Article in volume
Authors:
Title:
On independent coalition in graphs and independent coalition graphs
PDFSource:
Discussiones Mathematicae Graph Theory 45(2) (2025) 533-544
Received: 2023-10-10 , Revised: 2024-03-08 , Accepted: 2024-03-08 , Available online: 2024-03-25 , https://doi.org/10.7151/dmgt.2543
Abstract:
An independent coalition in a graph $G$ consists of two disjoint, independent
vertex sets $V_1$ and $V_2$, such that neither $V_1$ nor $V_2$ is a dominating
set, but the union $V_1\cup V_2$ is an independent dominating set of $G$.
An independent coalition partition of $G$ is a partition $\{V_1, \ldots, V_k\}$
of $V(G)$ such that for every $i\in [k]$, either the set $V_i$ consists of a
single dominating vertex of $G$, or $V_i$ forms an independent coalition with
some other part $V_j$. The independent coalition number $IC(G)$ of $G$ is the
maximum order of an independent coalition of $G$. The independent coalition
graph $\textrm{ICG}(G,\pi)$ of $\pi=\{V_1, \ldots, V_k\}$ (and of $G$) has the
vertex set $\{V_1,\ldots, V_k\}$, vertices $V_i$ and $V_j$ being adjacent if
$V_i$ and $V_j$ form an independent coalition in $G$. In this paper, a large
family of graphs with $IC(G) = 0$ is described and graphs $G$ with
$IC(G)\in \{n(G), n(G)-1\}$ are characterized. Some properties of $\textrm{ICG}(G,\pi)$
are presented. The independent coalition graphs of paths are characterized, and
the independent coalition graphs of cycles described.
Keywords:
dominating set, independent set, independent coalition, independent coalition number, independent coalition graph
References:
- S. Alikhani, D. Bakhshesh and H. Golmohammadi, Introduction to total coalitions in graphs (2022).
arXiv: 2211.11590v2 - S. Alikhani, D. Bakhshesh, H.R. Golmohammadi and E.V. Konstantinova, Connected coalitions in graphs, Discuss. Math. Graph Theory 44 (2024) 1551–1566.
https://doi.org/10.7151/dmgt.2509 - S. Alikhani, H.R. Golmohammadi and E.V. Konstantinova, Coalition of cubic graphs of order at most $10$, Commun. Comb. Optim. 9 (2024) 437–450.
https://doi.org/10.22049/cco.2023.28328.1507 - D. Bakhshesh, M.A. Henning and D. Pradhan, On the coalition number of trees, Bull. Malays. Math. Sci. Soc. 46 (2023) 95.
https://doi.org/10.1007/s40840-023-01492-4 - J. Barát and Z.L. Blázsik, General sharp upper bounds on the total coalition number, Discuss. Math. Graph Theory 44 (2024) 1567–1584.
https://doi.org/10.7151/dmgt.2511 - E.J. Cockayne and S.T. Hedetniemi, Disjoint independent dominating sets in graphs, Discrete Math. 15 (1976) 213–222.
https://doi.org/10.1016/0012-365X(76)90026-1 - J.E. Dunbar, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisely, R.C. Laskar and D.F. Rall, Fall colorings of graphs, J. Combin. Math. Combin. Comput. 33 (2000) 257–273.
- T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Introduction to coalitions in graphs, AKCE Int. J. Graphs Comb. 17 (2020) 653–659.
https://doi.org/10.1080/09728600.2020.1832874 - T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Upper bounds on the coalition number, Australas. J. Combin. 80 (2021) 442–453.
- T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Self-coalition graphs, Opuscula Math. 43 (2023) 173–183.
https://doi.org/10.7494/opmath.2023.43.2.173 - T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Coalition graphs, Commun. Comb. Optim. 8 (2023) 423–430.
https://doi.org/10.22049/CCO.2022.27916.1394 - T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Coalition graphs of paths, cycles, and trees, Discuss. Math. Graph Theory 43 (2023) 931–946.
https://doi.org/10.7151/dmgt.2416 - T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in Graphs: Core Concepts, Springer Monogr. Math. (Springer, Cham, 2023).
https://doi.org/10.1007/978-3-031-09496-5 - H. Kaul and C. Mitillos, On graph fall-coloring: Existence and constructions, Graphs Combin. 35 (2019) 1633–1646.
https://doi.org/10.1007/s00373-019-02082-7 - M.R. Samadzadeh and D.A. Mojdeh, Independent coalition in graphs: existence and characterization, Ars Math. Contemp. 24 (2024) #P3.09.
https://doi.org/10.26493/1855-3974.3113.6f7
Close