DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

C.J. Casselgren

Carl Johan Casselgren

Linköping Universitet

email: carl.johan.casselgren@liu.se

F.B. Petros

Fikre B. Petros

Department of Mathematics
Addis Ababa University
1176 Addis Ababa

email: bogale.petros@liu.se

S.A. Fufa

Samuel A. Fufa

Department of Mathematics, Addis Ababa University, 1176 Addis Ababa

email: samuel.asefa@aau.edu.et

Title:

Extending partial edge colorings of Cartesian products of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-04-18 , Revised: 2024-01-29 , Accepted: 2024-01-29 , Available online: 2024-02-28 , https://doi.org/10.7151/dmgt.2541

Abstract:

We consider the problem of extending partial edge colorings of Cartesian products of graphs. More specifically, we suggest the following Evans-type conjecture. If $G$ is a graph where every precoloring of at most $k$ precolored edges can be extended to a proper $\chi'(G)$-edge coloring, then every precoloring of at most $k+1$ edges of $G \square K_2$ is extendable to a proper $(\chi'(G) +1)$-edge coloring of $G \square K_2$. In this paper we verify that this conjecture holds for trees, complete and complete bipartite graphs, as well as for graphs with small maximum degree. We also prove versions of the conjecture for general regular graphs where the precolored edges are required to be independent.

Keywords:

precoloring extension, edge coloring, Cartesian product, list coloring

References:

  1. M.O. Albertson and E.H. Moore, Extending graph colorings using no extra colors, Discrete Math. 234 (2001) 125–132.
    https://doi.org/10.1016/S0012-365X(00)00376-9
  2. L.D. Andersen and A.J.W. Hilton, Thank Evans!, Proc. Lond. Math. Soc. 47 (1983) 507–522.
    https://doi.org/10.1112/plms/s3-47.3.507
  3. L.D. Andersen and A.J.W. Hilton, Symmetric latin square and complete graph analogues of the Evans conjecture, J. Combin. Des. 4 (1994) 197–252.
    https://doi.org/10.1002/jcd.3180020404
  4. A.S. Asratian, T.M.J. Denley and R. Häggkvist, Bipartite Graphs and their Applications (Cambridge University Press, 1998).
    https://doi.org/10.1017/CBO9780511984068
  5. O.V. Borodin, Criterion of chromaticity of a degree prescription, Abstracts of IV All-Union Conference on Theoretical Cybernetics, Novosibirsk (1977) 127–128, in Russian.
  6. C.J. Casselgren and F.B. Petros, Edge precoloring extension of trees, Australas. J. Combin. 81 (2021) 233–244.
  7. C.J. Casselgren and F.B. Petros, Edge precoloring extension of tree II, Discuss. Math. Graph Theory(2022), in press.
    https://doi.org/10.7151/dmgt.2461
  8. C.J. Casselgren, K. Markström and L.A. Pham, Edge precoloring extension of hypercubes, J. Graph Theory 95 (2020) 410–444.
    https://doi.org/10.1002/jgt.22561
  9. K. Edwards, A. Girão, J. van den Heuvel, R.J. Kang, G.J. Puleo and J.-S. Sereni, Extension from precoloured sets of edges, Electron. J. Combin. 25 (2018) #P3.1.
    https://doi.org/10.37236/6303
  10. P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XXVI (1979) 125–157.
  11. T. Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960) 958–961.
    https://doi.org/10.2307/2309221
  12. J. Fiala, NP-completeness of the edge precoloring extension problem on bipartite graphs, J. Graph Theory 43 (2003) 156–160.
    https://doi.org/10.1002/jgt.10088
  13. F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153–158.
    https://doi.org/10.1006/jctb.1995.1011
  14. A. Girão and R.J. Kang, A precolouring extension of Vizing’s theorem, J. Graph Theory 92 (2019) 255–260.
    https://doi.org/10.1002/jgt.22451
  15. R. Häggkvist, A solution of the Evans conjecture for latin squares of large size, Colloq. Math. Soc. János Bolyai 18 (1978) 495–513.
  16. O. Marcotte and P.D. Seymour, Extending an edge-coloring, J. Graph Theory 14 (1990) 565–573.
    https://doi.org/10.1002/jgt.3190140508
  17. H.J. Ryser, A combinatorial theorem with an application to Latin rectangles, Proc. Amer. Math. Soc. 2 (1951) 550–552.
  18. B. Smetaniuk, A new construction for Latin squares I. Proof of the Evans conjecture, Ars Combin. 11 (1981) 155–172.

Close