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Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia, and

Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

e-mail: sandi.klavzar@fmf.uni-lj.si

Aditi Krishnakumar

School of Mathematics and Statistics, Open University, Milton Keynes, UK

e-mail: aditikrishnakumar@gmail.com

James Tuite

School of Mathematics and Statistics, Open University, Milton Keynes, UK

e-mail: james.t.tuite@open.ac.uk

and

Ismael G. Yero
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Abstract

A subset S of vertices of a graph G is a general position set if no shortest
path in G contains three or more vertices of S. In this paper, we generalise
a problem of M. Gardner to graph theory by introducing the lower general
position number gp−(G) of G, which is the number of vertices in a smallest
maximal general position set of G. We show that gp−(G) = 2 if and only
if G contains a universal line and determine this number for several classes
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of graphs, including Kneser graphs K(n, 2), line graphs of complete graphs,
and Cartesian and direct products of two complete graphs. We also prove
several realisation results involving the lower general position number, the
general position number and the geodetic number, and compare it with
the lower version of the monophonic position number. We provide a sharp
upper bound on the size of graphs with given lower general position number.
Finally we demonstrate that the decision version of the lower general position
problem is NP-complete.

Keywords: general position number, geodetic number, universal line, com-
putational complexity, Kneser graphs, line graphs.
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1. Introduction

The general position problem originated in a puzzle by Dudeney in his book [16].
It can be stated as follows: what is the largest number of pawns that can be
placed on an n × n chessboard such that no three pawns lie on a straight line?
This geometrical problem is also known as the no-three-in-line problem. An
obvious upper bound is 2n, which is achieved for n ≤ 46. However, for larger n
the problem remains open. Erdős showed how to place n − o(n) pawns on the
chessboard with no three in line (his proof is recorded in the paper [35] by Roth),
which was subsequently improved by Hall et al. to 3n

2 − o(n) pawns [21]. It is
conjectured that the true answer is πn√

3
− o(n) in [20] (see [33] for a correction).

The problem has been called “one of the oldest and most extensively studied
geometric questions concerning lattice points” [7].

The general position problem was generalised to the setting of graph theory
independently in [9, 28, 29] as follows.

Definition 1. A set S ⊆ V (G) is in general position if no shortest path in G
contains three or more vertices of S; such a set is a general position set. The
general position number gp(G) of G is the number of vertices in a largest general
position set. The general position problem asks for a largest general position set
in a given graph.

Papers in this very active field of research include [19, 27, 31, 32, 38, 40,
42]. Several variations of the problem have been considered, including using the
Steiner distance instead of the regular graph distance [24], or confining attention
to shortest paths of bounded length [26]. Games involving general position sets
have also been treated in [10] and [25], a dynamic variant of the problem was
considered in [23] and a local version of general position sets was studied in [37].
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The edge version of the general position problem has also been recently stud-
ied in [30]. A related problem is the monophonic position problem obtained by
replacing “shortest path” in the general position problem by “induced path”,
see [39]. Another variant of the general position problem is the mutual-visibility
problem that asks for a largest set of vertices S, such that for each pair of vertices
in S there is a shortest path connecting them that does not contain a third vertex
of S, see [15].

A new slant on this old problem was given by Martin Gardner (the mod-
ern day Dudeney), who asked the following question in his column in Scientific
American: “Instead of asking for the maximum number of counters that can be
put on an order-n board, no three in line, let us ask for the minimum that can be
placed such that adding one more counter on any vacant cell will produce three
in line” [17]. If a greedy algorithm is used to produce a general position set,
then the answer to Gardner’s problem represents the worst-case output. This
problem was treated in [3, 4, 14]. The most recent of these articles [4] refers to
this problem as the geometric domination problem and gives a lower bound of
Ω
(
n

2
3

)
and an upper bound of 2

⌈
n
2

⌉
for an n× n grid.

In this paper we extend Gardner’s problem to graph theory by asking for
the smallest maximal general position sets, i.e., the smallest general position sets
that cannot be extended without creating three in a line.

Definition 2. A general position set S in a graph G is maximal if there is no
general position set of G containing S as a proper subset. The lower general
position number gp−(G) of G is the number of vertices in a smallest maximal
general position set of G, also called a lower general position set.

An example of these concepts in the context of the Petersen graph P can be
seen in Figure 1. From [29] we know that gp(P ) = 6; the set of white vertices in
the figure represents a largest general position set, whilst the grey vertices form
a smallest maximal general position set, so that gp−(P ) = 4.

Since any vertex of a (non-trivial) graph G is not a maximal general position
set, for any graph G we have

(1) 2 ≤ gp−(G) ≤ gp(G).

It is not difficult to see that for any tree T (or, more generally, any graph with
a bridge) we have gp−(T ) = 2, so it is possible to have equality with the lower
bound in Inequality (1). In Section 2 we will take a closer look at the graphs G
which satisfy gp−(G) = 2. The upper bound in Inequality (1) is also tight, since
any complete graph Kn satisfies gp−(Kn) = n = gp(Kn).

We now provide some necessary definitions. All graphs considered in this
paper are finite, undirected, simple and connected. The order and the size of a
graph G will be denoted by n(G) and m(G), respectively. We will write u ∼ v if
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vertices u and v are adjacent. The subgraph of G induced by a subset S ⊆ V (G)
will be denoted by G[S]. The distance dG(u, v) between vertices u and v of a
graph G is the length of a shortest u, v-path. The interval I[u, v] of u and v is the
set of vertices that lie on at least one shortest u, v-path. The geodetic closure I[S]
of a set S ⊆ V (G) is the union

⋃
u,v∈S I[u, v] and S is geodetic if I[S] = V (G).

The geodetic number g(G) of G is the number of vertices in a smallest geodetic
set of G, see [8].

Figure 1. The Petersen graph with a maximum general position set (white) and a lower
general position set (grey).

In connection with this last parameter, note that a geodetic set S in a graph
G has the property that no vertex can be added to S without creating three in a
line (although there is no guarantee that S is in itself in general position). Thus,
if a geodetic set is in general position, then it is also a maximal general position
set. This may suggest that a graph with a small geodetic number might also have
a small lower general position number.

The clique number ω(G) is the number of vertices in a largest clique (i.e., set
of mutually adjacent vertices) of G, whilst ω−(G) will represent the number of
vertices in a smallest maximal clique of G. When it makes sense, we will also use
the term “clique” for a complete subgraph of a graph. A subset S ⊆ V (G) is an
independent union of cliques if each component of G[S] is a clique; the number
of vertices in a largest independent union of cliques is the independent union of
cliques number αω(G), whereas we will denote the number of vertices in a smallest
maximal independent union of at least two cliques by αω

−
(G) (for convenience

we do not count a clique as an independent union of cliques here). The join of
graphs G and H will be denoted by G ∨H. We also adopt the convention that
[n] stands for the set {1, . . . , n}.

The plan of this paper is as follows. In Section 2 we consider graphs having
lower general position number equal to two. In particular, we show that these
graphs coincide with the graphs that contain a universal line. In Section 3 we
prove several realisation results involving the lower general position number, the
general position number and the geodetic number. We also give an upper bound
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on the size of a graph with given lower general position number and characterise
the graphs which attain equality. In Section 4 we prove that the decision version
of the lower general position problem is NP-complete. In Section 5 we determine
the lower general position number of the Kneser graphs K(n, 2), the line graphs of
complete graphs, and the Cartesian and direct products of two complete graphs.
In Section 6 we relate the lower general position number to the lower monophonic
position number. Finally in Section 7 we suggest several avenues for further
research.

2. Graphs G with gp−(G) = 2

Based on the trivial lower bound in Inequality (1), it is natural (as with many
other graph parameters) to consider characterising the family of graphs achieving
equality. However, as we now show, this appears to be a very challenging problem.
To see this, let us first invoke the following concept from the theory of metric
spaces. Let M = (X, dM ) be an arbitrary metric space and x, y ∈ X. Then the
line LM (x, y) induced by x and y is the following set of points from M{
z ∈ X : dM (x, y) = dM (x, z) + dM (z, y) or dM (x, y) = |dM (x, z)− dM (z, y)|

}
.

The line LM (x, y) is universal if it contains the whole set X. Considering a graph
G as a metric space, these definitions transfer directly to G.

Let `(M) denote the number of distinct lines in M . Chen and Chvátal [12]
conjectured that if `(M) < |X|, then M has a universal line. The problem
remains open; a summary of what is known about it up to 2018 can be found
in [13]. For the case of graphs, the Chen-Chvátal Conjecture has been verified
in particular for a certain class of graphs containing both chordal graphs and
distance-hereditary graphs [2], for (q, q − 4)-graphs [36], and for graphs with no
induced house or induced cycle of length at least 5 [1].

Closely related to the Chen-Chvátal Conjecture is an open problem [34, Prob-
lem 1.2] to determine necessary and sufficient conditions for a graph to have a
universal line. It turns out that the existence of a universal line in G is equivalent
to gp−(G) = 2.

Proposition 3. Let G be a graph. Then gp−(G) = 2 if and only if G has a
universal line.

Proof. Suppose first that gp−(G) = 2 and let {u, v} be a maximal general po-
sition set of G. Then for every vertex w ∈ V (G) \ {u, v}, the triple of ver-
tices u, v, w lies on a shortest path. That is, one of the following equations
applies: dG(u, v) = dG(u,w) + dG(w, v), dG(u,w) = dG(u, v) + dG(v, w) or
dG(v, w) = dG(v, u) + dG(u,w). This in turn implies that LG(u, v) = V (G),
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hence G has a universal line. Conversely, if G has a universal line LG(u, v), then
by the same argument, {u, v} is a maximal general position set of G.

Therefore the problem of the existence of universal lines considered in [34]
is equivalent to efficiently characterising connected graphs with lower general
position number 2. Simple sufficient conditions for gp−(G) = 2 to hold are: (i)
having a bridge; (ii) g(G) = 2; (iii) being bipartite, see [6]. If G is a block graph,
then gp−(G) = 2 if and only if K2 is a block of G, see [34, Corollary 3.4]. In the
same paper, Rodŕıguez-Velázquez characterised Cartesian product graphs having
a universal line. (For the definition of the Cartesian product and its properties
we refer to the book [22].) In view of Proposition 3 his result can be reformulated
as follows.

Theorem 4 [34, Theorem 4.1]. Let G and H be non-trivial, connected graphs.
Then gp−(G�H) = 2 if and only if one of the following conditions holds.

(i) G or H has a maximal general position set consisting of two adjacent vertices.

(ii) g(G) = 2 and g(H) = 2.

Other graphs with lower general position number 2 are: (i) graphs obtained
from any graph G such that gp−(G) = 2 and any graph H by fixing a vertex
u ∈ V (G) and joining it to at least one vertex in every component of H and (ii)
any complete multipartite graph with a part of cardinality 2, compare Proposi-
tion 5(ii).

To conclude this section we determine the cycles and complete multipartite
graphs that have lower general position number equal to 2.

Proposition 5. (i) If n ≥ 3, then

gp−(Cn) =

{
2; n even,

3; n odd.

(ii) If t ≥ 2 and r1 ≥ · · · ≥ rt ≥ 2, then

gp−(Kr1,...,rt) = min{t, rt}.

Proof. (i) If n is even, then Cn is bipartite and hence gp−(Cn) = 2. Now let
n be odd. Identify the vertex set of Cn with Zn in the natural manner. As
gp(Cn) = 3 for n = 3 and n ≥ 5, we have 2 ≤ gp−(G) ≤ 3 and the result will
follow if we show that any set of two vertices of Cn can be extended to form a
general position set of three vertices. Without loss of generality, let this set be
S = {0, i}, where i < n− i. Then it is easily checked that if i is odd, then the set{

0, i, n+i2

}
is in general position and if i is even, then

{
0, i, n+i−12

}
is in general

position.
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(ii) Each of the partite sets of the complete multipartite graph is a maximal
general position set, so it follows that gp−(Kr1,...,rt) ≤ rt. Suppose that S is a
maximal general position set containing vertices from different partite sets. Then
S can contain at most one vertex from each of the t parts; hence S induces a
clique and by maximality S must contain t vertices, one from each part. Hence
gp−(Kr1,...,rt) = min{t, rt}.

3. Realisation Results

In this section we explore the relationship between the lower general position
number, the general position number and the geodetic number. We begin by
proving a realisation result for the lower general position number and geodetic
number of a graph. Recall that it was suggested in Section 1 that a graph with
small geodetic number might be expected to have a small maximal geodetic set;
although this intuition turns out to be true for graphs with geodetic number two
or three, we now show that in general this is not the case. To this end, we begin by
determining the lower general position number of the join of two graphs. Recall
our convention that when finding the smallest number of vertices in a maximal
independent union of cliques αω

−
(G) we do not allow unions consisting of one

clique.

Lemma 6. If G and H are graphs, then

gp−(G ∨H) = min{ω−(G) + ω−(H), αω
−

(G), αω
−

(H)}.

Proof. Let S be a smallest maximal general position set of G∨H. Suppose that
S contains vertices of both G and H; then both S ∩ V (G) and S ∩ V (H) must
induce cliques, since if u, u′ ∈ V (G), v ∈ V (H) and u 6∼ u′, then u, v, u′ would
be a path of length two contained in S. Conversely, any such set is a clique in
G ∨H that cannot be extended to a larger general position set of G ∨H. Hence
|S| ≤ ω−(G) + ω−(H).

Suppose now that S ∩V (H) = ∅ (the case S ∩V (G) = ∅ is symmetrical). As
all vertices of V (G) are at distance at most two in G∨H, S is in general position
in G ∨ H if and only if it is an independent union of cliques. However, S will
only be a maximal general position set if it is a maximal independent union of at
least two cliques in G (otherwise we could extend S by adding any vertex from
H). Thus gp−(G ∨H) ≤ αω−

(G).
The result now follows upon taking the minimum amongst these forms of

maximal general position sets in G ∨H.

We also use the following known lemma in our comparison of the geodetic
number and lower general position number. Recall that a vertex of a graph is
simplicial if its neighbours induce a complete subgraph.
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Lemma 7 [11, Theorem A]. Every geodetic set of G contains all simplicial ver-
tices of G.

Theorem 8. Let a ≥ 2 and b ≥ 2 be integers. Then there is a graph G with
gp−(G) = a and g(G) = b if and only if 2 ≤ a ≤ b or 4 ≤ b ≤ a.

Proof. If a ≤ b, then by Lemma 6 the graph bK1∨Ka−1 has gp−(bK1∨Ka−1) =
a. Moreover, by Lemma 7, any geodetic set of bK1∨Ka−1 contains the b vertices
of bK1; since this set is geodetic, we obtain g(bK1 ∨ Ka−1) = b. We can thus
assume in the remainder of the proof that b < a.

If b = g(G) = 2, then G has a universal line and hence gp−(G) = 2 by
Proposition 3. Suppose that g(G) = 3 and let S = {x, y, z} be a smallest geodetic
set, so that I[x, y] ∪ I[x, z] ∪ I[y, z] = V (G). Suppose that S is not in general
position, say y lies on a shortest x, z-path P in G. Then we have I[x, y]∪I[y, z] ⊆
I[x, z], so that {x, z} would be a geodetic set, a contradiction, implying that G
would have a maximal general position set of order at most three. Thus we cannot
have b < a if b ∈ {2, 3}.

Now we deal with the remaining case 4 ≤ b < a. Let X1, X2, Y be cliques of
orders |X1| = |X2| = a − 2 > 2 and |Y | = b − 3 ≥ 1. Let x1 ∈ X1 and x2 ∈ X2

be fixed. We form a graph H(a, b) from these cliques as follows. Add all possible
edges between X1 and Y , join x1 to every vertex of X2 and x2 to every vertex of
X1. Add a new vertex w and join it to every vertex of X2. Finally we construct
G(a, b) by adding a vertex z to H(a, b) and joining it to every other vertex, i.e.,
G(a, b) = H(a, b) ∨K1. An example is given in Figure 2.

Let R be a smallest geodetic set of G(a, b). Now each vertex in Y ∪ {w} is a
simplicial vertex, so Lemma 7 yields Y ∪ {w} ⊆ R, and hence g(G(a, b)) ≥ b− 2.
Furthermore it is easily checked that Y ∪ {x1, x2, w} is a geodetic set containing
b vertices, whilst adding a single vertex to Y ∪ {w} does not yield a geodetic set;
it follows that g(G(a, b)) = b.

For the lower general position number, Lemma 6 implies that gp−(G(a, b)) =
min{ω−(H(a, b))+1, αω

−
(H(a, b))}. The set X2∪{w} induces a smallest maximal

clique of H(a, b), hence ω−(H(a, b)) + 1 = a. To calculate αω
−

(H(a, b)), let
S′ be a smallest maximal independent union of at least two cliques. Suppose
that x1 ∈ S′. Observe that in this case S′ cannot contain vertices from both
(X1 \ {x1}) ∪ Y ∪ {w} and X2. Hence, if S′ contains a vertex of X2, then S′

would be a clique, a contradiction, so it follows that S′ ⊆ X1 ∪ Y ∪ {w}; as
X1∪Y ∪{w} is an independent union of cliques, we would have S′ = X1∪Y ∪{w}
and |S′| = a+ b− 4 ≥ a. Thus we can assume that x1 6∈ S′ and similarly x2 6∈ S′.

Thus S′ ⊆ (X1 ∪ X2 ∪ Y ∪ {w}) \ {x1, x2}, from which it follows that S′ =
(X1∪X2∪Y ∪{w}) \ {x1, x2} and |S′| = 2a+ b−8 > a. Hence αω

−
(H(a, b)) ≥ a

and gp−(G(a, b)) = a.
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Y

z

w

Figure 2. The graph G(7, 6).

We next focus on the relationship between the lower general position number
and the classical general position number. By Proposition 5(ii), for any 2 ≤ a ≤ b
the complete multipartite graph with one part of cardinality b and a − 1 parts
of cardinality a has gp−(G) = a, gp(G) = b and order b + (a − 1)a. Also the
graph bK1 ∨Ka−1 from the proof of Theorem 8 has gp−(bK1 ∨Ka−1) = a and
gp(bK1 ∨Ka−1) = b, but a smaller order b+ a− 1. For a = b, trivially Ka is the
smallest possible such graph. We next show that for 2 ≤ a < b a smaller graph
that fulfills the same conditions can be constructed.

Theorem 9. For any two integers 2 ≤ a < b there is a graph G with gp−(G) = a,
gp(G) = b, and n(G) = b+ max

{
1, a−

⌊
b
2

⌋}
.

Proof. Let G be the join of Kc ∪ Kb−a+c with Ka−c. Choose c such that a ≤
b− a+ 2c ≤ b; then gp−(G) = a and gp(G) = b. The smallest possible choice of
c is max

{
1, a−

⌊
b
2

⌋}
.

Finding the smallest graph with gp−(G) = a and gp(G) = b remains an open
problem. To conclude this section we prove the following bound on the size of a
graph with given lower general position number.

Theorem 10. If G is a graph with gp−(G) = k ≥ 2 and n(G) ≥ 2k − 1, then

m(G) ≤
(
n

2

)
− k + 1.

Moreover, the unique graph with order n(G) that meets this bound is formed from
a clique Kn(G) by deleting k − 1 edges adjacent to a fixed vertex.
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Proof. Let n ≥ 2k − 1 and take a clique Kn. Choose a set S of k vertices
of Kn and for some vertex u ∈ S delete all edges between u and S \ {u} to
form the graph G(k). We claim that gp−(G(k)) = k. Let S′ be an arbitrary
maximal general position set of G(k). If u 6∈ S′, then S′ must be a clique with
order n − 1 ≥ k, so suppose that u ∈ S′. If (S \ {u}) ∩ S′ = ∅, then S′ is the
clique induced by V (G(k)) \ (S \ {u}), which contains n − k + 1 ≥ k vertices.
If S′ contains a vertex v of S \ {u}, then S′ ∩ V (G(k) − S) = ∅, as any vertex
w ∈ V (G(k) − S) is contained in a shortest path u,w, v. Hence, the set S is
clearly a maximal general position set, so it follows that gp−(G(k)) = k.

In fact we can show that this is the only graph with size
(
n
2

)
− k+ 1 that has

lower general position number k. Assume that G is any such graph and let M be
the set of k− 1 edges deleted from Kn to obtain G, i.e., G = Kn −M . Let H be
the subgraph of Kn induced by M . Also, let K be the set of vertices incident to
the edges of M . Observe that |K| ≤ 2k−2. If H is connected, then |K| ≤ k, and
if H is not connected, then there is a component of H with order at most k − 1;
in either case, let H ′ be a component of H with minimum order. Let u and v be
two vertices of H ′, so that u and v are non-adjacent in G.

Let S be a maximal general position set of G containing {u, v}. S cannot
contain any vertex outside H ′, so H must be connected, for otherwise we have
exhibited a maximal general position set of G of order at most k−1. As gp−(G) =
k and |K| ≤ k, we must have that |K| = k, S = K and H is a tree. If the
diameter of H is at least three, then H would contain a geodesic u0, u1, u2, u3, so
that u0, u3, u1 would be a shortest path in G contained in S, which is impossible.
We conclude that H must be a star and G ∼= G(k).

Suppose now that there is a graph G withm(G) ≥
(
n
2

)
−k+2 and gp−(G) = k.

Hence G can be formed by deleting a set A of at most k− 2 edges from Kn. Let
u ∼ v be any edge of A. Let A1 be the set of edges of A incident with u (apart
from u ∼ v) and A2 be the set of edges of A incident with v (again apart from
u ∼ v). Let B1 be the set of endvertices of the edges in A1 apart from u, and let
B2 be the set of endvertices of the edges of A2 apart from v. There can be overlap
between the sets B1 and B2, but as we have deleted at most k− 2 edges we have
|B1∪B2∪{u, v}| ≤ k−1. Let S′ be a maximal general position set of G containing
the set {u, v}. S′ cannot contain any vertex of V (G) \ (B1 ∪B2 ∪ {u, v}) and so
S′ ⊆ B1 ∪B2 ∪ {u, v}; this shows that G contains a maximal general position set
containing at most k − 1 vertices, a contradiction.

4. Computational Complexity

In Section 2 we have seen that gp−(G) = 2 if and only if G has a universal
line. The problem of characterising graphs that have universal lines is difficult
and was extensively investigated in [34]. In this section we complement these
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investigations by proving that the lower general position problem is NP-complete.
To this end, we formally define the decision version of the problem.

Definition 11. Lower General Position
Instance: A graph G, a positive integer k ≤ n(G).
Question: Is there a lower general position set S for G such that |S| ≤ k?

The problem is hard to solve, as shown by the following result.

Theorem 12. The Lower General Position problem is NP-complete.

Proof. Let us observe that Lower General Position is in NP since, given a
set of vertices S, it can be tested in polynomial time if (1) S is in general position,
(2) if it is maximal and (3) if its cardinality is less than a given integer.

We prove that Independent Dominating Set polynomially reduces to
Lower general position. Recalling that a dominating set of a graph G is a
subset V ′ of V (G) such that for all u ∈ V (G) \ V ′ there is a v ∈ V ′ such that
uv ∈ E(G), we provide a formal definition of the decision version of the problem.

An instance of Independent Dominating Set is given by a graph
G and a positive integer k ≤ n(G). The Independent Dominating
Set problem asks whether G contains a dominating set K ⊆ V (G),
of cardinality k or less, which is also independent.

The NP-completeness of Independent Dominating Set is reported in [18].
We polynomially transform an instance (G, k) of Independent Dominating
Set to an instance (G′, k′) of Lower General Position. In particular, given
(G, k) we must construct a graph G′ and a positive integer k′ such that G has an
independent dominating set of cardinality k or less if and only if G′ has a lower
general position set of cardinality k′ or less.

Given an instance (G, k), the graph G′ is built as follows

G′ =
(
G ∪Kn(G)+1

)
∨K1.

The graph G′ is thus the join of graphs G′′ = G ∪Kn(G)+1 and K1, where G′′ is
the disjoint union of the complement of G and a complete graph with n(G) + 1
vertices. Then the construction of G′ can be achieved in polynomial time. As for
k′, we set k′ = k + 1.

We have to show that an instance (G, k) of Independent Dominating Set
has a positive answer if and only if (G′, k′), the corresponding instance of Lower
General Position, has a positive answer.

By Lemma 6, the lower general position number of G′ is given by

gp−(G′) = min
{
ω−
(
G ∪Kn(G)+1

)
+ ω−(K1), α

ω− (
G ∪Kn(G)+1

)
, αω

−
(K1)

}
.
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Considering that ω−(K1) = 1, that αω
−

(G ∪ Kn(G)+1) ≥ ω−(G ∪ Kn(G)+1) + 1

and that αω
−

(K1) is not defined, we have that

(2) gp−(G′) = ω−
(
G ∪Kn(G)+1

)
+ 1 = ω−(G) + 1.

Moreover, observe that a smallest maximal clique in a given graph is an
independent dominating set in the complement graph. Indeed, a clique is an
independent set in the complement graph and, as the clique is maximal, any
vertex not in the independent set of the complement graph must be adjacent to
a vertex of the independent set, so the independent set is also dominating.

Assume that the instance (G, k) of Independent Dominating Set has a
positive answer. Then in G there is a maximal clique having cardinality at most
k. Since k ≤ n(G), then ω−(G ∪ Kn(G)+1) ≤ k and hence by (2), gp−(G′) =

ω−(G∪Kn(G)+1)+1 ≤ k+1 = k′, which in turn means that (G′, k′), the instance
of Lower General Position, has a positive answer.

Assume now that there is a maximal general position set S in G′ with car-
dinality k′ or less, that is |S| ≤ k′. By (2), if S contains a vertex in Kn(G)+1,
then, as |S| is maximal, it must contain all the vertices in Kn(G)+1 and at least

one vertex in G ∨ K1. So the cardinality of S is at least n(G) + 2 ≥ k′ + 1, a
contradiction. Thus S does not contain vertices in Kn(G)+1. It now follows from
Lemma 6 that S consists of the vertex of K1 and a smallest maximal clique in
G, implying that there exists an independent dominating set in G of cardinality
|S| − 1 ≤ k.

5. Lower General Position Number of Some Families

In this section we determine the lower general position number of the Kneser
graphs K(n, 2), the line graphs of complete graphs, and the Cartesian and direct
products of two complete graphs.

Recall that the Kneser graph K(n, 2) is the graph with vertex set consisting
of all subsets of cardinality two (or 2-sets for short) of the set [n], with an edge
between two such subsets if and only if they are disjoint.

Theorem 13. If n ≥ 3, then

gp−(K(n, 2)) =


3; n ∈ {3, 6, 7},
4; n ∈ {5, 8, 9},
5; n ∈ {10, 11},
6; otherwise.
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Proof. The result is trivial for n = 3, 4. The case n = 5 is the Petersen graph.
Hence we can assume that n ≥ 6. We divide our argument into three cases de-
pending on the structure of the general position set. By the result of [5, Theorem
3.1], any general position set is either a clique or an independent union of cliques
(with a couple of additional technical properties). Let K be any maximal general
position set of K(n, 2).

Case 1. The subgraph induced by K contains a clique W of order at least 3.
Suppose in this case that the subgraph induced by K contains a component W ′

apart from W and let {a, b} be a (2-set) vertex of W ′. Without loss of generality,
let three vertices of W be {1, 2}, {3, 4} and {5, 6}. Then any 2-set {a, b} being
a vertex of W ′, must have a non-empty intersection with each of these 2-sets
{1, 2}, {3, 4} and {5, 6}, which is impossible. Thus K consists of a single clique
W , which is maximal if and only if it contains

⌊
n
2

⌋
2-sets. Hence in this case the

maximal general position sets have order
⌊
n
2

⌋
.

Case 2. K is an independent set. As K(n, 2) has diameter two, any indepen-
dent set is in general position. By the Erdős-Ko-Rado Theorem, the independence
number of K(n, 2) is n−1. Let {1, 2} be a (2-set) vertex of K. Any set containing
only vertices of the form {1, i} is independent (similarly for a set containing only
vertices of the form {2, i}), but the only maximal such set has cardinality n− 1,
as given by the Erdős-Ko-Rado Theorem, which is greater than the maximal
general position sets considered in Case 1 (unless n = 5, in which case K(5, 2) is
triangle-free and an independent set of order 4 is best possible). The only other
maximal independent sets of K(n, 2) have the structure {{1, 2}, {1, 3}, {2, 3}}.
However, this is not a maximal general position set, as the 2-set {1, 4} can be
added to make a larger general position set.

Case 3. G[K] has a component isomorphic to K2. Without loss of generality,
assume that the clique in question is {{1, 2}, {3, 4}}. Then any other vertex of
K must be a subset of [4]. The set of 6 subsets of cardinality 2 of [4] does form
a maximal general position set isomorphic to 3K2. In this case the order of the
maximal general position set is thus 6; this is a smallest possible maximal general
position set for n ≥ 12.

We continue with the line graphs of complete graphs, denoted by L(Kn).

Theorem 14. If n ≥ 2, then

gp−(L(Kn)) =

{
n
2 ; n even,
n+3
2 ; n odd.

Proof. The result is easily verified for n ≤ 4, so we assume that n ≥ 5. Let S
be a lower general position set of L(Kn). It is shown in [19] that the vertices of a
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maximal general position set of L(Kn) correspond to edges in Kn that induce a
disjoint union of triangles and stars containing either one or at least three edges
(since any star with two edges can be completed to a triangle). Let r be the
number of stars in S. Observe that if n is even, then a perfect matching in Kn is
a maximal general position set of L(Kn), whilst if n is odd the disjoint union of
a triangle and a matching of cardinality n−3

2 is a maximal general position set of
L(Kn). This shows that gp−(L(Kn)) ≤ n

2 if n is even and gp−(L(Kn)) ≤ n+3
2 if

n is odd.

Suppose that S does not contain any stars of Kn. Then either n ≡ 0 (mod 3)
and S consists entirely of triangles, in which case |S| = n, or else n ≡ 1 (mod 3)
and S corresponds to a union of n−1

3 triangles and one isolated vertex, in which
case |S| = n−1. In either case, |S| is no smaller than the claimed bounds. Hence
we may assume that S contains at least one star.

Suppose that there is a vertex of Kn that is not covered by an edge of S;
since this vertex could be joined to the centre of a star to form a larger general
position set, this would contradict the maximality of S. It follows that every
vertex of Kn is incident with an edge in S and hence |S| = n − r. If n is even,
it follows that r ≤ n

2 , so that |S| ≥ n
2 . Now suppose that n is odd. If S contains

no triangles, then there must be a star in S on an odd number of vertices of Kn;
by the preceding discussion, such a star must be incident to at least five vertices
of Kn, so that S can contain at most 1 + n−5

2 = n−3
2 stars, so that |S| ≥ n+3

2 .
Thus we can assume that S contains a triangle, in which case we again have
r ≤ n−3

2 .

We now consider the Cartesian product of two complete graphs Kr and Ks

with r, s ≥ 2, also known as rook graphs.

Theorem 15. If r, s ≥ 2, then

gp−(Kr �Ks) = min{r, s}.

Proof. Since the vertices of any copy of Kr or Ks in Kr �Ks form a maxi-
mal general position set, trivially gp−(Kr �Ks) ≤ min{r, s}. Now, assume that
there is a maximal general position set S of Kr �Ks of cardinality smaller than
min{r, s}. First note that by maximality S cannot be a proper subset of the
vertex set of any copy of Kr or of Ks. Also, there must exist a copy of Kr, say

K
(i)
r , and a copy of Ks, say (j)Ks, which do not contain any vertex of S. This

immediately allows us to observe that, independently of the structure of S, the

unique vertex of Kr �Ks belonging to both copies K
(i)
r and (j)Ks, together with

the set S would also form a general position set of Kr �Ks. Therefore, S is not
maximal, which leads to the desired equality.
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Theorem 15 should be compared with [19, Theorem 3.2], which asserts that
if r, s ≥ 2, then gp(Kr �Ks) = r + s− 2.

Continuing the theme of products of complete graphs, the direct product is
also of interest. Given two graphs G and H, the direct product of G and H is the
graph G×H whose vertex set is V (G)× V (G) and two vertices (g, h), (g′, h′) ∈
V (G×H) are adjacent in G×H if and only if gg′ ∈ E(G) and hh′ ∈ E(H). For
any g ∈ V (G) we call the subgraph of G ×H induced by {g} ×H a H-layer of
G×H (and similarly if h ∈ V (H) the subgraph induced by G×{h} is a G-layer).
Note that, unlike the case of Cartesian products, a G-layer will be isomorphic to
G only if G is an empty graph.

Theorem 16. If r, s ≥ 2 with (r, s) 6= (2, 2), then

gp−(Kr ×Ks) = min{r, s, 4}.

Proof. We can assume without loss of generality that 2 ≤ r ≤ s and s ≥ 3. A
subset W of V (Kr ×Ks) induces a clique if and only if all vertices of W lie in
distinct layers of Kr ×Ks, whereas a subset A ⊆ V (Kr ×Ks) is independent if
and only if it lies within a single layer.

We show first that any maximum clique W is a maximal general position
set. Let (x, y) ∈ V (Kr × Ks) \W ; we must show that W ∪ {(x, y)} is not in
general position. If r ≥ 3, then W contains vertices (x, j1) and (i2, j2) such
that i2 6= x and j2 6= y; then the vertices (x, y), (i2, j2), (x, j1) induce a shortest
path and (x, y) cannot be added to W to make a larger general position set. If
r = 2, let W = {(i1, j1), (i2, j2)}. Without loss of generality, x = i1. If y 6= j2,
then the vertices (i1, j1), (i2, j2), (i1, y) induce a shortest path, whereas if j2 = y,
then for j ∈ V (Ks) \ {j1, j2} the path (i2, j2), (i1, j1), (i2, j), (i1, j2) = (x, y) is
a geodesic. This shows that gp−(Kr × Ks) ≤ min{r, s}. For r = 2, this yields
gp−(K2 × Ks) = 2 = min{2, s, 4} and K2 × Ks has a universal line, whilst for
r = 3 we have gp−(K3 ×Ks) ≤ 3.

For r ≥ 3 the set of vertices of any layer is a maximal general position set
in Kr × Ks. Suppose that {i} × Ks is a Ks-layer (the argument for Kr-layers
is identical). The vertices of {i} × Ks lie at distance 2 from each other, so the
set is in general position, whilst if we add any vertex (i′, j), i′ 6= i, then for
j1, j2 ∈ V (Ks) \ {j} the path on vertices (i, j1), (i

′, j), (i, j2) is a geodesic.

Therefore, as any pair of vertices either forms an independent set or a clique,
for r ≥ 3 any set of two vertices of Kr ×Ks can be extended to a larger general
position set and Kr×Ks does not have a universal line, so that gp−(Kr×Ks) ≥ 3.
In particular, it follows that gp−(K3×Ks) = 3 = min{3, s, 4} and we can assume
that r ≥ 4.

Consider the set S = {(i, j), (i, j′), (i′, j), (i′, j′)} with i 6= i′ and j 6= j′. First
observe that Kr ×Ks has edges (i, j) ∼ (i′, j′) and (i, j′) ∼ (i′, j) and that none
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of the four vertices of S belongs to a shortest path between two of the remaining
ones. Thus, S is a general position set of Kr ×Ks. Moreover, any other vertex
(x, y) of Kr ×Ks not in S belongs to a shortest path between two vertices of S
(without loss of generality x 6= i and y 6= j, so (x, y) lies on a path of length 2
between either (i, j) and (i, j′) or (i, j) and (i′, j)). Consequently, S is a maximal
general position set of Kr ×Ks, which leads to 3 ≤ gp−(Kr ×Ks) ≤ 4.

Suppose that Kr ×Ks has a maximal general position set S of order 3. As
r ≥ 4, by the preceding argument if S is a clique or an independent set, then S
could be extended to a larger set, so, since a general position set is an independent
union of cliques [5], S must induce a graph isomorphic to K1 ∪K2 (a graph on
three vertices with only one edge). If (i, j) and (i′, j′) are the vertices of the
induced K2 in S, then the vertex corresponding to the K1 must be either (i′, j)
or (i, j′), say (i′, j); however, in this case S could be extended by adding (i, j′) to
give a general position set of order 4 with the form discussed above. Therefore
for r ≥ 4 we have gp−(Kr ×Ks) = 4 = min{r, s, 4} and the result is proven.

6. Connection with Lower Monophonic Position Number

In this section we relate the lower general position number to the monophonic
position number mentioned in Section 1. The monophonic position number was
introduced in [39] as follows. A path P in a graph G is induced or monophonic if
G contains no chords between non-consecutive vertices of P . A set M ⊆ V (G) is
in monophonic position if no induced path in G contains three or more vertices
of M ; the monophonic position number mp(G) of G is the number of vertices in
a largest monophonic position set. It was shown in [39] that for any graph G
we have mp(G) ≤ gp(G) and that for any 2 ≤ a ≤ b there exists a graph with
mp(G) = a and gp(G) = b. This question was explored further in [41], which
asked for the smallest possible order of a graph G with mp(G) = a and gp(G) = b
for given a ≤ b.

By analogy with the lower general position number, we define the lower
monophonic position number mp−(G) of G to be the number of vertices in a
smallest maximal monophonic position set of G. For any graph G with order
n ≥ 2 we have mp−(G) ≥ 2 and it is easily verified that the construction of
Theorem 9 shows that for any 2 ≤ a ≤ b there is a graph G with mp−(G) = a
and mp(G) = b. For an example of this concept, see Figure 3, which displays a
lower monophonic position set in the Petersen graph P . Recall that gp−(P ) =
4, so that in this case mp−(P ) < gp−(P ). Intuition might suggest that the
relation mp−(G) ≤ gp−(G) holds generally, as with the “ordinary” general and
monophonic position numbers. Interestingly, this turns out to be false.

Theorem 17. For a, b ≥ 1, there exists a graph G with mp−(G) = a and
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gp−(G) = b if and only if a = b, 2 ≤ a < b or 3 ≤ b < a.

Proof. If a = b then obviously the clique Ka will suffice, so we can assume that
a 6= b. If a or b is one, then the graph has order one and a = b = 1. Also
observe that if b = 2, then the graph has a universal line, which will also be a
maximal monophonic position set, so that a = 2. It remains only to prove that
the required graphs exist for 2 ≤ a < b and 3 ≤ b < a.

We first deal with the case 2 ≤ a < b. Take a cycle of length 6 and identify
its vertex set with Z6 in the natural way. Now expand each vertex i into a clique
Wi and add all possible edges between Wi and Wi+1 for 0 ≤ i ≤ 5 (mod 6).

Figure 3. The Petersen graph with a lower monophonic position set (grey).

Suppose that a is even. Choose the cliques such that |W0| = |W2| = a
2 and

all other cliques have order b − a
2 . In Figure 4 the construction for a = 4 and

b = 6 is presented.

Figure 4. Construction for a = 4 and b = 6: the lower mp-set.

As the monophonic position number of a cycle of length 6 is 2, it follows that
the lower monophonic position number of this graph is the sum of the orders of
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the two smallest cliques Wi; as b ≥ a the lower monophonic position number is a.
Similarly it follows by Proposition 5 that the maximal general position sets are
Wi ∪Wi+1 for 0 ≤ i ≤ 5 and the sum i+ 1 done mod 6; Wi ∪Wi+3 for 0 ≤ i ≤ 2;
and Wi∪Wi+2∪Wi+4 for i = 0, 1. The smallest such sets have order b. Therefore
this graph has the required parameters. If a is odd, then it can be verified that
the graph with |W0| = a+1

2 , |W2| = a−1
2 and all other parts of size b− a−1

2 works.

Now we prove existence for 3 ≤ b < a. Define the graph Z(w, r, s) as follows
(see the example in Figure 5). Take a clique W and divide it into four parts W ,
R, S1 and S2, where |R| = r ≥ 1, |S1| = |S2| = s ≥ 1 and |W | = w ≥ s. The
graph Z(w, r, s) is formed by introducing two new vertices x1 and x2 and joining
x1 to every vertex in S1 ∪ R and x2 to every vertex in S2 ∪ R. We claim that
S = {x1, x2} ∪ S1 is a smallest maximal general position set of Z(w, r, s). The
graph Z(w, r, s) has diameter two and so a subset of V (Z(w, r, s)) is in general
position if and only if it is a disjoint union of cliques, so the set S is a maximal
general position set.

Figure 5. A graph Z(2, 2, 1) with mp−(G) = 4 (left) and gp−(G) = 3 (right).

Without loss of generality, apart from {x1, x2} ∪ S1 there are just four types
of independent unions of cliques to consider (since all the vertices within one of
W , S1, S2 and R are twins, it is easily seen that maximality requires taking the
whole set), namely W ∪R∪S1∪S2, R∪S1∪{x1}, W ∪S2∪{x1} and W ∪{x1, x2},
which have orders w + r + 2s, r + s+ 1, w + s+ 1 and w + 2 respectively, all of
which are at least s+ 2. Thus S is a smallest possible maximal general position
set of Z(w, r, s).

Now we deal with the monophonic position sets. Using our observation on
twins, we can confine our attention to the same sets as the previous paragraph;
however, the set S1 ∪ {x1, x2} is not in monophonic position (if s1 ∈ S1, s2 ∈ S2,
then x1, s1, s2, x2 is an induced path), leaving us with the sets W ∪R ∪ S1 ∪ S2,
R∪S1∪{x1}, W∪S2∪{x1} andW∪{x1, x2}, all of which are maximal monophonic
position sets. The smallest of these has order min{w + 2, r + s + 1}. It follows
that if a > b ≥ 3, then the graph Z(a − 2, a − b + 1, b − 2) has the required
properties.
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7. Concluding Remarks

In this paper we considered general position sets of smallest cardinality that are
maximal with respect to the set inclusion property. We conclude by mentioning
some promising directions for future research suggested by our results.

• For 2 ≤ a, b, what is the smallest possible order of a graph with mp−(G) = a
and gp−(G) = b? What is the smallest order of a graph with gp−(G) = a and
gp(G) = b?

• In connection with Inequality (1) and the difficult problem of characterising
graphs G with gp−(G) = 2, it could be interesting to determine further families
of graphs that satisfy this property.

• Also in connection with Inequality (1), is it possible to characterise all graphs
G with gp−(G) = gp(G)?

• Most of the graphs studied in Section 5 have diameter two. The general
position numbers of graphs with diameter two were determined in [5]. This
suggests studying lower general position sets of graphs of diameter two in
general.

• Cartesian products with universal lines were characterised in [34]. It would
therefore be of interest to study the value of the lower general position numbers
of Cartesian products.

• As discussed in Section 1, there are several noteworthy variations of the gen-
eral position number in the literature, including the mutual visibility num-
ber [15], d-position sets [26], vertex position numbers [37], Steiner position
numbers [24], edge general position numbers [30], mobile position sets [23],
etc. We suggest studying lower versions of these parameters.
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N. Fraiman and Y. Zwols, A De Bruijn-Erdős theorem for chordal graphs, Electron.
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[25] S. Klavžar, P.K. Neethu and U. Chandran S.V., The general position achievement
game played on graphs, Discrete Appl. Math. 317 (2022) 109–116.
https://doi.org/10.1016/j.dam.2022.04.019
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