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Abstract

An independent coalition in a graph G consists of two disjoint, indepen-
dent vertex sets V1 and V2, such that neither V1 nor V2 is a dominating set,
but the union V1 ∪ V2 is an independent dominating set of G. An indepen-
dent coalition partition of G is a partition {V1, . . . , Vk} of V (G) such that
for every i ∈ [k], either the set Vi consists of a single dominating vertex
of G, or Vi forms an independent coalition with some other part Vj . The
independent coalition number IC(G) of G is the maximum order of an in-
dependent coalition of G. The independent coalition graph ICG(G, π) of
π = {V1, . . . , Vk} (and of G) has the vertex set {V1, . . . , Vk}, vertices Vi and
Vj being adjacent if Vi and Vj form an independent coalition in G. In this
paper, a large family of graphs with IC(G) = 0 is described and graphs
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G with IC(G) ∈ {n(G), n(G) − 1} are characterized. Some properties of
ICG(G, π) are presented. The independent coalition graphs of paths are
characterized, and the independent coalition graphs of cycles described.

Keywords: dominating set, independent set, independent coalition, inde-
pendent coalition number, independent coalition graph.
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1. Introduction

Let G = (V (G), E(G)) be a graph. A coalition in G consists of two disjoint sets V1
and V2 of vertices, such that neither V1 nor V2 is a dominating set, but the union
V1 ∪ V2 is a dominating set of G. A coalition partition of G, c-partition of G for
short, is a partition {V1, . . . , Vk} of V (G) such that for every i ∈ [k], either the set
Vi consists of a single dominating vertex of G, or Vi forms a coalition with some
other part Vj . Coalition partitions were introduced in 2020 in [8] and already
extensively researched in [3, 4, 9–12]. Very recently, total coalition partitions of
graphs have started to be explored in [1, 5] and connected coalition partitions of
graphs in [2].

It is a generally accepted fact that the central concepts of graph domination
are the domination itself, the total domination, and the connected domination, see
the very comprehensive 2023 book [13] on the core concepts in domination which
focuses precisely on these three topics. It therefore makes sense also to explore
independent c-partitions in graphs which are defined just as c-partitions, except
that, in addition, independence is required of the sets involved. More precisely,
an independent coalition in G consists of two disjoint, independent vertex sets V1
and V2, such that neither V1 nor V2 is a dominating set, but the union V1∪V2 is an
independent dominating set of G. An independent c-partition of G is a partition
{V1, . . . , Vk} of V (G) such that for every i ∈ [k], either the set Vi consists of a
single dominating vertex of G or Vi forms an independent coalition with some
other part Vj . The independent coalition number, IC(G), of a graph G is the
maximum order an independent c-partition in G. As it will be discussed later
on, it is possible that a graph G does not admit an independent c-partition, in
which case we set IC(G) = 0.

Independent coalitions were introduced/mentioned in [8], see also [11]. How-
ever, this concept was first explored in more detail in [15]. In this paper we
continue the research in this direction and proceed as follows. In the rest of this
section we define further concepts needed and introduce the relevant notation.
In Section 2, we consider graphs with extremal independent coalition numbers.
We first consider graphs G with IC(G) = 0 and conclude the section by graphs
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G with IC(G) ∈ {n(G), n(G) − 1}. We define and study the independent coali-
tion graph of a graph in Section 3. In Section 4 we characterize the independent
coalition graphs of paths, while in Section 5 we describe the independent coalition
graphs of cycles.

Let G be a graph and S ⊆ V (G). Then S is a dominating set if every vertex
in V (G) \ S has a neighbor in S, and S is an independent set if no two vertices
from S are adjacent. By an independent dominating set we mean a set that is
both dominating and independent. A vertex v of G which is adjacent to every
other vertex is a dominating vertex of G. An idomatic partition of a graph is
a partition of the vertices into independent dominating sets. Such partitions
seem to be considered for the first time in 2000 in the paper [7] under the name
fall colorings. Indeed, an idomatic partition is a proper coloring such that every
vertex has every color in its open neighborhood. We say that a graph is idomatic,
if its vertex set can be partitioned into independent dominating sets.

If G and H are graphs and k a positive integer, then G∪H denotes the dis-
joint union of G and H and kG the disjoint union of k copies of G. In addition,
G+H is the join of G and H, that is, the graph obtained from G∪H by adding
all edges gh, where g ∈ V (G) and h ∈ V (H). Finally, the order of a graph G will
be denoted by n(G), and [n] stands for the set {1, . . . , n}.

2. Graphs G with IC(G) ∈ {0, n(G), n(G)− 1}

In the seminal paper [8] a problem was posed whether every graph G admits an
independent c-partition, that is, whether for every graph G we have IC(G) > 0.
In [15], Samadzadeh and Mojdeh answered this question in negative by demon-
strating that there exist graphs G with IC(G) = 0 as follows. Let Xn, n ≥ 4, be
the graph obtained from Kn with V (Kn) = {v1, . . . , vn} and two additional ver-
tices vn+1, vn+2 by adding the edges vnvn+1, vnvn+2, and vn−1vn+1. See Figure
1, where X5 is drawn. Then it was proved in [15] that for n ≥ 4, IC(Xn) = 0.

v1

v2

v3

vn−1

vn

vn+1

vn+2

Figure 1. The graph X5; so n = 5 in the figure.
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In this section we present a significantly larger family of graphs which do
not admit independent c-partitions. For it, the following fact that immediately
follows by the definition of an independent c-partition will be useful.

Lemma 1. Let x be a dominating vertex of a graph G. Then IC(G) > 0 if and
only if IC(G− x) > 0.

For a graph G, the graph Ĝ is a graph defined as follows. Its vertex set is
V (Ĝ) = V (G)∪{x, y} and the edge set is E(Ĝ) = E(G)∪{xu : u ∈ V (G)}∪{xy}.
Now the main result of this section reads as follows.

Theorem 2. Let G be a graph. Then IC(Ĝ) > 0 if and only if G = H ∪ sK1 for
some s ≥ 0 and some idomatic graph H.

Proof. We use the notation from the definition of Ĝ, hence V (Ĝ) = V (G) ∪
{x, y}, where x is a dominating vertex of Ĝ.

Assume first that IC(Ĝ) > 0. As x is a dominating vertex of Ĝ, Lemma 1
implies that IC(G ∪ K1) > 0. Set G′ = G ∪ K1, where we may assume that
V (K1) = {y}. Let π = {V1, . . . , Vk} be an independent c-partition of V (G′) and
assume without loss of generality that y ∈ V1. We distinguish two cases.

Case 1. V1 = {y}.
Since Vj , j ∈ {2, . . . , k}, must dominate G′ together with some other set from π,
the latter set must necessarily be V1. Since |V1| = 1, this in turn implies that
Vj dominates G. It follows that {V2, . . . , Vk} is an idomatic partition of G and
consequently G is an idomatic graph. Clearly, we can write it as G = G ∪ 0K1.

Case 2. |V1| ≥ 2.
In this case V1 ∩ V (G) 6= ∅, which implies that V1 ∩ V (G) is an independent
set of G but it is not a dominating set of G, for otherwise V1 would dominate
G′. Moreover, V1 ∪ Vj must be an independent dominating set of G′ for every
j ∈ {2, . . . , k}. This in particular implies that each vertex of V1 ∩ V (G) must be
an isolated vertex of G and that each Vj , j ≥ 2, is an independent dominating set
of H = G[V (G)\V1]. If |V1∩V (G)| = s, then we can conclude that G = H∪sK1,
where H is an idomatic graph.

Conversely, assume that G = H ∪ sK1, where H is an idomatic graph and
s ≥ 0. Let {V1, . . . , Vk} be an idomatic partition of H and let S be the set
of isolated vertices of G, where S = ∅ in case s = 0. Then we claim that
{S∪{y}, V1, . . . , Vk} is an independent c-partition of G′. Indeed, S∪{y} is clearly
an independent set of G′ and as each Vi, i ≥ 1, is an independent dominating set
of H, we also have that (S ∪ {y}) ∪ Vi is an independent dominating set of G′.
By Lemma 1 we conclude that IC(Ĝ) > 0.
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Let Hn, n ≥ 4, be the graph obtained from Kn−1 by attaching a pendant
vertex to one of the vertices of Kn−1. Then Ĥn

∼= Xn. Since the graph Hn is
clearly not idomatic, Theorem 2 implies that IC(Xn) = 0.

Moreover, Theorem 2 yields a large variety of graphs which admit no in-
dependent coalition partition. If G is an arbitrary connected and not idomatic
graph, then the theorem implies that IC(Ĝ) = 0. For instance, a cycle Cn is
not idomatic if and only if n is odd and n is not congruent modulo 3, see [14].
Additional families of graphs that are not idomatic were constructed in [6], for
instance graphs G with χ(G) > δ(G) + 1. For more information on the variety of
domination partitions see [13, Chapter 12].

We now turn our attention to graphs with (almost) largest possible extremal
independent coalition number, that is, to graphs G with IC(G) ∈ {n(G), n(G)
−1}.

The following observation follows directly from definitions, but it is useful
because it enables a direct, polynomial verification whether IC(G) = n(G) holds
for a given graph G.

Observation 3. Let G be a graph without dominating vertices. Then IC(G) =
n(G) if and only if for any v ∈ V (G) there exists z ∈ V (G) with z 6∈ N [v] such
that V (G) = N [v] ∪N [z].

If G has k dominating vertices, then IC(G) = k + IC(G′), where G′ is
obtained from G by removing the k dominating vertices. Note that G′ has no
dominating vertices and hence Observation 3 can be applied to G. It is then
straightforward to see that checking whether IC(G) = n(G) holds for a graph G
can be performed in O(n(G)3) time.

To check whether IC(G) = n(G)− 1 holds, we can use the following propo-
sition. Its proof is straightforward and hence not included.

Proposition 4. Let G be a graph without dominating vertices. Then IC(G) =
n(G)− 1 if and only if the following properties hold.

(i) There exists a vertex a ∈ V (G) such that for all vertices b 6= a the set {a, b}
is not an independent dominating set.

(ii) There exists two nonadjacent vertices x, y ∈ V (G), such that there exists a
vertex w ∈ V (G), w 6= x, y, such that {w, x, y} is an independent dominating
set and for every vertex u ∈ V (G) with u 6= x, y, the set {u, x, y} is an
independent dominating set or there exists a vertex v 6= u such that {u, v} is
an independent dominating set.

Note that the condition (i) of Proposition 4 rules out the possibility IC(G) =
n(G), and then (ii) checks whether IC(G) = n(G) − 1 holds. As we already
mentioned, checking whether IC(G) = n(G) holds (equivalently, condition (i))
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can be done in O(n(G)3) time. As for condition (ii), its testing for each pair of
vertices x and y can be done in O(n(G)3) time, leading to an O(n(G)5) time
algorithm for checking whether IC(G) = n(G)− 1 holds.

3. Independent Coalition Graphs

Given an independent c-partition π = {V1, . . . , Vk} of a graph G, we can asso-
ciate it to a natural derived graph as follows. The independent coalition graph
ICG(G, π) of π (and of G) has the vertex set V (ICG(G, π)) = {V1, . . . , Vk}, and
vertices Vi and Vj are adjacent if Vi and Vj form an independent coalition in G.
In the following we present some general properties of the independent coalition
graph.

Proposition 5. Let G be a graph and π be an independent c-partition of G with
|π| = k. Then the following holds.

(i) ∆(ICG(G, π)) ≤ ∆(G) + 1.

(ii) If k ≥ δ(G) + 2, then α(ICG(G, π)) ≥ k − δ(G)− 1.

Proof. Let π = {V1, . . . , Vk}. Note first that ∆(ICG(G, π)) = 0 if and only if
G ∼= Kk. In this case (i) clearly holds, while in (ii) the condition k ≥ δ(G) +
2 = k + 1 is not fulfilled. Hence we may assume in the rest of the proof that
∆(ICG(G, π)) > 0.

(i) Let Vi be a vertex of ICG(G, π) with degICG(G,π)(Vi) = ∆(ICG(G, π)) ≥ 1.
Then |Vi| > 1 and Vi is not a dominating set. Therefore, there exists a vertex
v ∈ V (G) with no neighbor in Vi. If Vi and Vj form an independent coalition,
then Vi ∪ Vj is an independent dominating set, and therefore v has at least one
neighbor in Vj . It follows that

∆(ICG(G, π)) = degICG(G,π)(Vi) ≤ degG(v) + 1 ≤ ∆(G) + 1,

which proves (i).

(ii) Assume now that k ≥ δ(G)+2 and let v be a vertex of G with degG(v) =
δ(G). As the sets from π are independent, at most δ(G) + 1 of them contain a
vertex from NG[v]. Consequently, at least k−δ(G)−1 ≥ 1 sets of π do not contain
a vertex from NG[v]. It follows that no two of these k − δ(G) − 1 sets form an
independent coalition which in turn implies that α(ICG(G, π)) ≥ k−δ(G)−1.

Consider the graph G obtained from the complete graph Kn with a pendant
edge. This graph G satisfies the equality in Proposition 5(i). Also the path graph
Pn satisfies the equality of Proposition 5(ii).
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Proposition 6. Let G be a graph with δ(G) = 1 and let π be an independent
c-partition of G with |π| = k ≥ 3. Then ICG(G, π) is a spanning subgraph of
K2,k−2.

Proof. Let π = {V1, . . . , Vk}, let x be a vertex of degree 1 in G, and let y be
its only neighbor. We may without loss of generality assume that x ∈ V1 and
y ∈ V2. Then {V1, V2} /∈ E(ICG(G, π)). In addition, if i, j ≥ 3, i 6= j, then
x /∈ NG[Vi ∪ Vj ] which in turn implies that {Vi, Vj} /∈ E(ICG(G, π)). Hence
{V3, . . . , Vk} is an independent set of ICG(G, π) which together with the fact
that {V1, V2} /∈ E(ICG(G, π)) implies the result.

4. Independent Coalition Graphs of Paths

In this section we consider independent coalitions in paths. Their independent
coalition numbers have already been determined as follows.

Theorem 7 [15]. If n ≥ 1, then

IC(Pn) =


n; n ≤ 4,
4; n = 5,
5; n ∈ {6, 7, 8, 9},
6; n ≥ 10.

We say that a graph G is an ICG if G is isomorphic to the independent
coalition graphs of some graph. In this section we complement Theorem 7 by
determining which graphs are ICGs of paths.

Theorem 8. A graph G is an ICG of some path if and only if

G ∈ {P1, P4, P5, 2P1, 2P2, 2P3, P1 ∪ P2, P2 ∪ P3}.

Proof. Throughout the proof we will assume that x1, . . . , xn are consecutive
vertices of Pn, n ≥ 1. Further, we will represent an independent c-partition
π = {V1, . . . , Vk} of Pn by the vector f(π) = (f1(π), . . . , fn(π)), where xi ∈ Vfi(π).
As an example consider the independent c-partition π = {{x1, x5}, {x2, x4}, {x3},
{x6}} of P6. Then π is represented by the vector f(π) = (1, 2, 3, 2, 1, 4), where,
for instance, f4(π) = 2 means that x4 ∈ V2.

We first demonstrate that each of the graphs listed in the statement of the
theorem is an ICG of some path. Considering P1 and P2 we obtain P1 and 2P1

as ICG. For the remaining six graphs, here are instances of their realizations.

• P4: the path P7 with the independent c-partition (1, 2, 3, 4, 3, 2, 1);

• P5: the path P11 with the independent c-partition (1, 2, 1, 5, 4, 3, 5, 4, 3, 2, 1);



8 S. Alikhani, D. Bakhshesh, H.R. Golmohammadi and S. Klavžar

• 2P2: the path P6 with the independent c-partition (1, 2, 3, 2, 1, 4);

• 2P3: the path P10 with the independent c-partition (2, 1, 5, 6, 1, 2, 4, 3, 2, 1);

• P1 ∪ P2: the path P3 with the independent c-partition (1, 2, 3);

• P2 ∪ P3: the path P9 with the independent c-partition (1, 2, 3, 4, 2, 1, 5, 1, 2).

It remains to prove that no other graph but the above graphs is an ICG of some
path. Since we have settled above all the cases for Pn, n ≤ 3, we may assume in
the rest that n ≥ 4.

We first recall that in [8, Lemma 1], it has been proved that C(Pn) ≤ 6. Since
IC(Pn) ≤ C(Pn), we have IC(Pn) ≤ 6. Consequently, Proposition 6 implies that
independent coalition graphs of paths are spanning subgraphs of K2,r with r ≤ 4.
In addition, since we have assumed that n ≥ 4, no independent coalition graph
of Pn contains isolated vertices. By inspection we find the following 20 non-
isomorphic spanning subgraphs of K2,r, where r ≤ 4 with minimum degree at
least 1:

P1, P4, P5, 2P1, 2P2, 2P3, P1 ∪ P2, P2 ∪ P3,(1)

P3,K2,2,K2,3,K2,4,K2,3 − e,K2,4 − e,K1,3 ∪ P2, F1, F2, F3, F4, F5,(2)

where the graphs Fi, i ∈ [5], are depicted in Figure 2.

F1 F2 F3 F4 F5

Figure 2. The graphs Fi, i ∈ [5].

For the graphs from (1) we have established above that they are ICGs of
paths, hence we need to prove that neither of the graphs from (2) is an ICG of
some path.

Consider first P3 and suppose that it is a an ICG of some path Pn with an
independent c-partition π = {V1, V2, V3}. We may assume without loss of gener-
ality that f1(π) = 1 and f2(π) = 2. Then V2 ∪ V3 is an independent dominating
set, hence f3(π) = 1. Since also V1∪V3 is an independent dominating set, we have
f4(π) = 2. Continuing in this manner we conclude that V3 = ∅, a contradiction.

Consider second K2,3 and suppose that it is an ICG of some path Pn with
an independent c-partition π = {V1, . . . , V5}. Assume without loss of generality
that {1, 2}, {3, 4, 5} is the bipartition of K2,3, where i ∈ Vi for i ∈ [5]. Let j
be an arbitrary index such that fj(π) = 1. Then fj−1(π) = 2 (if j − 1 ≥ 1)
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and fj+1(π) = 2 (if j + 1 ≤ n). In this way we see that V3 = V4 = V5 = ∅, a
contradiction. The same argument applies to K2,2 and K2,4.

Consider next K2,3−e and suppose that it is an ICG of some path Pn with an
independent c-partition π = {V1, . . . , V5}. Assume without loss of generality that
{1, 2}, {3, 4, 5} is the bipartition of K2,3, where {2, 5} /∈ E(K2,3)− e, and i ∈ Vi
for i ∈ [5]. Let j be such that fj(π) = 1. Then fj−1(π) = 2 (if j − 1 ≥ 1) and
fj+1(π) = 2 (if j + 1 ≤ n). Assume without loss of generality that j + 1 < n− 1
and that ` ≥ j+2 is the smallest index such that f`(π) ∈ {3, 4, 5}. Then necessary
f`(π) = 3. Thus we have f`−2(π) = 1, f`−1(π) = 2, and f`(π) = 3, which in turn
implies that f`+1(π) ∈ {4, 5} (if `+ 1 ≤ n). But then at least one of V1 ∪ V4 and
V1 ∪ V5 is not a dominating set because one of these sets does not dominate x`.
This contradiction proves that K2,3 − e is not an ICG of some path. A parallel
argument can be used also for K2,4 − e as well as for F1, F2, and F3. (Note
that in each of these graphs there exists a vertex from the smaller bipartition set
adjacent to all the vertices from the other bipartition set.)

It remains to consider the graphs K1,3 ∪ P2, F4, and F5. As the arguments
are similar, let us consider in detail only K1,3 ∪ P2. Suppose on the contrary
that K1,3 ∪ P2 is an ICG of some path Pn with an independent c-partition π =
{V1, . . . , V6}. Assume without loss of generality that the vertices of K1,3 are from
[4] with 1 being the vertex of degree 3, and that V (P2) = {5, 6}, where i ∈ Vi for
i ∈ [6]. Consider a vertex xj with fj(π) = 1 and assume without loss of generality
that j < n − 1. Then fj+1(π) ∈ {5, 6}. If fj+2(π) = 1, we repeat the pattern.
Hence assume that fj+2(π) ∈ {2, 3, 4}. But now no matter what the value of
fj+3(π) (if j + 3 ≤ n) is, at least one of the sets V1 ∪ V2, V1 ∪ V3, and V1 ∪ V4 is
not a dominating set because at least one of them does not dominate xj+2. This
contradiction completes the argument for K1,3 ∪ P2.

5. Independent Coalition Graphs of Cycles

Here we describe the independent coalition graphs of cycles. Similar to the result
for paths, the number of ICGs of cycles is finite. This fact follows from the
following known result that gives the independent coalition numbers of cycles.

Theorem 9 [15, Theorem 3.11]. If n ≥ 3, then

IC(Cn) =


n; n ≤ 6,
5; n = 7,
6; n ≥ 8.

Just as done for paths, we denote the consecutive vertices of Cn by x1, . . . , xn
and represent an independent c-partition π = {V1, . . . , Vk} of Cn by the vector
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f(π) = (f1(π), . . . , fn(π)), where xi ∈ Vfi(π). As an example consider the inde-
pendent c-partition π = {{x1, x3}, {x2, x4}, {x5}, {x6}, {x7}} of C7. Then π is
represented by the vector f(π) = (1, 2, 1, 2, 3, 4, 5), where, for instance, f5(π) = 3
means that x5 ∈ V3.

Clearly, the only cycle whose ICG contains an isolated vertex is C3, more
precisely, ICG(C3, π) = 3K1, where π is the unique independent c-partition of
C3. For longer cycles we have the following.

Proposition 10. Let π be an independent c-partition of Cn, n ≥ 4. Then
ICG(Cn, π) is a spanning subgraph of one of the graphs (K1 ∪K2)+K1, (K1 ∪K2)
+2K1, and (K1 ∪K2) + 3K1.

Proof. Let π = {V1, . . . , Vk} be an independent c-partition of Cn. Since n ≥ 4,
ICG(Cn) has no isolated vertices. Moreover, k = |π| ≥ 4. Indeed, if we would
have |π| = 3, then there exist three consecutive vertices of Cn such that they
respectively belong to the three parts of π. We may assume without loss of
generality that fi(π) = i for i ∈ [3]. But then neither V2 ∪ V1 nor V2 ∪ V3 is an
independent set, a contradiction.

We have thus seen that k ≥ 4. On the other hand, k ≤ 6 by Theorem 9. Just
as above, there exist three consecutive vertices of Cn such that they respectively
belong to the three parts of π and we may assume that fi(π) = i for i ∈ [3].
Then V2V1 /∈ E(ICG(Cn, π)) and V2V1 /∈ E(ICG(Cn, π)). It is possible however
that V1V3 ∈ E(ICG(Cn, π)). If k = 4, then ICG(Cn, π) is a spanning subgraph
of (K1 ∪K2) + K1. Assume k = 5. Then V4 ∪ V5 is not a dominating set since
the union does not dominate x2. In this case ICG(Cn, π) is a spanning subgraph
of (K1 ∪K2) + 2K1. Assume finally that k = 6. Then by the same argument
Vj ∪Vj′ is not a dominating set for any j, j′ ∈ {4, 5, 6}, j 6= j′. Hence in this case
ICG(Cn, π) is a spanning subgraph of (K1 ∪K2) + 3K1.

The variety of the ICGs of cycles thus appears larger than the ICGs of paths.
Therefore, we will not make a precise analysis of which graphs from Proposition 10
are ICGs of cycles. Instead, we conclude with two ICGs of cycles which are not
ICGs of paths.

• C5: the cycle C5 with the independent c-partition (1, 2, 3, 4, 5);

• 3P2: the cycle C6 with the independent c-partition (1, 2, 3, 4, 5, 6).

Other realizations of the same graph can also exist. For instance, the graph
3P2 can be realized as the ICG of the cycle C9 with the independent c-partition
(1, 3, 5, 1, 3, 5, 2, 4, 6) and as the ICG of the cycle C12 with the independent c-
partition (1, 3, 5, 1, 3, 5, 2, 4, 6, 2, 4, 6).
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