DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

G. Di Stefano

Gabriele Di Stefano

University of L'Aquila

email: gabriele.distefano@univaq.it

0000-0003-4521-8356

S. Klavžar

Sandi Klavžar

Faculty of Mathematics and PhysicsUniversity of LjubljanaJadranska 191000 LjubljanaSlovenia

email: sandi.klavzar@fmf.uni-lj.si

0000-0002-1556-4744

A. Krishnakumar

Aditi Krishnakumar

School of Mathematics and Statistics, Open University, Milton Keynes, UK

email: aditikrishnakumar@gmail.com

0000-0002-0954-7542

J. James

Tuite James

School of Mathematics and Statistics, Open University, Milton Keynes, UK

email: james.t.tuite@open.ac.uk

0000-0003-2604-7491

I.G. Yero

Ismael Yero

University of Cadiz

email: ismael.gonzalez@uca.es

0000-0002-1619-1572

Title:

Lower general position sets in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-06-16 , Revised: 2024-02-13 , Accepted: 2024-02-15 , Available online: 2024-03-11 , https://doi.org/10.7151/dmgt.2542

Abstract:

A subset $S$ of vertices of a graph $G$ is a general position set if no shortest path in $G$ contains three or more vertices of $S$. In this paper, we generalise a problem of M. Gardner to graph theory by introducing the lower general position number gp$^-(G)$ of $G$, which is the number of vertices in a smallest maximal general position set of $G$. We show that $\textrm{gp}^-(G) = 2$ if and only if $G$ contains a universal line and determine this number for several classes of graphs, including Kneser graphs $K(n,2)$, line graphs of complete graphs, and Cartesian and direct products of two complete graphs. We also prove several realisation results involving the lower general position number, the general position number and the geodetic number, and compare it with the lower version of the monophonic position number. We provide a sharp upper bound on the size of graphs with given lower general position number. Finally we demonstrate that the decision version of the lower general position problem is NP-complete.

Keywords:

general position number, geodetic number, universal line, computational complexity, Kneser graphs, line graphs

References:

  1. P. Aboulker, L. Beaudou, M. Matamala and J. Zamora, Graphs with no induced house nor induced hole have the de Bruijn-Erdős property, J. Graph Theory 100 (2022) 638–652.
    https://doi.org/10.1002/jgt.22799
  2. P. Aboulker, M. Matamala, P. Rochet and J. Zamora, A new class of graphs that satisfies the Chen-Chvátal conjecture, J. Graph Theory 87 (2018) 77–88.
    https://doi.org/10.1002/jgt.22142
  3. M.A. Adena, D.A. Holton and P.A. Kelly, Some thoughts on the no-three-in-line problem, in: Combinatorial Mathematics, D. Holton (Ed(s)), Lecture Notes in Math. 403, (Springer, Berlin, Heidelberg, 1974) 6–17..
    https://doi.org/10.1007/BFb0057371
  4. O. Aichholzer, D. Eppstein and E.M. Hainzl, Geometric dominating sets-a minimum version of the No-Three-In-Line Problem, Comput. Geom. 108 (2023) 101913.
    https://doi.org/10.1016/j.comgeo.2022.101913
  5. B.S. Anand, U. Chandran S.V., M. Changat, S. Klavžar and E.J. Thomas, Characterization of general position sets and its applications to cographs and bipartite graphs, Appl. Math. Comput. 359 (2019) 84–89.
    https://doi.org/10.1016/j.amc.2019.04.064
  6. L. Beaudou, A. Bondy, X. Chen, E. Chiniforooshan, M. Chudnovsky, V. Chvátal, N. Fraiman and Y. Zwols, A De Bruijn-Erdős theorem for chordal graphs, Electron. J. Combin. 22 (2015) P1.70.
    https://doi.org/10.37236/3527
  7. P. Brass, W. Moser and J. Pach, Packing lattice points in subspaces, in: Research Problems in Discrete Geometry, (Springer, New York 2005) 417–421.
    https://doi.org/10.1007/0-387-29929-7
  8. U. Chandran S.V., M.C. Dourado and M.G.S. Thankachy, Computational and structural aspects of the geodetic and the hull numbers of shadow graphs, Discrete Appl. Math. 307 (2022) 50–61.
    https://doi.org/10.1016/j.dam.2021.10.005
  9. U. Chandran S.V and G.J. Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Combin. 4 (2016) 135–143.
  10. U. Chandran S.V., S. Klavžar, P.K. Neethu and R. Sampaio, The general position avoidance game and hardness of general position games, Theoret. Comput. Sci. 988 (2024) 114370.
    https://doi.org/10.1016/j.tcs.2023.114370
  11. G. Chartrand and P. Zhang, Extreme geodesic graphs, Czechoslovak Math. J. 52 (2002) 771–780.
    https://doi.org/10.1023/B:CMAJ.0000027232.97642.45
  12. X. Chen and V. Chvátal, Problems related to a de Bruijn-Erdős theorem, Discrete Appl. Math. 156 (2008) 2101–2108.
    https://doi.org/10.1016/j.dam.2007.05.036
  13. V. Chvátal, A de Bruijn-Erdős theorem in graphs$?$, in: Graph Theory, Favorite Conjectures and Open Problems–2, R. Gera, T.W. Haynes and S.T. Hedetniemi (Ed(s)), Probl. Books in Math., (Springer, Cham, 2018) 149–176..
    https://doi.org/10.1007/978-3-319-97686-0_13
  14. A.S. Cooper, O. Pikhurko, J.R. Schmitt, G.S. Warrington, Martin Gardner's minimum no-$3$-in-a-line problem, Amer. Math. Monthly 121 (2014) 213–221.
    https://doi.org/10.4169/amer.math.monthly.121.03.213
  15. G. Di Stefano, Mutual visibility in graphs, Appl. Math. Comput. 419 (2022) 126850.
    https://doi.org/10.1016/j.amc.2021.126850
  16. H.E. Dudeney, Amusements in Mathematics (Nelson, Edinburgh, 1917).
  17. M. Gardner, Mathematical games: combinatorial problems, some old, some new and all newly attacked by computer, Sci. Amer. 235 (1976) 131–137.
  18. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman and Co., 1979).
  19. M. Ghorbani, H.R. Maimani, M. Momeni, F.R. Mahid, S. Klavžar, G. Rus, The general position problem on Kneser graphs and on some graph operations, Discuss. Math. Graph Theory 41 (2021) 1199–1213.
    https://doi.org/10.7151/dmgt.2269
  20. R.K. Guy and P.A. Kelly, The no-three-in-line problem, Canad. Math. Bull. 11 (1968) 527–531.
    https://doi.org/10.4153/CMB-1968-062-3
  21. R.R. Hall, T.H. Jackson, A. Sudbery and K. Wild, Some advances in the no-three-in-line problem, J. Combin. Theory Ser. A 18 (1975) 336–341.
    https://doi.org/10.1016/0097-3165(75)90043-6
  22. W. Imrich, S. Klavžar and D.F. Rall, Topics in Graph Theory, Graphs and their Cartesian Product (A K Peters/CRC Press, 2008).
    https://doi.org/10.1201/b10613
  23. S. Klavžar, A. Krishnakumar, J. Tuite and I.G. Yero, Traversing a graph in general position, Bull. Aust. Math. Soc. 108 (2023) 353–365.
    https://doi.org/10.1017/S0004972723000102
  24. S. Klavžar, D. Kuziak, I. Peterin and I.G. Yero, A Steiner general position problem in graph theory, Comput. Appl. Math. 40 (2021) 223.
    https://doi.org/10.1007/s40314-021-01619-y
  25. S. Klavžar, P.K. Neethu and U. Chandran S.V., The general position achievement game played on graphs, Discrete Appl. Math. 317 (2022) 109–116.
    https://doi.org/10.1016/j.dam.2022.04.019
  26. S. Klavžar, D.F. Rall and I.G. Yero, General $d$-position sets, Ars Math. Contemp. 21 (2021) #P1.03.
    https://doi.org/10.26493/1855-3974.2384.77d
  27. S. Klavžar and I.G. Yero, The general position problem and strong resolving graphs, Open Math. 17 (2019) 1126–1135.
    https://doi.org/10.1515/math-2019-0088
  28. J. Körner, On the extremal combinatorics of the Hamming space, J. Combin. Theory Ser. A 71 (1995) 112–126.
    https://doi.org/10.1016/0097-3165(95)90019-5
  29. P. Manuel and S. Klavžar, A general position problem in graph theory, Bull. Aust. Math. Soc. 98 (2018) 177–187.
    https://doi.org/10.1017/S0004972718000473
  30. P. Manuel, R. Prabha and S. Klavžar, The edge general position problem, Bull. Malays. Math. Sci. Soc. 45 (2022) 2997–3009.
    https://doi.org/10.1007/s40840-022-01319-8
  31. P.K. Neethu, U. Chandran S.V., M. Changat and S. Klavžar, On the general position number of complementary prisms, Fund. Inform. 178 (2021) 267–281.
    https://doi.org/10.3233/FI-2021-2006
  32. B. Patkós, On the general position problem on Kneser graphs, Ars Math. Contemp. 18 (2020) 273–280.
    https://doi.org/10.26493/1855-3974.1957.a0f
  33. E. Pegg Jr., Math Games. Chessboard Tasks (accessed on February 18, 2023).
    https://www.mathpuzzle.com
  34. J.A. Rodríguez-Velázquez, Universal lines in graphs, Quaest. Math. 45 (2022) 1485–1500.
    https://doi.org/10.2989/16073606.2021.1950862
  35. K.F. Roth, On a problem of Heilbronn, J. London Math. Soc. (1) 26 (1951) 198–204.
    https://doi.org/10.1112/jlms/s1-26.3.198
  36. R. Schrader and L. Stenmans, A de {B}ruijn-{E}rdős theorem for $(q,q - 4)$-graphs, Discrete Appl. Math. 279 (2020) 198–201.
    https://doi.org/10.1016/j.dam.2019.11.008
  37. M.G.S. Thankachy, U. Chandran S.V., J. Tuite, E.J. Thomas, G. Di Stefano and G. Erskine, On the vertex position number of graphs, Discuss. Math. Graph Theory(2023), in press.
    https://doi.org/10.7151/dmgt.2491
  38. E.J. Thomas and U. Chandran S.V., Characterization of classes of graphs with large general position number, AKCE Int. J. Graphs Comb. 17 (2020) 935–939.
    https://doi.org/10.1016/j.akcej.2019.08.008
  39. E.J. Thomas, U. Chandran S.V., J. Tuite and G. Di Stefano, On monophonic position sets of graphs, Discrete Appl. Math.(2023), in press.
    https://doi.org/10.1016/j.dam.2023.02.021
  40. J. Tian and K. Xu, The general position number of Cartesian products involving a factor with small diameter, Appl. Math. Comput. 403 (2021) 126206.
    https://doi.org/10.1016/j.amc.2021.126206
  41. J. Tuite, E.J. Thomas and U. Chandran S.V., On some extremal position problems for graphs, Ars Math. Contemp.(2023), in press.
    https://doi.org/10.26493/1855-3974.3094.bc6
  42. Y. Yao, M. He and S. Ji, On the general position number of two classes of graphs, Open Math. 20 (2022) 1021–1029.
    https://doi.org/10.1515/math-2022-0444

Close