing u, and $k_{4}(u, v)$ be the number of copies of K_{4} in G containing u and v.

Case 1. $k_{4}(y)<k_{4}(x)$ or $k_{4}(y)<k_{4}(z)$. Since the two cases are symmetric, we only consider the case $k_{4}(y)<k_{4}(x)$. Let $\tilde{G}=C_{y x}(G)$. By Claim $12, \tilde{G}$ is $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free since G is $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free. But now we have

$$
\mathcal{N}\left(K_{4}, \tilde{G}\right)=\mathcal{N}\left(K_{4}, G\right)-k_{4}(y)+k_{4}(x)>\mathcal{N}\left(K_{4}, G\right),
$$

which contradicts the assumption that G is a $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free graph with the maximum number of copies of K_{4}.

Case 2. $k_{4}(y) \geq k_{4}(x)$ and $k_{4}(y) \geq k_{4}(z)$. Let $G^{*}=C_{x y}\left(C_{z y}(G)\right)$. By Claim $12, G^{*}$ is $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free. Since each edge in G is contained in at least one copies of K_{4}, it follows that

$$
\begin{aligned}
\mathcal{N}\left(K_{4}, G^{*}\right) & =\mathcal{N}\left(K_{4}, G\right)-\left(k_{4}(x)+k_{4}(z)-k_{4}(x, z)\right)+2 k_{4}(y) \\
& \geq \mathcal{N}\left(K_{4}, G\right)+k_{4}(x, z)>\mathcal{N}\left(K_{4}, G\right),
\end{aligned}
$$

which contradicts the assumption that G is a $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free graph with the maximum number of copies of K_{4}. Thus, we conclude that $x z \notin E(G)$ and R is transitive. Since R is an equivalence relation on $V\left(G_{2}\right)$ and G is K_{5}-free, it follows that G_{2} is a complete r-partite graph with $r \leq 4$.

Claim 14. For any copy K of K_{4} in G and any $u v \in E_{1},|V(K) \cap\{u, v\}| \neq 1$.
Proof. Suppose for contradiction that there exists $\{a, b, c, d, v\} \subset V(G)$ such that $G[\{a, b, c, d\}]$ is isomorphic to K_{4} and $b v$ is an edge in E_{1}, as shown in Figure 4.

Figure 4. An edge in E_{1} is attached to a copy of K_{4}.
Since $b v \in E_{1}$, there exist distinct vertices $x_{1}, y_{1}, x_{2}, y_{2}$ such that both $G\left[\left\{b, v, x_{1}, y_{1}\right\}\right]$ and $G\left[\left\{b, v, x_{2}, y_{2}\right\}\right]$ are copies of K_{4} in G. Then either $\mid\left\{x_{1}, y_{1}\right\} \cap$ $\{a, c, d\} \mid \leq 1$ or $\left|\left\{x_{2}, y_{2}\right\} \cap\{a, c, d\}\right| \leq 1$ holds since $x_{1}, y_{1}, x_{2}, y_{2}$ are distinct. By symmetry, we assume that $\left|\left\{x_{1}, y_{1}\right\} \cap\{a, c, d\}\right| \leq 1$. If $\left\{x_{1}, y_{1}\right\} \cap\{a, c, d\}=\emptyset$, then $G\left[\left\{b, v, x_{1}, y_{1}, a, c, d\right\}\right]$ contains a copy of $B_{4,1}$, a contradiction. If $\mid\left\{x_{1}, y_{1}\right\} \cap$ $\{a, c, d\} \mid=1$, without loss of generality, we assume that $x_{1}=a$. Since both $G\left[\left\{a, b, x_{2}, v\right\}\right]$ and $G[\{a, b, c, d\}]$ are copies of K_{4}, it follows that $a b \in E_{1}$, which contradicts Claim 11. Thus, we conclude that $|V(K) \cap\{u, v\}| \neq 1$ for any copy K of K_{4} in G and any $u v \in E_{1}$.

Now let K be a copy of K_{4} in G. Recall that E_{1} is a matching in G and G_{1} is the graph induced by E_{1}. If $\left|V(K) \cap V\left(G_{1}\right)\right|=1$ or 3 , then we will find an edge in E_{1} attached to K, which contradicts Claim 14. Thus $\left|V(K) \cap V\left(G_{1}\right)\right| \in\{0,2,4\}$. Moreover, if $\left|V(K) \cap V\left(G_{1}\right)\right|=2$, let $\{x, y\}=V(K) \cap V\left(G_{1}\right)$, then by Claim14 we have $x y \in E_{1}$. Recall that $\mathcal{K}_{4}(e)$ represents the set of copies of K_{4} in G containing e for $e \in E(G)$. Define

$$
\begin{aligned}
& \mathcal{K}_{0}(G)=\left\{K: K \text { is a copy of } K_{4} \text { in } G \text { and } V(K) \subset V\left(G_{1}\right)\right\} ; \\
& \mathcal{K}_{1}(G)=\left\{K: K \text { is a copy of } K_{4} \text { in } G \text { and } V(K) \subset V\left(G_{2}\right)\right\} ; \\
& \mathcal{K}_{2}(G)=\left\{K: K \in \mathcal{K}_{4}(e) \text { for some } e \in E_{1} \text { and }\left|V(K) \cap V\left(G_{1}\right)\right|=2\right\} .
\end{aligned}
$$

Let $\left|V\left(G_{1}\right)\right|=n_{1},\left|V\left(G_{2}\right)\right|=n-n_{1}=n_{2}$. Since E_{1} is a matching, it follows that n_{1} is even. By Claim 14, for any $K \in \mathcal{K}_{0}(G)$ we have $E(K) \cap E_{1}$ is a matching of size 2. To derive an upper bound on $\left|\mathcal{K}_{0}(G)\right|$, we define a graph H
with $V(H)=E_{1}$ as follows. For any $e_{1}, e_{2} \in E_{1}, e_{1} e_{2}$ is an edge of H if and only if there exists a copy of K_{4} containing both e_{1} and e_{2}. Since G is K_{5}-free, it is easy to see that H is triangle-free. Moreover, each copy of K_{4} in G corresponds to an edge in H. Thus, by Mantel's Theorem [12] we have

$$
\left|\mathcal{K}_{0}(G)\right|=e(H) \leq\left\lfloor\frac{\left|E_{1}\right|^{2}}{4}\right\rfloor=\left\lfloor\frac{n_{1}^{2}}{16}\right\rfloor .
$$

We have shown that G_{2} is a complete r-partite graph with $r \leq 4$ in Claim 13. If $r \leq 1$, then $\mathcal{K}_{1}(G)=\mathcal{K}_{2}(G)=\emptyset$. Thus, we have

$$
\mathcal{N}\left(K_{4}, G\right)=\left|\mathcal{K}_{0}(G)\right| \leq\left\lfloor\frac{n_{1}^{2}}{16}\right\rfloor \leq\left\lfloor\frac{n^{2}}{16}\right\rfloor \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor
$$

where the equalities hold if and only if $n=4$ and G is isomorphic to K_{4}.
If $r=2$, then $\mathcal{K}_{1}(G)=\emptyset$. If $n_{1}=0$, then we have $\mathcal{N}\left(K_{4}, G\right)=0$. Hence we may assume that $n_{1} \geq 2$. We claim that each edge in $E\left(G_{2}\right)$ is contained in at most one copy of K_{4} in $\mathcal{K}_{2}(G)$. Otherwise, by the definition of $\mathcal{K}_{2}(G)$, there exists an edge $e \in E\left(G_{2}\right)$ contained in two distinct copies of K_{4}, which contradicts the fact that $e \notin E_{1}$. Then

$$
\left|\mathcal{K}_{2}(G)\right| \leq e\left(G_{2}\right) \leq\left\lfloor\frac{n_{2}^{2}}{4}\right\rfloor .
$$

Thus, we have

$$
\mathcal{N}\left(K_{4}, G\right)=\left|\mathcal{K}_{0}(G)\right|+\left|\mathcal{K}_{2}(G)\right| \leq\left\lfloor\frac{n_{1}^{2}}{16}\right\rfloor+\left\lfloor\frac{n_{2}^{2}}{4}\right\rfloor .
$$

For even integer x with $2 \leq x \leq n$, let

$$
f(x)=\left\lfloor\frac{x^{2}}{16}\right\rfloor+\left\lfloor\frac{(n-x)^{2}}{4}\right\rfloor .
$$

Then

$$
\begin{aligned}
f(x-2) & =\left\lfloor\frac{(x-2)^{2}}{16}\right\rfloor+\left\lfloor\frac{(n-x+2)^{2}}{4}\right\rfloor \\
& \geq\left\lfloor\frac{x^{2}}{16}\right\rfloor-\frac{x-1}{4}-1+\left\lfloor\frac{(n-x)^{2}}{4}\right\rfloor+n-x+1 \geq f(x)+n-\frac{5 x-1}{4}
\end{aligned}
$$

and

$$
f(x-2) \leq\left\lfloor\frac{x^{2}}{16}\right\rfloor-\frac{x-1}{4}+1+\left\lfloor\frac{(n-x)^{2}}{4}\right\rfloor+n-x+1 \leq f(x)+n-\frac{5 x-9}{4} .
$$

Thus, $f(x-2) \geq f(x)$ for $x \leq \frac{4 n+1}{5}$ and $f(x-2) \leq f(x)$ for $x \geq \frac{4 n+9}{5}$. Therefore, for even n we have

$$
\mathcal{N}\left(K_{4}, G\right) \leq \max \{f(2), f(n)\}=\max \left\{\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor,\left\lfloor\frac{n^{2}}{16}\right\rfloor\right\} \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor,
$$

where the equality holds if and only if G is isomorphic to $K_{2} \vee T_{2}(n-2)$. For odd n we have
$\mathcal{N}\left(K_{4}, G\right) \leq \max \{f(2), f(n-1)\}=\max \left\{\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor,\left\lfloor\frac{(n-1)^{2}}{16}\right\rfloor\right\} \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$, where the equality holds if and only if G is isomorphic to $K_{2} \vee T_{2}(n-2)$.

If $r=3$, there exists a triangle $x y z$ in G_{2}. Since each edge in G is contained in at least one copy of K_{4}, by Claim 14 there exist $a b, c d \in E_{1}$ such that both $G[\{x, y, a, b\}]$ and $G[\{y, z, c, d\}]$ are copies of K_{4} in G. Since E_{1} is a matching, we have either $\{a, b\}=\{c, d\}$ or $\{a, b\} \cap\{c, d\}=\emptyset$. If $\{a, b\}=\{c, d\}$, then $G[\{x, y, z, a, b\}]$ is a copy of K_{5}, a contradiction. If $\{a, b\} \cap\{c, d\}=\emptyset$, then $G[\{x, y, z, a, b, c, d\}]$ contains $B_{4,1}$, a contradiction. Thus, we conclude that $r \neq 3$.

If $r=4$, let $V_{1}, V_{2}, V_{3}, V_{4}$ be four vertex classes of G_{2}. Since G is $B_{4,1^{-}}$ free, at least two of $\left|V_{i}\right|$'s equal one. Without loss of generality, we assume that $\left|V_{3}\right|=\left|V_{4}\right|=1$. Let $V_{3}=\{u\}$ and $V_{4}=\{v\}$. Since $u v \notin E_{1}$, it follows that one of $\left|V_{1}\right|$ and $\left|V_{2}\right|$ equal one. By symmetry let $\left|V_{2}\right|=1$. Then, we have

$$
\left|\mathcal{K}_{1}(G)\right|=\left|V_{1}\right|=n_{2}-3
$$

Moreover, we claim that $\mathcal{K}_{2}(G)=\emptyset$. Otherwise, assume that there exists $K \in$ $\mathcal{K}_{2}(G)$ such that $V(K) \cap V\left(G_{2}\right)=\{x, y\}$. Since x, y also contained in some $K^{\prime} \in \mathcal{K}_{1}(G)$, it follows that $E(K) \cap E\left(K^{\prime}\right)=\{x y\}$, which contradicts the fact that $x y \notin E_{1}$. Since $4 \leq n_{2} \leq n$, we have

$$
\begin{aligned}
\mathcal{N}\left(K_{4}, G\right) & =\left|\mathcal{K}_{0}(G)\right|+\left|\mathcal{K}_{1}(G)\right| \leq\left\lfloor\frac{n_{1}^{2}}{16}\right\rfloor+n_{2}-3 \\
& \leq \max \left\{\left\lfloor\frac{(n-4)^{2}}{16}\right\rfloor+1, n-3\right\} \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor,
\end{aligned}
$$

in which the equality holds if and only if $n=4$ and $G \cong K_{4}$ or $n=5$ and $G \cong K_{2} \vee T_{2}(3)$. Thus, the lemma holds.

Now we are in position to prove Theorem 3.
Proof of Theorem 3. For $4 \leq n \leq 6, K_{n}$ is $B_{4,1}$-free. Then $e x\left(n, K_{4}, B_{4,1}\right)=$ $\binom{n}{4}$.

Now we assume that $n \geq 7$. Let G be a $B_{4,1}$-free graph on n vertices. We will show that G can be made $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free by deleting vertices, and such an operation will not lose too many copies of K_{4}.

Claim 15. There exists a subset $V_{1} \subset V(G)$ such that $G_{1}=G-V_{1}$ is K_{6}-free and $\mathcal{N}\left(K_{4}, G_{1}\right) \geq \mathcal{N}\left(K_{4}, G\right)-2.5\left|V_{1}\right|$.

Proof. Assume that G contains K_{6} as a subgraph. Since G is $B_{4,1}$-free, no K_{4} can intersect the K_{6} in $1,2,3$ vertices. By deleting the 6 vertices of K_{6} from G, we lose $\binom{6}{4}=15$ copies of K_{4}. Repeating this process, we arrive at a K_{6}-free graph G_{1}. Let V_{1} be the set of deleted vertices. Clearly, $\mathcal{N}\left(K_{4}, G_{1}\right) \geq \mathcal{N}\left(K_{4}, G\right)-2.5\left|V_{1}\right|$.

Claim 16. Let H_{2} be a graph on six vertices as shown in Figure 5. There exists a subset $V_{2} \subset V\left(G_{1}\right)$ such that $G_{2}=G_{1}-V_{2}$ is $\left\{H_{1}, H_{2}\right\}$-free and $\mathcal{N}\left(K_{4}, G_{2}\right) \geq$ $\mathcal{N}\left(K_{4}, G_{1}\right)-4\left|V_{2}\right|$.

Figure 5. A graph H_{2} on six vertices.
Proof. Assume that G_{1} contains H_{2} as a subgraph. Without loss of generality, we further assume that $A=\{a, b, c, d, e, f\}$ is a subset of $V\left(G_{1}\right)$ such that $G_{1}[A]$ contains H_{2} (see Figure 5). We first claim that $V(K) \subset A$ for each copy K of K_{4} containing f. Otherwise, if $|V(K) \cap A|=1$, then K and $G_{1}[\{c, d, e, f\}]$ are both copies of K_{4} that share exactly one vertex f, contradicting the fact that G_{1} is $B_{4,1}$-free. If $|V(K) \cap A|=2$, by symmetry we may assume that $V(K) \cap A=\{e, f\}$. Then K and $G_{1}[\{b, c, d, e\}]$ are both copies of K_{4} that share exactly one vertex e, a contradiction. If $|V(K) \cap A|=3$, by symmetry we assume that $V(K) \cap A=\{d, e, f\}$. Then K and $G_{1}[\{a, b, c, e\}]$ are both copies of K_{4} that share exactly one vertex e, a contradiction. Thus, we conclude $V(K) \subset A$ for each copy K of K_{4} containing f. Since G_{1} is K_{6}-free, f has at most 4 neighbours within A. Now we delete f from G_{1} to destroy a copy of H_{2}. By doing this, we lose at most $\binom{4}{3}=4$ copies of K_{4} since they are contained in A. We do it iteratively until the resulting graph is H_{2}-free. Let G_{1}^{\prime} be the resulting graph and X_{1} be the set of deleted vertices. Clearly, we have $\mathcal{N}\left(K_{4}, G_{1}^{\prime}\right) \geq \mathcal{N}\left(K_{4}, G_{1}\right)-4\left|X_{1}\right|$.

Now G_{1}^{\prime} is $\left\{B_{4,1}, H_{2}\right\}$-free. Assume that G_{1}^{\prime} contains H_{1} as a subgraph. Let $B=\{h, i, j, k, l, m, n\}$ be a subset of $V\left(G_{1}^{\prime}\right)$ such that $G_{1}^{\prime}[B]$ contains H_{1} (see Figure 3). It is easy to see that $h m$ is not an edge in G_{1}^{\prime}. Otherwise, $G_{1}^{\prime}[\{h, i, j, k, m\}]$ is a copy of K_{5} and $G_{1}^{\prime}[\{h, i, j, k, m, l\}]$ contains a copy of H_{2}, a contradiction. Similarly, in and $j l$ are not present in G_{1}^{\prime}.

Now we claim that $V(K) \subset B \backslash\{m\}$ for each copy K of K_{4} in G_{1}^{\prime} containing h. Otherwise, we have one of the following cases.

- If $V(K) \cap B \subset\{h, l, n\}$, then K and $G_{1}^{\prime}[\{h, i, j, k\}]$ form a copy of $B_{4,1}$;
- if $|V(K) \cap\{i, j, k\}|=1$, then K and $G_{1}^{\prime}[\{i, j, k, m\}]$ form a copy of $B_{4,1}$;
- if $V(K) \cap B=\{h, i, j\}$ or $\{h, i, k\}$, then K and $G_{1}^{\prime}[\{j, k, m, n\}]$ form a copy of $B_{4,1}$;
- if $V(K) \cap B=\{h, j, k\}$, then K and $G_{1}^{\prime}[\{i, k, l, m\}]$ form a copy of $B_{4,1}$.

Since G_{1}^{\prime} is $B_{4,1}$-free, each of these cases leads to a contradiction.
By deleting h from G_{1}^{\prime}, we destroy a copy of H_{1} and lose at most 4 copies of K_{4}. We do it iteratively until the resulting graph is H_{1}-free. Let G_{2} be the resulting graph and X_{2} be the set of deleted vertices. Clearly, we have $\mathcal{N}\left(K_{4}, G_{2}\right) \geq \mathcal{N}\left(K_{4}, G_{1}^{\prime}\right)-4\left|X_{2}\right|$.

Let $V_{2}=X_{1} \cup X_{2}$. Clearly, G_{2} is $\left\{H_{1}, H_{2}\right\}$-free and $\mathcal{N}\left(K_{4}, G_{2}\right) \geq \mathcal{N}\left(K_{4}, G_{1}\right)-$ $4\left|V_{2}\right|$.

Claim 17. There exists a subset $V_{3} \subset V\left(G_{2}\right)$ such that $G_{3}=G_{2}-V_{3}$ is K_{5}-free and $\mathcal{N}\left(K_{4}, G_{3}\right) \geq \mathcal{N}\left(K_{4}, G_{2}\right)-4\left|V_{3}\right|$.

Proof. Since G_{2} is $\left\{B_{4,1}, H_{2}\right\}$-free, it is easy to see that each pair of copies of K_{5} in G_{2} is vertex-disjoint. Let T be a copy of K_{5} in G_{2}. We claim that $V(K) \subset V(T)$ for each copy K of K_{4} in G_{2} with $V(T) \cap V(K) \neq \emptyset$. Otherwise, if $|V(K) \cap V(T)| \leq 2$, then it is easy to find a copy of $B_{4,1}$ in G_{2}, a contradiction. If $|V(K) \cap V(T)|=3$, then we will find a copy of H_{2} in G_{2}, a contradiction. Thus, we conclude that $V(K) \subset V(T)$ for each copy K of K_{4} in G_{2} with $V(T) \cap V(K) \neq \emptyset$. By deleting a vertex $x \in V(T)$ from G_{2}, we lose 4 copies of K_{4}. Repeating this process, finally we arrive at a K_{5}-free graph G_{3}. Let V_{3} be the set of deleted vertices. Clearly, we have G_{3} is K_{5}-free and $\mathcal{N}\left(K_{4}, G_{3}\right) \geq \mathcal{N}\left(K_{4}, G_{2}\right)-4\left|V_{3}\right|$.

Let $x=\left|V_{1}\right|$ and $y=\left|V_{2} \cup V_{3}\right|$. If $n-x=4, \mathcal{N}\left(K_{4}, G\right) \leq 15\left\lfloor\frac{n}{6}\right\rfloor+1$. And if $n-x \leq 3, \mathcal{N}\left(K_{4}, G\right) \leq 15\left\lfloor\frac{n}{6}\right\rfloor$.

For $n-x \geq 5$, we have $n-x-y \geq 4$ since in Claim 16 and Claim 17 we only delete one vertex per operation. Note that G_{3} is $\left\{B_{4,1}, H_{1}, K_{5}\right\}$-free. By Lemma 10 we have

$$
\mathcal{N}\left(K_{4}, G_{3}\right) \leq\left\lfloor\frac{(n-x-y-2)^{2}}{4}\right\rfloor .
$$

By Claims 16 and 17, we have

$$
\begin{aligned}
\mathcal{N}\left(K_{4}, G\right) & \leq\left\lfloor\frac{(n-x-y-2)^{2}}{4}\right\rfloor+2.5 x+4 y=\left\lfloor\frac{(n-x-y-2)^{2}}{4}+2.5 x+4 y\right\rfloor \\
& \leq\left\lfloor\frac{(n-x-y-2)^{2}}{4}+4(x+y)\right\rfloor
\end{aligned}
$$

Let $z=x+y$. Since $f(z)=\frac{(n-z-2)^{2}}{4}+4 z$ is a convex function and $0 \leq z \leq n-4$, it follows that

$$
\mathcal{N}\left(K_{4}, G\right) \leq \max \left\{\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor, 4 n-15\right\} .
$$

For $n=7,15\left\lfloor\frac{n}{6}\right\rfloor=\binom{6}{4} \geq \max \left\{\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor, 4 n-15\right\}$ and $\binom{[6]}{4}$ is $B_{4,1}$-free. Then $\operatorname{ex}\left(7, K_{4}, B_{4,1}\right)=\binom{6}{4}=15$.

For $8 \leq n \leq 16,4 n-15 \geq \max \left\{\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor, 15\left\lfloor\frac{n}{6}\right\rfloor+1\right\} . K_{4} \vee K_{n-4}^{c}$ is a $B_{4,1}$-free graph with $4 n-15$ copies of K_{4}, where K_{n-4}^{c} is an empty graph with $n-4$ vertices. Then $e x\left(n, K_{4}, B_{4,1}\right)=4 n-15$ for $8 \leq n \leq 16$.

For $n \geq 17,\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor>\max \left\{4 n-15,15\left\lfloor\frac{n}{6}\right\rfloor+1\right\} . K_{2} \vee T_{2}(n-2)$ is a $B_{4,1}$-free graph with $\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$ copies of K_{4}. Then $e x\left(n, K_{4}, B_{4,1}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$ for $n \geq 17$. Moreover, by Lemma 10, the equality holds if and only if G is isomorphic to $K_{2} \vee T_{2}(n-2)$. Thus, the theorem holds.

By a similar argument, we can determine $e x\left(n, K_{3}, B_{3,0}\right)$.
Proof of Theorem 5. For $n \leq 5, K_{n}$ is $B_{3,0}$-free. Then $\operatorname{ex}\left(n, K_{3}, B_{3,0}\right)=\binom{n}{3}$ for $3 \leq n \leq 5$.

Let G be a $B_{3,0}$-free graph on vertex set $[n]$. If G contains K_{5} as a subgraph, let A be a subset of $V(G)$ such that $G[A]$ is a copy of K_{5}. Since G is $B_{3,0^{-}}$ free, every copy of K_{3} is included in $G[A]$. Thus $\mathcal{N}\left(K_{3}, G\right)=\binom{5}{3}=10 \leq$ $\min \left\{3 n-8,\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor\right\}$ for $n \geq 6$.

Now we assume that G is K_{5}-free and $n \geq 6$.

Figure 6. A graph H_{3} on five vertices.
Claim 18. There exists a subset $V^{\prime} \subset V(G)$ such that $G^{\prime}=G-V^{\prime}$ is $\left\{B_{3,0}, K_{4}\right\}$ free and $\mathcal{N}\left(K_{3}, G^{\prime}\right) \geq \mathcal{N}\left(K_{3}, G\right)-3\left|V^{\prime}\right|$.

Proof. Let H_{3} be a graph on five vertices as shown in Figure 6. If G contains H_{3} as subgraph, let $A=\{a, b, c, d, e\} \subset V(G)$ and $G[A]$ contains a copy of H_{3}. Since G is K_{5}-free, $V(K) \subset A$ for each copy K of K_{3} containing e and e has at most 3 neighbours in $\{a, b, c, d\}$. So the number of copies of K_{3} containing e is at most 3. Delete the vertex e from G and we lose at most 3 copies of K_{3}. We do it iteratively until the resulting graph \tilde{G} is H_{3}-free.

If \tilde{G} contains K_{4} as subgraph, let $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subset V(\tilde{G})$ and $\tilde{G}[B]$ is a copy of K_{4}. Since \tilde{G} is $\left\{H_{3}, B_{3,0}\right\}$-free, $V(K) \subset B$ for each copy K of K_{3} with $V(K) \cap V(B) \neq \emptyset$. Now we delete the vertex v_{1} from \tilde{G} and we lose 3 copies of K_{3}. Repeating this process, we arrive at a K_{4}-free graph G^{\prime}.

Let V^{\prime} be the set of vertices removed in the above two steps. Clearly, $\mathcal{N}\left(K_{3}, G^{\prime}\right) \geq \mathcal{N}\left(K_{3}, G\right)-3\left|V^{\prime}\right|$.

Let $\left|V\left(G^{\prime}\right)\right|=n^{\prime}$. Then $n^{\prime} \geq 3$ by Claim 18.
Claim 19. For $n^{\prime} \geq 3, \mathcal{N}\left(K_{3}, G^{\prime}\right) \leq\left\lfloor\frac{\left(n^{\prime}-1\right)^{2}}{4}\right\rfloor$.
Proof. Let v be a vertex in G^{\prime} with the maximal degree and $N \subset V\left(G^{\prime}\right)$ be the neighborhood of v. Since G^{\prime} is K_{4}-free, $G^{\prime}[N]$ is K_{3}-free.

If $|N| \leq 3, d(x) \leq 3$ for any $x \in V\left(G^{\prime}\right)$. For every $x \in V\left(G^{\prime}\right)$, the number of copies of K_{3} containing x is at most 2. Thus $\mathcal{N}\left(K_{3}, G^{\prime}\right) \leq\left\lfloor\frac{2 n^{\prime}}{3}\right\rfloor \leq\left\lfloor\frac{\left(n^{\prime}-1\right)^{2}}{4}\right\rfloor$ for $n^{\prime} \geq 4$. For $n^{\prime}=3, \mathcal{N}\left(K_{3}, G^{\prime}\right) \leq 1 \leq\left\lfloor\frac{\left(n^{\prime}-1\right)^{2}}{4}\right\rfloor$. So we assume that $|N| \geq 4$.

If there are three pairwise disjoint edges in $G^{\prime}[N]$, every copy of K_{3} in G^{\prime} contains v. Thus $\mathcal{N}\left(K_{3}, G^{\prime}\right)=\left\lfloor\frac{\left\lfloor\left. N\right|^{2}\right.}{4}\right\rfloor \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$.

If the matching number of $G^{\prime}[N]$ is 2 , let $v_{1} u_{1}$ and $v_{2} u_{2}$ be two disjoint edges in $G^{\prime}[N]$. Every edge in $G^{\prime}[N]$ intersects $\left\{v_{1}, v_{2}, u_{1}, u_{2}\right\}$. Since $G^{\prime}[N]$ is K_{3}-free, there are at most $|N|-4$ edges in $\left\{e \in E\left(G^{\prime}\right):\left|e \cap\left\{v_{i}, u_{i}\right\}\right|=1, \mid e \cap\right.$ $\left.\left(N \backslash\left\{v_{1}, v_{2}, u_{1}, u_{2}\right\}\right) \mid=1\right\}, i=1,2$. Moreover there are at most 4 edges in $G^{\prime}\left[\left\{v_{1}, v_{2}, u_{1}, u_{2}\right\}\right]$. Thus the number of edges in $G^{\prime}[N]$ is at most $2(|N|-4)+4=$ $2(|N|-2)$. For each copy K of K_{3} in G^{\prime} with $v \notin V(K), N[K] \cap\left\{v_{1}, u_{1}\right\} \neq$ $\emptyset, N[K] \cap\left\{v_{2}, u_{2}\right\} \neq \emptyset$ and K contains a vertex $u \in V\left(G^{\prime}\right) \backslash N \backslash\{v\}$. Since $G^{\prime}\left[\left\{v, v_{2}, u_{2}\right\}\right]$ is a copy of K_{3}, u has at most one neighbor among v_{1} and u_{1}. Analogously u has at most one neighbor among v_{2} and u_{2}. Then for each $u \in$ $V\left(G^{\prime}\right) \backslash N \backslash\{v\}$, there is at most one triangle containing u and the number of copies of K_{3} that does not contain v is at most $n^{\prime}-|N|-1$. Thus,

$$
\mathcal{N}\left(K_{3}, G^{\prime}\right) \leq 2(|N|-2)+\left(n^{\prime}-|N|-1\right)=n^{\prime}+|N|-5 \leq\left\lfloor\frac{\left(n^{\prime}-1\right)^{2}}{4}\right\rfloor .
$$

If the matching number of $G^{\prime}[N]$ is $1, G^{\prime}[N]$ is a star since $G^{\prime}[N]$ is K_{3}-free. Let u be the center of $G^{\prime}[N]$. Since $|N| \geq 4$, if K is a copy of K_{3} that does not contain v, then $u \in V(K)$. Note that $d(v) \geq d(u)$. The neighborhood of u is $N \backslash\{u\} \cup\{v\}$ and there are no edges in $G^{\prime}[N \backslash\{u\}]$. Then every copy of K_{3} contains v. Thus $\mathcal{N}\left(K_{3}, G^{\prime}\right) \leq|N-1| \leq n^{\prime}-2 \leq\left\lfloor\frac{\left(n^{\prime}-1\right)^{2}}{4}\right\rfloor$.

Let $\left|V^{\prime}\right|=x$. Combining Claim 18 and Claim 19, we have

$$
\mathcal{N}\left(K_{3}, G\right) \leq 3 x+\left\lfloor\frac{(n-x-1)^{2}}{4}\right\rfloor=\left\lfloor 3 x+\frac{(n-x-1)^{2}}{4}\right\rfloor
$$

Since $f(x)=3 x+\frac{(n-x-1)^{2}}{4}$ is a convex function and $0 \leq x \leq n-3$,

$$
\mathcal{N}\left(K_{3}, G\right) \leq \max \left\{\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor, 3 n-8\right\} .
$$

When $6 \leq n \leq 10,3 n-8 \geq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$. When $n \geq 11,3 n-8 \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$.
Moreover, $K_{1} \vee T_{r-1}(n-1)$ is a $B_{3,0}$-free graph with $\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$ copies of K_{3}, and $K_{3} \vee K_{n-3}^{c}$ is a $B_{3,0}$-free graph with $3 n-8$ copies of K_{3}, where K_{n-3}^{c} is an empty graph with $n-3$ vertices. Thus $e x\left(n, K_{3}, B_{3,0}\right)=3 n-8$ for $6 \leq n \leq 10$; and $e x\left(n, K_{3}, B_{3,0}\right)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$ for $n \geq 11$.

3. The Values of $e x\left(n, K_{r}, B_{r, 1}\right)$ and $e x\left(n, K_{r}, B_{r, 0}\right)$

By using Füredi's structure theorem, Frankl and Füredi [4] determined the maximum number of hyperedges in an r-uniform hypergraph without two hyperedges sharing exactly s vertices for $r \geq 2 s+2$. In this section, we determine $e x\left(n, K_{r}, B_{r, 1}\right)$ and $e x\left(n, K_{r}, B_{r, 0}\right)$ by following a similar approach.

First, we recall a result due to Frankl and Füredi in the intersection closed family (Lemma 5.5 in [4]). Let X be a finite set and 2^{X} be the family of all the subsets of X. We say that $\mathcal{I} \subset 2^{X}$ is intersection closed if for any $I, I^{\prime} \in \mathcal{I}$, $I \cap I^{\prime} \in \mathcal{I}$. We say $I \subset X$ is covered by \mathcal{I} if there exists an $I^{\prime} \in \mathcal{I}$ such that $I \subseteq I^{\prime}$.

Theorem 20 (Frankl and Füredi [4]). Let r and s be positive integers with $r \geq 2 s+3$ and let F be an r-element set. Suppose that $\mathcal{I} \subset 2^{F} \backslash\{F\}$ is an intersection closed family such that $|I| \neq s$ for any $I \in \mathcal{I}$ and all the $(r-s-2)$ element subsets of F are covered by \mathcal{I}. Then there exists an $(s+1)$-element subset $A(F)$ of F such that

$$
\{I: A(F) \subset I \subsetneq F\} \subset \mathcal{I} .
$$

We use $[n]$ to denote the set $\{1, \ldots, n\}$ and use $\binom{[n]}{r}$ to denote the collection of all r-element subsets of $[n]$. Let $\mathcal{F} \subset\binom{[n]}{r}$ be a hypergraph. We call $\mathcal{F} r$-partite if there exists a partition $[n]=X_{1} \cup \cdots \cup X_{r}$ such that $\left|F \cap X_{i}\right|=1$ for all $F \in \mathcal{F}$ and $i \in\{1,2, \ldots, r\}$.

We adopt the statement of Füredi's structure theorem given by Frankl and Tokushige in [5]. For clarity purpose, we recall some definitions from [5]. Let $\mathcal{F} \subset\binom{[n]}{r}$ be an r-partite hypergraph with partition $[n]=X_{1} \cup \cdots \cup X_{r}$. For any $F \in \mathcal{F}$, define the restriction of \mathcal{F} on F by

$$
\mathcal{I}(F, \mathcal{F})=\left\{F^{\prime} \cap F: F^{\prime} \in \mathcal{F} \backslash\{F\}\right\} .
$$

A set of p hyperedges F_{1}, \ldots, F_{p} in \mathcal{F} is called a p-sunflower if $F_{i} \cap F_{j}=C$ for every $1 \leq i<j \leq p$ and some set C. The set C is called center of the p-sunflower.

Füredi [7] proved the following fundamental result, which was conjectured by Frankl. It roughly says that every r-uniform hypergraph \mathcal{F} contains a large r-partite subhypergraph \mathcal{F}^{*} satisfying that $\mathcal{I}\left(F, \mathcal{F}^{*}\right)$ is isomorphic to $\mathcal{I}\left(F^{\prime}, \mathcal{F}^{*}\right)$ for any $F, F^{\prime} \in \mathcal{F}^{*}$.
Theorem 21 (Füredi [7]). For positive integers r and p, there exists a positive constant $c=c(r, p)$ such that every hypergraph $\mathcal{F} \subset\binom{[n]}{r}$ contains an r-partite subhypergraph \mathcal{F}^{*} with partition $[n]=X_{1} \cup \cdots \cup X_{r}$ satisfying (i)-(iv).
(i) $\left|\mathcal{F}^{*}\right| \geq c|\mathcal{F}|$.
(ii) For any $F_{1}, F_{2} \in \mathcal{F}^{*}, \mathcal{I}\left(F_{1}, \mathcal{F}^{*}\right)$ is isomorphic to $\mathcal{I}\left(F_{2}, \mathcal{F}^{*}\right)$.
(iii) For $F \in \mathcal{F}^{*}, \mathcal{I}\left(F, \mathcal{F}^{*}\right)$ is intersection closed.
(iv) For $F \in \mathcal{F}^{*}$ and every $I \in \mathcal{I}\left(F, \mathcal{F}^{*}\right)$, I is the center of a p-sunflower in \mathcal{F}^{*}.

We need the following two results. The first one is due to Deza, Erdős and Frankl [2].

Lemma 22 (Deza, Erdős and Frankl [2]). Suppose that $\left\{E_{1}, \ldots, E_{r+1}\right\}$ and $\left\{F_{1}, \ldots, F_{r+1}\right\}$ are both $(r+1)$-sunflowers in r-uniform hypergraphs with centers C_{1} and C_{2}, respectively. Then there exist i and j such that $E_{i} \cap F_{j}=C_{1} \cap C_{2}$.

The second one is due to Zykov [18]. He showed that the Turán graph maximizes the number of s-cliques in n-vertex K_{t+1}-free graphs for $s \leq t$.
Theorem 23 (Zykov [18]). For $s \leq t$,

$$
e x\left(n, K_{s}, K_{t+1}\right)=\mathcal{N}\left(K_{s}, T_{t}(n)\right),
$$

and $T_{t}(n)$ is the unique graph attaining the maximum number of copies of K_{s}.
Let $\mathcal{F} \subset\binom{[n]}{r}$ be a hypergraph and $x \in[n]$. Define

$$
N_{\mathcal{F}}(x)=\left\{T \in\binom{[n] \backslash\{x\}}{r-1}: T \cup\{x\} \in \mathcal{F}\right\} .
$$

The degree of x in \mathcal{F}, denoted by $\operatorname{deg}_{\mathcal{F}}(x)$, is the cardinality of $N_{\mathcal{F}}(x)$.
Now we are ready to prove Theorem 4.
Proof of Theorem 4. Let G be a $B_{r, 1}$-free graph on $[n]$ with the maximum number of copies of K_{r}. Since $K_{2} \vee T_{r-2}(n-2)$ is $B_{r, 1}$-free, we may assume that $\mathcal{N}\left(K_{r}, G\right) \geq \mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)$.

Let

$$
\mathcal{F}=\left\{F \in\binom{[n]}{r}: G[F] \text { is a clique }\right\} .
$$

Clearly, $\left|F_{1} \cap F_{2}\right| \neq 1$ for any $F_{1}, F_{2} \in \mathcal{F}$ since G is $B_{r, 1}$-free. Now we apply Theorem 21 with $p=r+1$ to \mathcal{F} and obtain $\mathcal{F}_{1}=\mathcal{F}^{*}$ satisfying (i)-(iv). Then apply Theorem 21 to $\mathcal{F}-\mathcal{F}_{1}$ to obtain $\mathcal{F}_{2}=\left(\mathcal{F}-\mathcal{F}_{1}\right)^{*}$, in the i-th step we obtain $\mathcal{F}_{i}=\left(\mathcal{F}-\left(\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{i-1}\right)\right)^{*}$. We stop if there is an $F_{0} \in \mathcal{F}_{i}$ and an $(r-3)$-element subset B_{0} of F_{0} such that B_{0} is not covered by $\mathcal{I}\left(F_{0}, \mathcal{F}_{i}\right)$. Suppose that the procedure stops in the m-th step. By Theorem 21(ii), for every $F \in \mathcal{F}_{m}$ there is an $(r-3)$-element subset B of F such that B is not covered by $\mathcal{I}\left(F, \mathcal{F}_{m}\right)$.

Claim 24. $\left|\mathcal{F}-\left(\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{m-1}\right)\right| \leq c^{\prime}\binom{n}{r-3}$ for some $c^{\prime}>0$.
Proof. For any $F \in \mathcal{F}_{m}$, let B be an $(r-3)$-element subset of F that is not covered by $\mathcal{I}\left(F, \mathcal{F}_{m}\right)$. Then it follows that $B \nsubseteq E \cap F$ for any $E \in \mathcal{F}_{m} \backslash\{F\}$, that is, F is the only hyperedge in \mathcal{F}_{m} that contains B. Thus $\left|\mathcal{F}_{m}\right| \leq\binom{ n}{r-3}$. Now by Theorem 21(i),

$$
\left|\mathcal{F}-\left(\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{m-1}\right)\right| \leq c^{-1}\left|\mathcal{F}_{m}\right| \leq c^{\prime}\binom{n}{r-3}
$$

Let $i \in\{1,2, \ldots, m-1\}$ and $F \in \mathcal{F}_{i}$. By Theorem 21(iii), $\mathcal{I}\left(F, \mathcal{F}_{i}\right)$ is intersection closed. Since $\left|F_{1} \cap F_{2}\right| \neq 1$ for any $F_{1}, F_{2} \in \mathcal{F}_{i},|I| \neq 1$ for each $I \in$ $\mathcal{I}\left(F, \mathcal{F}_{i}\right)$. Now apply Theorem 20 with $s=1$ to $\mathcal{I}\left(F, \mathcal{F}_{i}\right)$, we obtain a 2 -element subset $A(F)$ of F such that

$$
\{I: A(F) \subset I \subsetneq F\} \subset \mathcal{I}\left(F, \mathcal{F}_{i}\right)
$$

Let $A_{1}, A_{2}, \ldots, A_{h}$ be the list of 2-element sets for which $A_{j}=A(F)$ for some $F \in \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{m-1}$. For $j=1, \ldots, h$, let

$$
\mathcal{H}_{j}=\left\{F \in \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{m-1}: A(F)=A_{j}\right\}
$$

and

$$
V\left(\mathcal{H}_{j}\right)=\bigcup_{F \in \mathcal{H}_{j}} F
$$

Claim 25. $V\left(\mathcal{H}_{1}\right), \ldots, V\left(\mathcal{H}_{h}\right)$ are pairwise disjoint.
Proof. Suppose for contradiction that $\left|V\left(\mathcal{H}_{1}\right) \cap V\left(\mathcal{H}_{2}\right)\right| \geq 1$. It follows that there exist $F_{1} \in \mathcal{H}_{1}$ and $F_{2} \in \mathcal{H}_{2}$ such that $\left|F_{1} \cap F_{2}\right| \geq 1$. Then we can find two sets C_{1} and C_{2} satisfying $A_{1} \subset C_{1} \subsetneq F_{1}, A_{2} \subset C_{2} \subsetneq F_{2}$ and $\left|C_{1} \cap C_{2}\right|=1$ in the following way. If $\left|A_{1} \cap A_{2}\right|=1$, then let $C_{1}=A_{1}$ and $C_{2}=A_{2}$. If $A_{1} \cap A_{2}=\emptyset$, then let $C_{1}=A_{1} \cup\{x\}$ and $C_{2}=A_{2} \cup\{x\}$ for some $x \in F_{1} \cap F_{2}$.

Since $F_{1} \in \mathcal{F}_{i}$ for some $i \in\{1, \ldots, m-1\}$ and

$$
C_{1} \in\left\{I: A_{1} \subset I \subsetneq F_{1}\right\} \subset \mathcal{I}\left(F_{1}, \mathcal{F}_{i}\right)
$$

by Theorem 21(iv) C_{1} is the center of an $(r+1)$-sunflower in \mathcal{F}_{i}. Therefore C_{1} is the center of an $(r+1)$-sunflower in \mathcal{F}. Similarly, C_{2} is also the center of an $(r+1)$-sunflower in \mathcal{F}. By Lemma 22, there exist $F_{1}^{\prime}, F_{2}^{\prime} \in \mathcal{F}$ satisfying $\left|F_{1}^{\prime} \cap F_{2}^{\prime}\right|=\left|C_{1} \cap C_{2}\right|=1$, which contradicts the fact that $\left|F_{1} \cap F_{2}\right| \neq 1$ for any $F_{1}, F_{2} \in \mathcal{F}$. Thus the claim holds.

Assume that $A_{i}=\left\{u_{i}, v_{i}\right\}$ for $i=1, \ldots, h$. Let G_{i} be the graph on the vertex set $V\left(\mathcal{H}_{i}\right)$ with the edge set

$$
E\left(G_{i}\right)=\left\{u v:\{u, v\} \subset F \in \mathcal{H}_{i}\right\} .
$$

Obviously, G_{i} is a subgraph of G and $v u_{i}, v v_{i}, u_{i} v_{i} \in E\left(G_{i}\right)$ for each $v \in V\left(\mathcal{H}_{i}\right) \backslash$ A_{i}.

Claim 26. $G_{i}-A_{i}$ is K_{r-1}-free for $i=1, \ldots, h$.
Proof. By symmetry, we only need to show that $G_{1}-A_{1}$ is K_{r-1}-free. Suppose for contradiction that $\left\{a_{1}, a_{2}, \ldots, a_{r-1}\right\} \subset V\left(G_{1}\right) \backslash\left\{u_{1}, v_{1}\right\}$ induces a copy of K_{r-1} in $G_{1}-A_{1}$. Since $u_{1} a_{j} \in E\left(G_{1}\right)$ for each $j=1, \ldots, r-1,\left\{u_{1}, a_{1}, a_{2}, \ldots, a_{r-1}\right\}$ induces a copy of K_{r} in G. Note that $A_{1}=\left\{u_{1}, v_{1}\right\}$ is the center of an $(r+1)$ sunflower in \mathcal{F}. Let $F_{1}, F_{2}, \ldots, F_{r+1}$ be such a sunflower with center A_{1}. Then there exists some F_{j} with $\left(F_{j} \backslash A_{1}\right) \cap\left\{a_{1}, a_{2}, \ldots, a_{r-1}\right\}=\emptyset$. It follows that $F_{j} \cap\left\{u_{1}, a_{1}, a_{2}, \ldots, a_{r-1}\right\}=\left\{u_{1}\right\}$. By the definition of \mathcal{F}, the subgraph of G induced by $F_{j} \cup\left\{u_{1}, a_{1}, a_{2}, \ldots, a_{r-1}\right\}$ contains $B_{r, 1}$. This contradicts the fact that G is $B_{r, 1}$-free and the claim follows.

Let $x_{i}=\left|V\left(\mathcal{H}_{i}\right)\right|$ for $i=1,2, \ldots, h$ and assume that $x_{1} \geq x_{2} \geq \cdots \geq x_{h}$. By Claim 25, $x_{1}+\cdots+x_{h} \leq n$.

Claim 27. $x_{1} \geq n-c^{\prime \prime}$, for some constant $c^{\prime \prime}>0$.
Proof. By Claim 26 and Theorem 23, the number of copies of K_{r-2} in $G_{i}-A_{i}$ is at most $\mathcal{N}\left(K_{r-2}, T_{r-2}\left(x_{i}-2\right)\right)$. It follows that

$$
\left|\mathcal{H}_{i}\right| \leq \mathcal{N}\left(K_{r-2}, T_{r-2}\left(x_{i}-2\right)\right)
$$

for each $i=1, \ldots, h$. By Claims 24 and 25 ,

$$
\begin{align*}
\mathcal{N}\left(K_{r}, G\right) & =\left|\mathcal{F}-\left(\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{m-1}\right)\right|+\left|\left(\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{m-1}\right)\right| \\
& =\left|\mathcal{F}-\left(\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{m-1}\right)\right|+\left|\mathcal{H}_{1}\right|+\cdots+\left|\mathcal{H}_{h}\right| \tag{1}\\
& \leq c^{\prime}\binom{n}{r-3}+\sum_{i=1}^{h} \mathcal{N}\left(K_{r-2}, T_{r-2}\left(x_{i}-2\right)\right) .
\end{align*}
$$

Since

$$
\mathcal{N}\left(K_{r-2}, T_{r-2}\left(x_{i}-2\right)\right) \leq\left(\frac{x_{i}-2}{r-2}\right)^{r-2}
$$

we have

$$
\begin{align*}
\mathcal{N}\left(K_{r}, G\right) & \leq c^{\prime}\binom{n}{r-3}+\sum_{i=1}^{h}\left(\frac{x_{i}-2}{r-2}\right)^{r-2} \\
& \leq c^{\prime}\binom{n}{r-3}+\sum_{i=1}^{h}\left(x_{i}-2\right) \cdot \frac{\left(x_{1}-2\right)^{r-3}}{(r-2)^{r-2}} \tag{2}\\
& \leq c^{\prime}\binom{n}{r-3}+\frac{\left(x_{1}-2\right)^{r-3}(n-2)}{(r-2)^{r-2}}
\end{align*}
$$

By our assumption,

$$
\begin{equation*}
\mathcal{N}\left(K_{r}, G\right) \geq \mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right) \geq\left(\frac{n-r}{r-2}\right)^{r-2} \tag{3}
\end{equation*}
$$

Combining (2) and (3), we obtain that

$$
1 \leq c^{\prime}\binom{n}{r-3}\left(\frac{r-2}{n-r}\right)^{r-2}+\frac{n-2}{n-r} \cdot\left(\frac{x_{1}-2}{n-r}\right)^{r-3}
$$

Since n is sufficiently large, we get $x_{1} \geq(1-o(1)) n$.
Let n_{1}, n be two integers with $0<n_{1}<n$ and let H be an r-partite Turán graph on n vertices with vertex classes $V_{1}, V_{2}, \ldots, V_{r}$. Then there exist partitions $V_{j}=V_{j, 1} \cup V_{j, 2}$ for each $j=1,2, \ldots, r$ such that

$$
\sum_{j=1}^{r}\left|V_{j, 1}\right|=n_{1}
$$

and both $H\left[\bigcup_{j=1}^{r} V_{j, 1}\right]$ and $H\left[\bigcup_{j=1}^{r} V_{j, 2}\right]$ are Turán graphs. There are $\mathcal{N}\left(K_{r}\right.$, $\left.T_{r}\left(n_{1}\right)\right)$ copies of K_{r} in $H\left[\bigcup_{j=1}^{r} V_{j, 1}\right]$, and $\mathcal{N}\left(K_{r}, T_{r}\left(n-n_{1}\right)\right)$ copies of K_{r} in $H\left[\bigcup_{j=1}^{r} V_{j, 2}\right]$. Moreover, the number of copies of K_{r} in H with $\mid V(K) \cap$ $\left(\bigcup_{j=1}^{r} V_{j, 1}\right) \mid=r-1$ and $\left|V(K) \cap\left(\bigcup_{j=1}^{r} V_{j, 2}\right)\right|=1$ is at most $\left\lfloor\frac{n-n_{1}}{r}\right\rfloor \cdot \mathcal{N}\left(K_{r-1}\right.$, $\left.T_{r}\left(n_{1}\right)\right)$. Thus,

$$
\mathcal{N}\left(K_{r}, T_{r}(n)\right)>\mathcal{N}\left(K_{r}, T_{r}\left(n_{1}\right)\right)+\mathcal{N}\left(K_{r}, T_{r}\left(n-n_{1}\right)\right)
$$

$$
\begin{equation*}
+\left\lfloor\frac{n-n_{1}}{r}\right\rfloor \cdot \mathcal{N}\left(K_{r-1}, T_{r}\left(n_{1}\right)\right) \tag{4}
\end{equation*}
$$

Apply the inequality (4) inductively, we have

$$
\begin{equation*}
\sum_{i=2}^{h} \mathcal{N}\left(K_{r-2}, T_{r-2}\left(x_{i}-2\right)\right)<\mathcal{N}\left(K_{r-2}, T_{r-2}\left(n-x_{1}\right)\right) \tag{5}
\end{equation*}
$$

By (1) and (5), we see that

$$
\mathcal{N}\left(K_{r}, G\right) \leq c^{\prime}\binom{n}{r-3}+\mathcal{N}\left(K_{r-2}, T_{r-2}\left(x_{1}-2\right)\right)+\mathcal{N}\left(K_{r-2}, T_{r-2}\left(n-x_{1}\right)\right)
$$

Apply the inequality (4) again, we obtain that

$$
\mathcal{N}\left(K_{r}, G\right)
$$

(6) $\leq c^{\prime}\binom{n}{r-3}+\mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)-\left\lfloor\frac{n-x_{1}+2}{r}\right\rfloor \cdot \mathcal{N}\left(K_{r-3}, T_{r-2}\left(x_{1}-2\right)\right)$

$$
\leq \mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)+c^{\prime}\binom{n}{r-3}-\frac{n-x_{1}-r}{r} \cdot(r-2)\left(\frac{x_{1}-r}{r-2}\right)^{r-3}
$$

It follows from (3) and (6) that

$$
c^{\prime}\binom{n}{r-3} \geq \frac{n-x_{1}-r}{r} \cdot(r-2)\left(\frac{x_{1}-r}{r-2}\right)^{r-3}
$$

Since $x_{1} \geq(1-o(1)) n$, we arrive at

$$
c^{\prime}\binom{n}{r-3} \geq \frac{n-x_{1}-r}{r} \cdot(r-2)\left(\frac{n-o(n)-r}{r-2}\right)^{r-3}
$$

It follows that $x_{1} \geq n-c^{\prime \prime}$ for some $c^{\prime \prime}>0$.
Let us define

$$
\mathcal{K}=\left\{F \in \mathcal{F}: \begin{array}{l}
A_{1} \subset F \text { and for each } I \text { with } A_{1} \subset I \subsetneq F \\
I \text { is the center of an }(r+1) \text {-sunflower in } \mathcal{F}
\end{array}\right\}
$$

Obviously, we have $\mathcal{H}_{1} \subset \mathcal{K}$. Define

$$
\mathcal{A}=\left\{F \in \mathcal{F}: A_{1} \subset F, F \notin \mathcal{K}\right\} \text { and } \mathcal{B}=\mathcal{F}-\mathcal{K}-\mathcal{A}
$$

Note that $V(\mathcal{K})=\bigcup_{F \in \mathcal{K}} F$ and $V(\mathcal{B})=\bigcup_{F \in \mathcal{B}} F$. We claim that $V(\mathcal{K}) \cap V(\mathcal{B})=\emptyset$. Otherwise, there exist $F_{1} \in \mathcal{K}$ and $F_{2} \in \mathcal{B}$ with $\left|F_{1} \cap F_{2}\right| \geq 1$. Note that $A_{1} \subset F_{1}$ and $A_{1} \not \subset F_{2}$. If $F_{2} \cap A_{1}=\emptyset$, let $C=A_{1} \cup\{x\}$ with $x \in F_{1} \cap F_{2}$. If $F_{2} \cap A_{1} \neq \emptyset$, then let $C=A_{1}$. It is easy to see that $\left|C \cap F_{2}\right|=1$ in both of the two cases. Clearly, we have $A_{1} \subset C \subsetneq F_{1}$. By the definition of \mathcal{K}, C is center of an $(r+1)$-sunflower
in \mathcal{F}. Let $E_{1}, E_{2}, \ldots, E_{r+1}$ be such a sunflower. Since $\left|F_{2} \backslash C\right|<r$, there exists some E_{j} such that $\left(E_{j} \backslash C\right) \cap\left(F_{2} \backslash C\right)=\emptyset$. Then we have $\left|E_{j} \cap F_{2}\right|=\left|C \cap F_{2}\right|=1$, a contradiction. Thus $V(\mathcal{K}) \cap V(\mathcal{B})=\emptyset$.

By Claim 27, we have

$$
\begin{equation*}
|V(\mathcal{B})| \leq n-V(\mathcal{K}) \leq n-V\left(\mathcal{H}_{1}\right) \leq c^{\prime \prime} \tag{7}
\end{equation*}
$$

Let $\mathcal{C}=\{F \in \mathcal{A}: F \cap V(\mathcal{B})=\emptyset\}, \mathcal{K}^{\prime}=\mathcal{K} \cup \mathcal{C}$ and $\mathcal{A}^{\prime}=\mathcal{A} \backslash \mathcal{C}$. Clearly, $V\left(\mathcal{K}^{\prime}\right) \cap$ $V(\mathcal{B})=\emptyset, F \cap V\left(\mathcal{K}^{\prime}\right) \supset A_{1}$ and $F \cap V(\mathcal{B}) \neq \emptyset$ for each $F \in \mathcal{A}^{\prime}$.
Claim 28. $\mathcal{B}=\emptyset$.
Proof. Suppose for contradiction that there exists $B \in \mathcal{B}$. We first show that the degree of each vertex x in B is small. By (7), we have

$$
\operatorname{deg}_{\mathcal{B}}(x) \leq\binom{|V(\mathcal{B})|}{r-1} \leq\binom{ c^{\prime \prime}}{r-1} .
$$

Note that $A_{1} \subset F$ for any $F \in \mathcal{F} \backslash \mathcal{B}$ and $\left|F \cap F^{\prime}\right| \neq 1$ for any $F, F^{\prime} \in \mathcal{F}$. We have $A_{1} \subset B^{\prime}$ and $\left|B^{\prime} \cap B\right| \geq 2$ for any $B^{\prime} \in \mathcal{F} \backslash \mathcal{B}$ with $x \in B^{\prime}$. Thus, the number of hyperedges containing x in $\mathcal{F} \backslash \mathcal{B}$ is at most $|B \backslash\{x\}| \cdot\binom{n}{r-4}=(r-1)\binom{n}{r-4}$. Therefore,

$$
\operatorname{deg}_{\mathcal{F}}(x) \leq \operatorname{deg}_{\mathcal{B}}(x)+(r-1)\binom{n}{r-4} \leq\binom{ c^{\prime \prime}}{r-1}+(r-1)\binom{n}{r-4} .
$$

Let $u \in V\left(\mathcal{K}^{\prime}\right) \backslash A_{1}$ be the vertex with

$$
\operatorname{deg}_{\mathcal{K}^{\prime}}(u)=\max \left\{\operatorname{deg}_{\mathcal{K}^{\prime}}(v): v \in V\left(\mathcal{K}^{\prime}\right) \backslash A_{1}\right\} .
$$

We show that $\operatorname{deg}_{\mathcal{K}^{\prime}}(u) \geq c^{\prime \prime \prime} n^{r-3}$ for some constant $c^{\prime \prime \prime}>0$. Since $F \cap V(\mathcal{B}) \neq \emptyset$ for each $F \in \mathcal{A}^{\prime}$, we have

$$
\left|\mathcal{A}^{\prime}\right|+|\mathcal{B}| \leq \sum_{v \in V(\mathcal{B})} \operatorname{deg}_{\mathcal{F}}(v) .
$$

If $\operatorname{deg}_{\mathcal{K}^{\prime}}(u)=o\left(n^{r-3}\right)$, then

$$
\begin{aligned}
\mathcal{N}\left(K_{r}, G\right) & =\left|\mathcal{K}^{\prime}\right|+\left|\mathcal{A}^{\prime}\right|+|\mathcal{B}| \leq \frac{1}{r-2} \sum_{v \in V\left(\mathcal{K}^{\prime}\right) \backslash A_{1}} \operatorname{deg}_{\mathcal{K}^{\prime}}(v)+\sum_{v \in V(\mathcal{B})} \operatorname{deg}_{\mathcal{F}}(v) \\
& \leq o\left(n^{r-2}\right)+c^{\prime \prime}\left((r-1)\binom{n}{r-4}+\binom{c^{\prime \prime}}{r-1}\right)
\end{aligned}
$$

which contradicts the assumption that $\mathcal{N}\left(K_{r}, G\right) \geq \mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)$. Thus $\operatorname{deg}_{\mathcal{K}^{\prime}}(u) \geq c^{\prime \prime \prime} n^{r-3}$ for some constant $c^{\prime \prime \prime}>0$.

Since n is sufficiently large, for each $x \in B$ we have

$$
\operatorname{deg}_{\mathcal{F}}(u) \geq \operatorname{deg}_{\mathcal{K}^{\prime}}(u) \geq c^{\prime \prime \prime} n^{r-3}>\operatorname{deg}_{\mathcal{F}}(x)
$$

We claim that there exists $x_{0} \in B$ such that $u x_{0}$ is not an edge of G. Otherwise, if $u x \in E(G)$ for all $x \in B$, then $\{u\} \cup T$ induces a copy of K_{r} in G for any $T \in\binom{B}{r-1}$. Since $\operatorname{deg}_{\mathcal{K}^{\prime}}(u) \geq c^{\prime \prime \prime} n^{r-3}$, there exists an hyperedge K in \mathcal{K}^{\prime} containing u. Recall that $V\left(\mathcal{K}^{\prime}\right) \cap V(\mathcal{B})=\emptyset$. Then $\{u\} \cup T \cup K$ induces a copy of $B_{r, 1}$ in G, a contradiction. Thus, there exists $x_{0} \in B$ such that $u x_{0}$ is not an edge of G.

Now let G^{\prime} be a graph obtained from G by deleting edges incident to x_{0} and adding edges in $\left\{x_{0} w: w \in N(u)\right\}$. We claim that G^{\prime} is $B_{r, 1}$-free. Otherwise, there exist two copies K, K^{\prime} of K_{r} in G^{\prime} with $V(K) \cap V\left(K^{\prime}\right)=\{y\}$ for some $y \in V\left(G^{\prime}\right)$. Since G is $B_{r, 1}$ free, we may assume that $x_{0} \in V(K)$. If $u \notin V\left(K^{\prime}\right)$, then $V(K) \cup V\left(K^{\prime}\right) \backslash\left\{x_{0}\right\} \cup\{u\}$ induces a copy of $B_{r, 1}$ in G, a contradiction. If $u \in V\left(K^{\prime}\right)$, then $y \neq x_{0}$ since $x_{0} y$ is not an edge in G^{\prime}. Moreover, $V\left(K^{\prime}\right) \notin \mathcal{B}$ and $V(K) \backslash\left\{x_{0}\right\} \cup\{u\} \notin \mathcal{B}$ since $u \in V\left(\mathcal{K}^{\prime}\right)$. By the definition of \mathcal{K}^{\prime} and \mathcal{A}^{\prime}, we see that both $V\left(K^{\prime}\right)$ and $V(K) \backslash\left\{x_{0}\right\} \cup\{u\}$ contains A_{1}. But now we have $V(K) \cap V\left(K^{\prime}\right) \supset A_{1}$ since $u, x_{0} \notin A_{1}$, which contradicts our assumption that $V(K) \cap V\left(K^{\prime}\right)=\{y\}$. Thus G^{\prime} is $B_{r, 1}$ free.

Since $\operatorname{deg}_{\mathcal{F}}(u)>\operatorname{deg}_{\mathcal{F}}\left(x_{0}\right)$, we have

$$
\mathcal{N}\left(K_{r}, G^{\prime}\right)=\mathcal{N}\left(K_{r}, G\right)-\operatorname{deg}_{\mathcal{F}}\left(x_{0}\right)+\operatorname{deg}_{\mathcal{F}}(u)>\mathcal{N}\left(K_{r}, G\right)
$$

which contradicts the maximality of the number of copies of K_{r} in G. Thus, the claim follows.

By Claim 28, A_{1} is contained in every hyperedge of \mathcal{F}. Recall that $A_{1}=$ $\left\{u_{1}, v_{1}\right\}$. It follows that $x u_{1}, x v_{1} \in E(G)$ for any $x \in V(G) \backslash A_{1}$. We claim that $G \backslash A_{1}$ is K_{r-1}-free. Otherwise, let $\left\{a_{1}, a_{2}, \ldots, a_{r-1}\right\} \subset V(G) \backslash A_{1}$ be a set that induces a copy of K_{r-1} in $G-A_{1}$. Since $u_{1} a_{j} \in E(G)$ for each $j=1, \ldots, r-1$, $\left\{u_{1}, a_{1}, a_{2}, \ldots, a_{r-1}\right\}$ induces a copy of K_{r} in G. Note that A_{1} is the center of an $(r+1)$-sunflower in \mathcal{F}. Let $F_{1}, F_{2}, \ldots, F_{r+1}$ be such a sunflower with center A_{1}. Then there exists some F_{j} with $\left(F_{j} \backslash A_{1}\right) \cap\left\{a_{1}, a_{2}, \ldots, a_{r-1}\right\}=\emptyset$. It follows that $F_{j} \cap\left\{u_{1}, a_{1}, a_{2}, \ldots, a_{r-1}\right\}=\left\{u_{1}\right\}$. By the definition of \mathcal{F}, the subgraph of G induced by $F_{j} \cup\left\{u_{1}, a_{1}, a_{2}, \ldots, a_{r-1}\right\}$ contains $B_{r, 1}$, a contradiction. Thus $G-A_{1}$ is K_{r-1}-free.

By Theorem 23, there are at most $\mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)$ copies of K_{r-2} in $G-A_{1}$ and Turán graph $T_{r-2}(n-2)$ is the unique graph attaining the maximum number. Thus, the number of K_{r} in G is at most $\mathcal{N}\left(K_{r-2}, T_{r-2}(n-2)\right)$ and $K_{2} \vee T_{r-2}(n-2)$ is the unique graph attaining the maximum number of copies of K_{r}.

Now we prove Theorem 6 using Füredi's structure theorem.

Proof of Theorem 6. Let G be a $B_{r, 0}$-free graph on vertex set $[n]$ and let

$$
\mathcal{F}=\left\{F \in\binom{[n]}{r}: G[F] \text { is a clique }\right\} .
$$

Since G is $B_{r, 0}$-free, \mathcal{F} is an intersecting family. We apply Theorem 21 with $p=r+1$ to \mathcal{F} and obtain \mathcal{F}^{*}. Let $\mathcal{I}=\mathcal{I}\left(F, \mathcal{F}^{*}\right)$ for some fixed $F \in \mathcal{F}^{*}$. From Theorem 21(iv) and Lemma 22, we have $\left|I \cap I^{\prime}\right| \geq 1$ for any $I, I^{\prime} \in \mathcal{I}$. Let I_{0} be a minimal set in \mathcal{I}. Since \mathcal{I} is intersection closed, $I_{0} \subset I$ for all $I \in \mathcal{I}$. Otherwise we have $I_{0} \cap I \in \mathcal{I}$ and $\left|I \cap I_{0}\right|<\left|I_{0}\right|$, which contradicts the minimality of I_{0}. Now we distinguish two cases.

Case 1. $\left|I_{0}\right|=1$. Let $I_{0}=\{v\}$. By Theorem 21(iv), $\{v\}$ is center of an $(r+1)$-sunflower in \mathcal{F}^{*}. Let $F_{1}, F_{2}, \ldots, F_{r+1}$ be hyperedges in such an $(r+1)$ sunflower. If there is a hyperedge F in \mathcal{F} with $v \notin F$, then it is easy to find some j such that $F_{j} \cap F=\emptyset$, which contradicts the fact that \mathcal{F} is an intersecting family. Thus, v is contained in every hyperedge of \mathcal{F}. Let $G^{\prime}=G[N(v)]$. Since each copy of K_{r} in G contains v, G^{\prime} is K_{r}-free. By Theorem 23, we have

$$
\mathcal{N}\left(K_{r}, G\right) \leq \mathcal{N}\left(K_{r-1}, G^{\prime}\right) \leq \mathcal{N}\left(K_{r-1}, T_{r-1}(n-1)\right)
$$

and the equality holds if and only if $G \cong K_{1} \vee T_{r-1}(n-1)$.
Case 2 . $\left|I_{0}\right| \geq 2$. We claim that $F \backslash I_{0}$ is not covered by \mathcal{I}. Otherwise, assume that $F \backslash I_{0} \subset I^{*}$ for some $I^{*} \in \mathcal{I}$. Since $I_{0} \subset I$ for all $I \in \mathcal{I}$, we have $I_{0} \subset I^{*}$. It follows that $I^{*}=F$, which contradicts the fact that $F \notin \mathcal{I}$. Hence $F \backslash I_{0}$ is not covered by \mathcal{I}. It follows that F is the only hyperedge in \mathcal{F}^{*} containing $F \backslash I_{0}$. Theorem 21(ii) shows that $\mathcal{I}\left(F, \mathcal{F}^{*}\right)$ is isomorphic to $\mathcal{I}\left(F^{\prime}, \mathcal{F}^{*}\right)$ for any $F, F^{\prime} \in \mathcal{F}^{*}$. For any $E \in \mathcal{F}^{*}$, there is an $\left(r-\left|I_{0}\right|\right)$-element subset T of E such that E is the only hyperedge in \mathcal{F}^{*} containing T. Since $\left|I_{0}\right| \geq 2$, we have $\left|\mathcal{F}^{*}\right| \leq\binom{ n}{r-2}$. By Theorem 21(i), for sufficiently large n, we have

$$
\mathcal{N}\left(K_{r}, G\right)=|\mathcal{F}| \leq c^{-1}\left|\mathcal{F}^{*}\right| \leq c^{-1}\binom{n}{r-2}<\mathcal{N}\left(K_{r-1}, T_{r-1}(n-1)\right) .
$$

This completes the proof.

4. Bounds on $e x\left(n, K_{r}, B_{r, s}\right)$ For General r and s

Let $B_{s}^{(r)}$ be an r-uniform hypergraph consisting of two hyperedges that share exactly s vertices. Let $e x_{r}\left(n, B_{s}^{(r)}\right)$ denote the maximum number of hyperedges in an r-uniform $B_{s}^{(r)}$-free hypergraph on n vertices. In [4], Frankl and Füredi proved the following theorem.

Theorem 29 (Frankl and Füredi [4]). For $r \geq 2 s+2$ and n sufficiently large,

$$
e x_{r}\left(n, B_{s}^{(r)}\right)=\binom{n-s-1}{r-s-1} .
$$

For $r \leq 2 s+1, e x_{r}\left(n, B_{s}^{(r)}\right)=O\left(n^{s}\right)$.
Now we prove Theorem 7 by using Theorem 29.
Proof of Theorem 7. Notice that $e x\left(n, K_{r}, B_{r, s}\right) \leq e x_{r}\left(n, B_{s}^{(r)}\right)$, by Theorem 29 we have

$$
\begin{equation*}
e x\left(n, K_{r}, B_{r, s}\right)=O\left(n^{\max \{s, r-s-1\}}\right) . \tag{8}
\end{equation*}
$$

For $r \geq 2 s+1$, it is easy to see that $K_{s+1} \vee T_{r-s-1}(n-s-1)$ is a $B_{r, s}$-free graph. Then

$$
e x\left(n, K_{r}, B_{r, s}\right) \geq \mathcal{N}\left(K_{r-s-1}, T_{r-s-1}(n-s-1)\right)
$$

By (8), we have ex $\left(n, K_{r}, B_{r, s}\right)=\Theta\left(n^{r-s-1}\right)$.
For $r \leq 2 s$, we present the following lower bound construction. Let $P=$ $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be an s-sum-free partition of r. Define a graph G_{P} on the vertex set $V(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{t}$ with $X_{i}=\lfloor n / t\rfloor$ or $\lceil n / t\rceil$ for each $i=1,2, \ldots, t$. Let $G_{P}\left[X_{i}\right]$ be the union of $\left|X_{i}\right| / a_{i}$ vertex-disjoint copies of $K_{a_{i}}$ for each $i=1,2$, \ldots, t and $G_{P}\left[X_{i}, X_{j}\right]$ be a complete bipartite graph for $1 \leq i<j \leq t$.

We claim that G_{P} is $B_{r, s}-$ free. Let K, K^{\prime} be two copies of K_{r} in G_{P}. Since $G_{P}\left[X_{i}\right]$ is a union of vertex-disjoint copies of $K_{a_{i}}$, we have $\left|V(K) \cap X_{i}\right| \leq a_{i}$ and $\left|V\left(K^{\prime}\right) \cap X_{i}\right| \leq a_{i}$. It follows that $\left|V(K) \cap X_{i}\right|=a_{i}$ and $\left|V\left(K^{\prime}\right) \cap X_{i}\right|=a_{i}$ because of $a_{1}+\cdots+a_{t}=r$. Since P is s-sum-free, we conclude that $\left|V(K) \cap V\left(K^{\prime}\right)\right| \neq s$. Thus, G_{P} is $B_{r, s}-$ free. Moreover,

$$
\mathcal{N}\left(K_{r}, G_{P}\right)=\prod_{i=1}^{t}\left\lfloor\frac{n}{t a_{i}}\right\rfloor \approx\left(t^{t} \prod_{i=1}^{t} a_{i}\right)^{-1} n^{t} .
$$

Note that $\beta_{r, s}$ is defined to be the maximum length t in an s-sum-free partition of r. Thus, the construction gives that $e x\left(n, K_{r}, B_{r, s}\right)=\Omega\left(n^{\beta_{r, s}}\right)$ for $r \leq 2 s$. This completes the proof.

Let $a_{1}, a_{2}, \ldots, a_{k}$ be a sequence of integers and let $m=\sum_{1 \leq i \leq k} a_{k}$. Let

$$
\mathcal{S}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left\{\sum_{i \in I} a_{i}: \emptyset \neq I \subseteq[k]\right\} .
$$

If $\mathcal{S}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=[m]$, then we call $a_{1}, a_{2}, \ldots, a_{k}$ a sum-complete sequence.

Fact 1. Let $a_{1}, a_{2}, \ldots, a_{k}$ be a sequence of integers with each $a_{i} \in\{1,2\}$. If at least one of a_{i} equals 1 , then $a_{1}, a_{2}, \ldots, a_{k}$ is a sum-complete sequence.

Proof. Suppose that $a_{1}, a_{2}, \ldots, a_{k}$ is not sum-complete. Then let h be the smallest integer such that $h \notin \mathcal{S}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Clearly $h>1$. Then $h-1 \in \mathcal{S}\left(a_{1}, a_{2}\right.$, $\left.\ldots, a_{k}\right)$. Let $h-1=\sum_{i \in I} a_{i}$. It follows that $a_{i}=2$ for all $i \in[k] \backslash I$. Since $h-1<m$, there exists $j \in[k] \backslash I$ such that $a_{j}=2$. Let $i_{0} \in I, a_{i_{0}}=1$, and let $I^{\prime}=I \backslash\left\{i_{0}\right\} \cup\{j\}$. Then $h=\sum_{i \in I^{\prime}} a_{i}$, a contradiction.
Fact 2. Let $a_{1}, a_{2}, \ldots, a_{k}$ be a sum-complete sequence with $\sum_{1 \leq i \leq k} a_{i}=m$ and let $a_{k+1} \leq m+1$. Then $a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}$ is also sum-complete.
Proof. Since $a_{1}, a_{2}, \ldots, a_{k}$ is sum-complete, then $\mathcal{S}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=[m]$ and

$$
\mathcal{S}\left(a_{1}, a_{2}, \ldots, a_{k}\right)+a_{k+1}=\left[a_{k+1}+1, a_{k+1}+m\right] .
$$

Since $a_{k+1} \leq m+1$, we conclude that

$$
\mathcal{S}\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right)=[m] \cup\left[a_{k+1}+1, a_{k+1}+m\right] \cup\left\{a_{k+1}\right\}=\left[a_{k+1}+m\right] .
$$

Now we prove Proposition 8.
Proof of Proposition 8 . (i) Since $r \leq 2 s, r-(s+1) \leq s-1$. The partition of r consisting of $r-(s+1)$ " 1 " and one " $s+1$ " is s-sum-free. And there are $r-s$ integers in the partition $(1,1, \ldots, 1, s+1)$. Then $\beta_{r, s} \geq r-s$.

Let $P=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be an s-sum-free partition of r. If $a_{i} \geq 2$ for all $i=1,2, \ldots, t$, it is easy to see that $t \leq r / 2$.

Now we assume that $a_{i}=1$ for some $i \in[t]$. Let $\left(a_{i}: i \in I\right)$ be a sumcomplete subsequence of P with $|I|$ maximum. Clearly $|I| \geq 1$. Let $m=\sum_{i \in I} a_{i}$. We claim that $m \leq r-s-1$. Indeed, if $m \geq r-s$, then $r-s \in \mathcal{S}\left(a_{i}: i \in I\right)$ by definition of m, so $\sum_{i \in I^{\prime}} a_{i}=r-s$ for some $I^{\prime} \subset I$ and the complement has sum $r-(r-s)=s$, a contradiction. Thus $m \leq r-s-1$.

By Fact $2, a_{j} \geq m+2$ for all $j \in[t] \backslash I$. Note that $|I| \leq m$. Thus,

$$
r=\sum_{1 \leq i \leq t} a_{i}=\sum_{i \in I} a_{i}+\sum_{i \notin I} a_{i} \geq m+(t-|I|)(m+2) \geq m+(t-m)(m+2) .
$$

It follows that $t \leq \frac{r-m}{m+2}+m=: f(m)$. It can be checked that $f(m)=m-1+\frac{r+2}{m+2}$ is a convex function. Since $1 \leq m \leq r-s-1$, we conclude that

$$
t \leq \max \left\{\frac{r+2}{3}, r-(s+1)+\frac{s+1}{r-s+1}\right\} .
$$

Since $r \geq 6, \frac{r+2}{3} \leq \frac{r}{2}$. Let $g(r)=r-(s+1)+\frac{s+1}{r-s+1}-\frac{r}{2}$. Since $g(r)$ is convex and $g(s-1)=g(2 s)=0$, we have $g(r)=r-(s+1)+\frac{s+1}{r-s+1}-\frac{r}{2} \leq 0$ for $s+1 \leq r \leq 2 s$. So we have $r-(s+1)+\frac{s+1}{r-s+1} \leq \frac{r}{2}$. Thus, $\beta_{r, s} \leq t \leq \frac{r}{2}$.
(ii) For $s=1$, " 1 " is not present in the 1 -sum-free partition of r. Then $\beta_{r, 1} \geq\left\lfloor\frac{r}{2}\right\rfloor .(2,2, \ldots, 2,2)$ for r being even (or $(2,2, \ldots, 2,3)$ for r being odd) is a 1-sum-free partition of r. Thus $\beta_{r, 1}=\left\lfloor\frac{r}{2}\right\rfloor$.

For $s=2$, the 2 -sum-free partition of r contains at most one " 1 " and does not contain " 2 ". Then $\beta_{s, 2} \leq 1+\left\lfloor\frac{r-1}{3}\right\rfloor$. Moreover, for $s=3 k,(3,3, \ldots, 3)$ is a 2 -sum-free partition of r. For $s=3 k+1,(1,3,3, \ldots, 3)$ is a 2 -sum-free partition of r. For $s=3 k+2,(1,3,3, \ldots, 3,4)$ is a 2 -sum-free partition of r. Thus $\beta_{s, 2}=1+\left\lfloor\frac{r-1}{3}\right\rfloor$.

For $s=3$, let $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a 3 -sum-free partition of r. If $a_{i}=1$ for some $i \in[t]$, " 2 " does not appear in the partition and there are at most two " 1 " in the partition. Then $t \leq 2+\left\lfloor\frac{r-2}{4}\right\rfloor$ and $(1,1,4,4, \ldots, 4, t)$ is a 3 -sum-free partition of r where $t=4,5,6,7$. If $a_{i} \neq 1$ for all $i \in[t]$, it is easy to see that $t \leq r / 2$. And for r being even, $(2,2, \ldots, 2)$ is a 3 -sum-free partition of r with length $r / 2$. When r is odd, there exists an integer a_{i} in the partition that is odd and $a_{i} \geq 5$. For r being odd, $t \leq 1+\frac{r-5}{2}$. $(2,2, \ldots, 2,5)$ is a 3 -sum-free partition of r with length $1+\frac{r-5}{2}$. Thus, $\beta_{r, 3}=\max \left\{2+\left\lfloor\frac{r-2}{4}\right\rfloor, r / 2\right\}$ when r is even, and $\beta_{r, 3}=\max \left\{2+\left\lfloor\frac{r-2}{4}\right\rfloor, 1+\frac{r-5}{2}\right\}$ when r is odd.

For $s=4$ and $r \geq 4$, let $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a 4 -sum-free partition of r. If $a_{i}=1$ for some $i \in[t], a_{j} \neq 3$ for all $j \in[t]$ and the sum of all " 1 " and " 2 " in the partition does not exceed 3 . Then $t \leq 3+\left\lfloor\frac{r-3}{5}\right\rfloor$. If $a_{i} \neq 1$ for all $i \in[t]$, there is at most one " 2 " in the partition and all other elements in the partition must be at least 3 . Then we have $t \leq 1+\left\lfloor\frac{r-2}{3}\right\rfloor .(1,1,1,5,5, \ldots, 5, x)$ is a 4 -sum-free partition of r with length $3+\left\lfloor\frac{r-3}{5}\right\rfloor$, where $x \in\{5,6,7,8,9\} .(3,3, \ldots, 3),(2,3,3, \ldots, 3,5)$ and $(2,3,3, \ldots, 3)$ are 4 -sum-free partition of r with length $1+\left\lfloor\frac{r-2}{3}\right\rfloor$ for $r=$ $3 k, 3 k+1,3 k+2$. Thus $\beta_{r, 4}=\max \left\{3+\left\lfloor\frac{r-3}{5}\right\rfloor, 1+\left\lfloor\frac{r-2}{3}\right\rfloor\right\}$.
(iii) From (i), $\beta_{r, s} \leq \frac{r}{2}$. If r is even and s is odd, $(2,2, \ldots, 2)$ is an s-sum-free partition of r with length $r / 2$. Thus we have $\beta_{r, s}=\frac{r}{2}$.

5. Bounds on ex $\left(n, K_{4}, B_{4,2}\right)$

In this section, we derive an upper bound on $e x\left(n, K_{4}, B_{4,2}\right)$ by utilizing the graph removal lemma.

Let $G=(V, E)$ be a graph. For any $E^{\prime} \subset E(G)$, let $G\left[E^{\prime}\right]$ denote the subgraph of G induced by the edge set E^{\prime}, and let $G-E^{\prime}$ denote the subgraph of G induced by $E(G) \backslash E^{\prime}$. We use $v(G)$ to denote the number of vertices in a graph G.

Lemma 30 (Graph removal lemma [6]). For any graph H and any $\epsilon>0$, there exists $\delta>0$ such that any graph on n vertices which contains at most $\delta n^{v(H)}$ copies of H may be made H-free by removing at most ϵn^{2} edges.

Proof of Theorem 9. The lower bound in the theorem is due to the following construction. Suppose that $n=6 m+t$ with $t \leq 5$, let G^{*} be a graph on n vertices consisting of a set V of size $3 m$, whose induced subgraph is a union of m disjoint copies of triangles, and an independent set U of size $3 m+t$ as well as all the edges between V and U. Then, it is easy to see that G^{*} is $B_{4,2}$-free and

$$
\mathcal{N}\left(K_{4}, G^{*}\right)=m(3 m+t)=\frac{n^{2}-t^{2}}{12} \geq \frac{n^{2}-25}{12}
$$

Thus, we are left with the proof of the upper bound.
Let G be a $B_{4,2}$-free graph on n vertices. We may further assume that each edge of G is contained in at least one copy of K_{4}.
Claim 31. There is a subset $E^{\prime} \subset E(G)$ with $\left|E^{\prime}\right|=o\left(n^{2}\right)$ such that $G^{\prime}=G-E^{\prime}$ is K_{5}-free, and $\mathcal{N}\left(K_{4}, G\right)=\mathcal{N}\left(K_{4}, G^{\prime}\right)+o\left(n^{2}\right)$.

Proof. For any edge e in G, there is at most one copy of K_{5} containing e, since otherwise we shall find a copy of $B_{4,2}$. Thus, the number of K_{5} in G is $O\left(n^{2}\right)=o\left(n^{5}\right)$. By the graph removal lemma, we can delete $o\left(n^{2}\right)$ edges to make $G K_{5}$-free. Let E^{\prime} be the set of the deleted edges.

Note that the edge deletion is to remove the copy of K_{5} in G, so the deleted edges are contained in some K_{5} in G. Moreover, for any $e \in E^{\prime}$, there is exactly one copy of K_{5} in G containing e. We denote it by K. Then each copy of K_{4} containing e is a subgraph of K, otherwise we shall find a copy of $B_{4,2}$. Thus, there are at most three copies K_{4} in G containing e. Thus, edge deletion reduces at most $o\left(n^{2}\right)$ copies of K_{4}.

Let R be a subset of $E\left(G^{\prime}\right)$ consisting of all the edges contained in at least two copies of K_{4} in G^{\prime}, and let $B=E\left(G^{\prime}\right) \backslash R$.
Claim 32. There is a subset $T \subset B$ with $|T|=o\left(n^{2}\right)$ such that $G^{\prime}[B \backslash T]$ is K_{4}-free, and $\mathcal{N}\left(K_{4}, G^{\prime}\right)=\mathcal{N}\left(K_{4}, G^{\prime}-T\right)+o\left(n^{2}\right)$.

Proof. By the definition of the set B, each edge in B is contained in at most one copy of K_{4} in G^{\prime}. Thus, the number of copies of K_{4} in $G^{\prime}[B]$ is at most $O\left(n^{2}\right)=o\left(n^{4}\right)$. By the graph removal lemma, we can delete $o\left(n^{2}\right)$ edges to make $G^{\prime}[B] K_{4}$-free. Moreover, for any deleted edge e, since $e \in B$ it follows that e is contained in exactly one copy of K_{4} in G^{\prime}. By deleting the edges, at most $o\left(n^{2}\right)$ copies of K_{4} are removed.

Let $G^{*}=G^{\prime}-T, B^{*}=B \backslash T$. Then the edge set of G^{*} consists of R and B^{*}, and $G^{*}\left[B^{*}\right]$ is K_{4}-free. In Claim 32, the edge deletion is to remove the copy of K_{4} in $G^{\prime}[B]$, and each deleted edge is contained in exactly one copy of K_{4} in $G^{\prime}[B]$. Then each edge in R is still contained in at least two copies of K_{4} in G^{*} and every edge in B^{*} is contained in at most one copy of K_{4} in G^{*}. We say a
copy of K_{4} in G^{*} is right-colored if three of its edges form a triangle in $G^{*}[R]$ and the other three edges form a star in $G^{*}\left[B^{*}\right]$.

Claim 33. All the copies of K_{4} in G^{*} are right-colored.
Proof. Suppose that $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ induces a copy of K_{4} in G^{*}. Clearly, at least one edge in $G^{*}[S]$ is contained in R. Without loss of generality, assume that $v_{1} v_{2}$ be such an edge. Since $v_{1} v_{2}$ is contained in at least two copies of K_{4} in G^{*}, assume that $G^{*}\left[\left\{v_{1}, v_{2}, v_{s}, v_{t}\right\}\right]$ be another copy of K_{4} containing $v_{1} v_{2}$. If $\left\{v_{s}, v_{t}\right\} \cap\left\{v_{3}, v_{4}\right\}=\emptyset$, then we find a copy of $B_{4,2}$ in G^{*}, a contradiction. Thus, we have $\left|\left\{v_{s}, v_{t}\right\} \cap\left\{v_{3}, v_{4}\right\}\right|=1$. Assume that $v_{s}=v_{3}$, then both $v_{1} v_{3}$ and $v_{2} v_{3}$ are contained in at least two copies of K_{4}. It follows that $v_{1} v_{3}$ and $v_{2} v_{3}$ are edges in R. Thus, there are three edges in $G^{*}[S]$ belonging to R that form a triangle in G^{*}.

Next we show that $v_{1} v_{4}, v_{2} v_{4}$ and $v_{3} v_{4}$ are all edges in B^{*}. If not, assume that $v_{3} v_{4} \in R$. Then, all the copies of K_{4} containing $v_{1} v_{2}$ should also contain v_{3} or v_{4}, otherwise we shall find a copy of $B_{4,2}$. Without loss of generality, assume that all the copies of K_{4} containing $v_{1} v_{2}$ contain v_{3} as well. Let $G^{*}\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$ and $G^{*}\left[\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}\right]$ be two such copies of K_{4}. Similarly, all the copies of K_{4} containing $v_{3} v_{4}$ should also contain v_{1} or v_{2}. Without loss of generality, assume that $G^{*}\left[\left\{v_{3}, v_{4}, v_{1}, v_{2}\right\}\right]$ and $G^{*}\left[\left\{v_{3}, v_{4}, v_{1}, v_{6}\right\}\right]$ be two such copies of K_{4}. Clearly, we have $v_{5} \neq v_{6}$ for G^{*} is K_{5}-free. However, at this time both $G^{*}\left[\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}\right]$ and $G^{*}\left[\left\{v_{1}, v_{3}, v_{2}, v_{5}\right\}\right]$ form a copy of K_{4}, which implies $G^{*}\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}\right]$ contains a copy of $B_{4,2}$, a contradiction. Thus, $v_{3} v_{4} \in B^{*}$.

Similarly, we can deduce that $v_{1} v_{4}$ and $v_{2} v_{4}$ are edges in B^{*}. Therefore, $G^{*}[S]$ is right-colored and the claim holds.

Since $G^{*}\left[B^{*}\right]$ is K_{4}-free, by Turán theorem [14] there are at most $\frac{n^{2}}{3}$ edges in $G^{*}\left[B^{*}\right]$. Moreover, since all the copies of K_{4} in G^{*} are right-colored, it follows that each copy of K_{4} in G^{*} contains three edges in B^{*}. Thus, we have

$$
\mathcal{N}\left(K_{4}, G^{*}\right) \leq \frac{\left|B^{*}\right|}{3} \leq \frac{n^{2}}{9}
$$

From Claims 31 and 32, it follows that

$$
\mathcal{N}\left(K_{4}, G\right)=\mathcal{N}\left(K_{4}, G^{*}\right)+o\left(n^{2}\right) \leq \frac{n^{2}}{9}+o\left(n^{2}\right),
$$

which completes the proof.

Acknowledgements

We are grateful to the referees for valuable comments, leading to an improvement of an earlier version. The first author was supported by National Natural Science

Foundation of China (No. 12301428). The second author was supported by the Natural Science Foundation of Shanxi Province (No. RD2200004810).

References

[1] N. Alon and C. Shikhelman, Many T copies in H-free graphs, J. Combin. Theory Ser. B 121 (2016) 146-172.
https://doi.org/10.1016/j.jctb.2016.03.004
[2] M. Deza, P. Erdős and P. Frankl, Intersection properties of systems of finite sets, Proc. Lond. Math. Soc. (3) 36 (1978) 369-384.
https://doi.org/10.1112/plms/s3-36.2.369
[3] P. Erdős, Problems and results in graph theory and combinatorial analysis, in: Proc. 5th British Combin. Conf. (1975) 169-192.
[4] P. Frankl and Z. Füredi, Forbidding just one intersection, J. Combin. Theory Ser. A 39 (1985) 160-176. https://doi.org/10.1016/0097-3165(85)90035-4
[5] P. Frankl and N. Tokushige, Extremal Problems for Finite Sets, Stud. Math. Libr. 86 (American Mathematical Society, Providence, 2018). https://doi.org/10.1090/stml/086
[6] J. Fox, A new proof of the graph removal lemma, Ann. of Math. (2) 174 (2011) 561-579.
https://doi.org/10.4007/annals.2011.174.1.17
[7] Z. Füredi, On finite set-systems whose every intersection is a kernel of a star, Discrete Math. 47 (1983) 129-132. https://doi.org/10.1016/0012-365X(83)90081-X
[8] D. Gerbner, Generalized Turán results for disjoint cliques, Discrete Math. 347(7) (2024) 114024.
https://doi.org/10.1016/j.disc.2024.114024
[9] D. Gerbner and B. Patkós, Generalized Turán results for intersecting cliques, Discrete Math. 347(1) (2024) 113710. https://doi.org/10.1016/j.disc.2023.113710
[10] W.T. Gowers and B. Janzer, Generalizations of the Ruzsa-Szemerédi and rainbow Turán problems for cliques, Combin. Probab. Comput. 30 (2021) 591-608. https://doi.org/10.1017/S0963548320000589
[11] Z. Lv, E. Győri, Z. He, N. Salia, C. Tompkins, K. Varga and X. Zhu, Generalized Turán numbers for the edge blow-up of a graph, Discrete Math. 347(1) (2024) 113682.
https://doi.org/10.1016/j.disc.2023.113682
[12] M. Mantel, Problem 28, Wiskundige Opgaven 10 (1907) 60-61.
[13] I.Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in: Combinatorics, Proc. Fifth Hungarian Colloq. Keszthely (1976), Colloq. Math. Soc. J. Bolyai 18 (North Holland, Amsterdam-New York, 1978) 939-945.
[14] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.
[15] X. Yuan and W. Yang, On generalized Turán number of two disjoint cliques, Graphs Combin. 38(4) (2022) \#116.
https://doi.org/10.1007/s00373-022-02518-7
[16] F. Zhang, Y. Chen, E. Győri and X. Zhu, Maximum cliques in a graph without disjoint given subgraph, Discrete Math. 347(4) (2024) 113863. https://doi.org/10.1016/j.disc.2023.113863
[17] X. Zhu, Y. Chen, D. Gerbner, E. Győri and H.H. Karim, The maximum number of triangles in F_{k}-free graphs, European J. Combin. 114 (2023) 103793. https://doi.org/10.1016/j.ejc.2023.103793
[18] A.A. Zykov, On some properties of linear complexes, Mat. Sb. (N.S.) 24(66) (1949) 163-188.

Received 3 October 2023
Revised 15 April 2024
Accepted 15 April 2024
Available online

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

