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Abstract

We consider the problem of extending partial edge colorings of Cartesian
products of graphs. More specifically, we suggest the following Evans-type
conjecture. If G is a graph where every precoloring of at most k precolored
edges can be extended to a proper χ′(G)-edge coloring, then every precolor-
ing of at most k + 1 edges of G�K2 is extendable to a proper (χ′(G) + 1)-
edge coloring of G�K2. In this paper we verify that this conjecture holds
for trees, complete and complete bipartite graphs, as well as for graphs with
small maximum degree. We also prove versions of the conjecture for general
regular graphs where the precolored edges are required to be independent.
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1. Introduction

An edge precoloring (or partial edge coloring) of a graph G is a proper edge
coloring of some subset E′ ⊆ E(G); a t-edge precoloring (or just t-precoloring) is
such a coloring with t colors. A t-precoloring ϕ is extendable if there is a proper
t-edge coloring f such that f(e) = ϕ(e) for any edge e that is colored under
ϕ; f is called an extension of ϕ. In general, the problem of deciding whether a
given precoloring is extendable is an NP-complete problem, already for 3-regular
bipartite graphs [12].

Edge precoloring extension problems seem to have been first considered in
connection with the problem of completing partial Latin squares and the well-
known Evans’ conjecture that every n×n partial Latin square with at most n−1
non-empty cells is completable to a partial Latin square [11]. By a well-known
correspondence, the problem of completing a partial Latin square is equivalent
to asking if a partial edge coloring with ∆(G) colors of a balanced complete
bipartite graph G is extendable to a proper ∆(G)-edge coloring, where ∆(G)
as usual denotes the maximum degree. Evans’ conjecture was proved for large
n by Häggkvist [15], and in full generality by Andersen and Hilton [2], and,
independently, by Smetaniuk [18].

Another early reference on edge precoloring extension is [16], where the au-
thors study the problem from the viewpoint of polyhedral combinatorics. More
recently, the problem of extending a precoloring of a matching has been con-
sidered in [9]. In particular, it is conjectured that for every graph G, if ϕ is a
precoloring of a matching M in G using ∆(G) + 1 colors, and any two edges in
M are at distance at least 2 from each other, then ϕ can be extended to a proper
(∆(G) + 1)-edge coloring of G; here, by the distance between two edges e and e′

we mean the number of edges in a shortest path between an endpoint of e and an
endpoint of e′; a distance-t matching is a matching where any two edges are at
distance at least t from each other. In [9], it is proved that this conjecture holds
for e.g. bipartite multigraphs and subcubic multigraphs, and in [14] it is proved
that a version of the conjecture with the distance increased to 9 holds for general
graphs.

Quite recently, with motivation from results on completing partial Latin
squares, questions on extending partial edge colorings of d-dimensional hyper-
cubes Qd were studied in [8]. Among other things, a characterization of partial
colorings with at most d precolored edges that are extendable to proper d-edge
colorings of Qd is obtained, thereby establishing an analogue for hypercubes of
the characterization by Andersen and Hilton [2] of n × n partial Latin squares
with at most n non-empty cells that are completable to Latin squares. In par-
ticular, every partial coloring with at most d − 1 colored edges is extendable to
a d-edge coloring of Qd. This line of investigation was continued in [6, 7] where
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similar questions are investigated for trees.
Denote by G�H the Cartesian product of the graphs G and H. Motivated

by the result on hypercubes [8], which are iterated Cartesian products of K2 with
itself, in this paper we continue the investigation of edge precoloring extension of
graphs with a particular focus on Evans-type questions for Cartesian products of
graphs. We are particularly interested in the following conjecture, which would
be a far-reaching generalization of a main result of [8].

Conjecture 1. If G is a graph where every precoloring of at most k edges can be

extended to a proper χ′(G)-edge coloring, then every precoloring of at most k+1
edges of G�K2 is extendable to a proper (χ′(G) + 1)-edge coloring of G�K2.

As we shall see, Conjecture 1 becomes false if we replace (χ′(G) + 1) with
χ′(G�K2) by the example of odd cycles.

It it straightforward that if every precoloring with ∆(G) colored edges of
a connected Class 1 graph G is extendable to a ∆(G)-edge coloring, then G is
isomorphic to a star K1,n. If G, on the other hand, is a connected Class 2 graph
where any precoloring with at most ∆(G) + 1 colored edges is extendable to a
(∆(G) + 1)-edge coloring, then G is an odd cycle. Therefore, we shall generally
only consider precolorings with at most χ′(G)− 1 colored edges.

In fact, it is easy to show that odd cycles and stars are the only connected
graphs with the property that any partial χ′(G)-edge coloring is extendable.

Proposition 2. Every partial χ′(G)-edge coloring of a connected graph G is

extendable if and only if G is isomorphic to a star K1,n or and odd cycle.

In this paper, we verify that Conjecture 1 holds for trees, complete and com-
plete bipartite graphs. Moreover, we prove a version of Conjecture 1 for regular
triangle-free graphs where the precolored edges are required to be independent;
a version for graphs with triangles is proved as well. Finally, we prove it for
graphs with small maximum degree, namely, graphs with maximum degree two
and Class 1 graphs with maximum degree 3.

2. Cartesian Products with Trees, Complete Graphs and

Complete Bipartite Graphs

In this section, we prove that Conjecture 1 holds for trees, complete bipartite
graphs and complete graphs. In the following we shall say that an edge e is ϕ-
colored if ϕ is a (partial) edge coloring and e is colored under ϕ. A color c appears
at a vertex v if some edge incident with v is colored c; otherwise c is missing at
v. Since we only consider edge colorings in this paper, we shall usually omit the
word “edge” and just refer to a coloring of a graph.
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Before we prove our results, let us briefly outline our general proof idea.

Proof outline. We consider a ∆(G)-precoloring ϕ of G × K2 using colors
1, . . . ,∆(G), where G × K2 consists of two copies G1 and G2 of G along with
a matching M that joins vertices of G1 and G2. Henceforth, two edges are corre-
sponding if their endpoints are joined by two edges of M . Similarly, two vertices
are corresponding if they are joined by an edge of M . In the proofs we shall
distinguish between the case when M contains precolored edges, and the case
when it does not.

• When M has no precolored edges, then either all precolored edges are in G1,
or both G1 and G2 contains at least one precolored edge. In the latter case, we
can extend the restrictions of ϕ to G1 and G2, respectively, using ∆(G) colors,
and then color the edges of M by the color ∆(G) + 1.

When all precolored edges are in G1, then we remove the color from all edges
colored by some fixed color appearing on at least one edge, say 1, and then take
an extension of the obtained precoloring of G1 using colors 2, . . . ,∆(G)+1. Next,
we recolor the edges ϕ-colored 1 by the color 1, and thereafter color the edges
of G2 correspondingly, meaning that corresponding edges in G1 and G2 get the
same color. Finally, we color the edges of M by the color in {1, . . . ,∆(G) + 1}
missing at its endpoints.

• When M contains at least one precolored edge, then we generally aim to select
corresponding independent edges of G1 and G2 (called selected edges), each of
which is adjacent to as few precolored edges ofG1 andG2 as possible, but adjacent
to exactly one precolored edge of M . Next, we shall in most proofs color the
selected edges by the color of the adjacent edges in M , and consider the resulting
colorings of G1 and G2 (taken together with the restriction of ϕ to G1 and G2,
respectively). If these colorings are extendable using colors 1, . . . ,∆(G), then
we take such extensions, recolor the selected edges by the color ∆(G) + 1, and
thereafter color the edges of M by its original color, or an arbitrary color not
appearing at its endpoints, to obtain an extension of ϕ.

If the colorings of G1 and G2 are not extendable, then we employ some
different techniques. The details are given in the proofs below.

Now we turn to the proofs of the main results in this section. Let us first
consider trees. In [6], the following was proved.

Theorem 3 [6]. Every partial coloring of at most ∆(T )− 1 edges in a tree T is

extendable to a proper ∆(T )-coloring of T .

Using this result we shall establish Conjecture 1 for the case of trees.

Theorem 4. If T is a tree and ϕ a precoloring of ∆(T ) edges in T�K2, then ϕ
can be extended to a proper (∆(T ) + 1)-coloring of T�K2.
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Proof. LetM be a perfect matching in T�K2 such that T�K2−M is isomorphic
to two copies T1 and T2 of T .

If no precolored edges are in M , then we proceed as in the proof outline
above, so we assume that M contains at least one precolored edge. By slight
abuse of notation, we denote by Ti+M the graph obtained from Ti by attaching
every edge of M as a pendant edge of Ti.

If no precolored edges are in T2, then since T1 + M is a forest with ∆(T )
precolored edges, by Theorem 3 there is a proper (∆(T ) + 1)-coloring of T1 +M
that agrees with ϕ. Hence, by coloring every edge of T2 by the color of its
corresponding edge in T1, we obtain a proper (∆(T ) + 1)-coloring of T�K2.

Suppose now that both T1 and T2 contains at least one precolored edge. Set
Gi = Ti +M and consider the restriction of ϕ to G1 and G2, respectively. Note
that both G1 and G2 are forests that each contains at most ∆(T )− 1 precolored
edges. We shall define extensions of these precolorings of G1 and G2, respectively,
which agree on M . This yields an extension of ϕ.

Let V 1
M be the set containing all vertices of degree ∆(T ) + 1 in G1 that are

incident with some precolored edge from M and V 2
M be the set containing all

vertices of degree ∆ + 1 in G2 that are incident with some precolored edge from
M . Note that v1 ∈ V 1

M if and only if the corresponding vertex v2 ∈ V 2
M . We

shall prove that there are matchings M1 ⊆ E(T1) and M2 ⊆ E(T2) such that M1

covers V 1
M and e2 ∈ M2 if and only if the corresponding edge e1 ∈ M1. Moreover

we require that if u1v1 ∈ M1 and the corresponding edge u2v2 ∈ M2, then

(i) exactly one of u1 and v1 is in V 1
M , say u1;

(ii) the components H1 of G1 − u1 and H2 of G2 − u2 containing v1 and v2,
respectively, contain no precolored edges;

(iii) M1 and M2 do not contain any precolored edges.

Since all vertices of V i
M have degree ∆(T ) in Ti, T1 ∪ T2 contains altogether at

most ∆(T ) − 1 precolored edges, and all precolored edges of M are pairwise
nonadjacent, we can indeed construct the required matchings M1 and M2 by for
all precolored edges of M greedily selecting an adjacent edge of T1 (similarly for
T2) so that (i)–(iii) holds.

Next, consider the edges of M that are not precolored but adjacent to some
edge of M1. We assign some fixed color c, arbitrarily chosen from {1, . . . ,∆(T )},
to every uncolored edge of M that is adjacent to an edge of M1 or M2. Taken
together with ϕ this yields a precoloring ϕ′ of the graph T�K2.

We denote by M ′ the set containing all the remaining uncolored edges of M .
Since all edges of Mi and M ′ are pairwise nonadjacent, the set M ′′

i = Mi ∪M ′ is
a matching in Gi. We set G′′

i = Gi −M ′′

i . Then E(G′′

1) ∩M = E(G′′

2) ∩M .

By construction, each of the graphs G′′

1 and G′′

2 have maximum degree ∆(T ),
and since both G1 and G2 contain at most ∆(T ) − 1 precolored edges under ϕ,
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respectively, and (i)–(iii) holds, every connected component ofG′′

1 andG′′

2 contains
at most ∆(T )− 1 precolored edges under the coloring ϕ′. Hence, it follows from
Theorem 3, that there is a proper ∆(T )-coloring fi of G

′′

i that agrees with the
restriction of ϕ′ to G′′

i . Note that f1 and f2 agree on all edges of M that are in
G′′

1 (and G′′

2).
It remains to color the edges of M ′′

1 ∪M ′′

2 . We simply assign color ∆(T ) + 1
to all edges of this set. Taken together with f1 and f2, this yields a proper
(∆(T ) + 1)-edge coloring of T�K2 that is an extension of ϕ, because f1 and f2
agree on M ∩ E(G′′

1). This completes the proof.

Let us now consider complete bipartite graphs. Recall that the precoloring
extension problem for the balanced complete bipartite graph Kn,n corresponds
to asking whether a partial Latin square can be completed to a Latin square.
As mentioned above, motivated by Evans’ conjecture [11], Andersen and Hilton
[2] completely characterized partial Latin squares of order n with n nonempty
cells that cannot be completed to a Latin square of order n. In the language of
colorings they proved the following.

Theorem 5 [3]. Let n ≥ 2 be a positive integer. A precoloring ϕ of at most n
edges of Kn,n can be extended to a proper n-coloring of Kn,n if and only if none

of the following two conditions holds.

(a) For some uncolored edge uv there are n differently colored edges with end-

vertices u or v.

(b) For some vertex v and some color c, the color c does not appear on any edge

incident with v, but every uncolored edge incident with v is adjacent to an

edge colored c.

Using this result we now verify that Conjecture 1 holds for the Cartesian
product Kn,n�K2.

Theorem 6. Let n ≥ 2 be a positive integer. If ϕ is a precoloring of n edges in

Kn,n�K2, then ϕ can be extended to a proper (n+ 1)-coloring of Kn,n�K2.

Proof. Let M be a perfect matching in Kn,n�K2 such that Kn,n�K2 − M is
isomorphic to two copies K1

n,n and K2
n,n of Kn,n. If no precolored edges are in

M , then we proceed as in the proof outline above, so we assume that M contains
at least one precolored edge.

Let us first assume that both K1
n,n and K2

n,n contains at least one precolored
edge, Let V i

M be the set containing all vertices in Ki
n,n that are incident with

some precolored edge from M . As in the preceding proof, v1 ∈ V 1
M if and only if

the corresponding vertex v2 ∈ V 2
M .

Proceeding along the lines in the proof of Theorem 4, we shall construct
matchings M1 ⊆ E(K1

n,n) and M2 ⊆ E(K2
n,n) such that each vertex of V 1

M is
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incident with a unique edge of M1, and e2 ∈ M2 if and only if the corresponding
edge e1 in K1

n,n is in M1. Furthermore, we shall require that no edge e from
M1 ∪ M2 is adjacent to a precolored edge of K1

n,n or K2
n,n of the same color as

the precolored edge of M that e is adjacent to, and that no edge of M1 ∪M2 is
precolored. As above, since the vertex degree in K1

n,n and K2
n,n is n, K1

n,n and
K2

n,n are bipartite, and Kn,n�K2 contains altogether n precolored edges, we can
simply select the edges of M1 (and M2) greedily.

Now, from the restriction of ϕ to Ki
n,n, we define a new precoloring ϕi by

coloring every edge of Mi by the color of the adjacent edge of M under ϕ. Since
Ki

n,n contains at most n − 1 precolored edges under ϕi, there is an extension fi
of ϕi using colors 1, . . . , n. Now, by recoloring all the edges in M1 and M2 by the
color n + 1 and coloring every uncolored edge of M by the color not appearing
at its endpoints, we obtain an extension of ϕ.

Suppose now that no precolored edges are in K1
n,n or K2

n,n, say K2
n,n. Then

K1
n,n contains at most n− 1 precolored edges. Our proof of this case is similar to

the proof of the preceding case. As above, let V 1
M be the set containing all vertices

in K1
n,n that are incident with some precolored edge from M . Since vertices in

K1
n,n have degree n, and K1

n,n is bipartite, there is a matching M1 ⊆ E(K1
n,n)

covering V 1
M satisfying analogous conditions to the matchings constructed in the

preceding case.

From the restriction of ϕ to K1
n,n we define a new precoloring ϕ1 of K1

n,n by
coloring every edge of M1 by the color of its adjacent edge in M . Now, if ϕ1 is
extendable to a proper coloring of K1

n,n using colors 1, . . . , n, then we obtain an
extension of ϕ by recoloring all the edges in M1 by color n + 1, coloring K2

n,n

correspondingly, and then coloring every uncolored edge of M by the unique color
from {1, . . . , n + 1} not appearing at its endpoints. So assume that there is no
such extension of ϕ1. By Theorem 5, this means that the coloring ϕ1 satisfies
condition (a) or (b) of this theorem.

Suppose first that (a) holds. Then all colors 1, . . . , n appear on some edge
under ϕ, so every color appears on precisely one edge. Since M contains at least
one precolored edge, without loss of generality we may assume that one edge eM1

in M1 is colored with color 1. Now define a new coloring ϕ′

1 from ϕ1 by removing
color 1 from eM1

of K1
n,n. Since K1

n,n contains exactly n − 1 ϕ′

1-colored edges,
there is a proper coloring of K1

n,n using colors 2, . . . , n+ 1 which is an extension
of ϕ′

1. Now, by recoloring all the edges in M1 of K1
n,n, distinct from eM1

, by color
1, coloring K2

n,n correspondingly, and then coloring every uncolored edge of M
by the unique color not appearing on any edge incident with one of its endpoints,
we obtain an extension of ϕ.

Suppose now that (b) but not (a) holds. Then there is some color c that
appears on at least two edges under ϕ. If some color c′ that is used once by ϕ
appears on some edge in the matching M , then we may remove the color c′ from
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the edge in M1 that is colored c′, and then proceed as in the preceding paragraph.
If, on the other hand, all colors that are used once by ϕ do not appear on edges
of M , then color c is the only color that appears on edges in M ; so color c is the
only color that appears on edges in M1.

Now, since K1
n,n contains at most n−1 ϕ-colored edges, there is an extension

of the restriction of ϕ to K1
n,n using colors 1, . . . , n. Let Mc be the set of all edges

of K1
n,n that are colored c and adjacent to a precolored edge of M . By recoloring

all the edges of Mc by n + 1, coloring K2
n,n correspondingly, and then coloring

every uncolored edge of M by the unique color not appearing at its endpoints,
we obtain an extension of ϕ.

Finally, let us consider complete graphs. Again our confirmation of Conjec-
ture 1 is based on a result by Andersen and Hilton [3].

Theorem 7 [3]. Let n ≥ 2 be a positive integer.

(i) If ϕ is a precoloring of at most n edges of K2n, then ϕ is extendable to a

proper (2n− 1)-coloring unless the precolored edges form a matching, where

n − 1 edges are colored by a fixed color c, and one edge is colored by some

color c′ 6= c.

(ii) If ϕ is a precoloring of at most n + 1 edges of K2n−1, then ϕ is extendable

to a proper (2n− 1)-coloring unless the precolored edges form a set of n− 2
independent edges colored by a fixed color c, and a triangle, disjoint from the

independent edges, the edges of which are colored by three different colors

that are distinct from c.

In particular, this implies that every partial coloring of at most n− 1 edges
is extendable to a proper (2n − 1)-coloring of K2n, and similarly, every partial
coloring of at most n edges of K2n−1 is extendable to a proper (2n− 1)-coloring.

The following establishes that Conjecture 1 holds for complete graphs.

Theorem 8. Let n ≥ 2 be a positive integer.

(i) If ϕ is a precoloring of at most n edges of K2n�K2, then ϕ is extendable to

a proper 2n-coloring of K2n�K2.

(ii) If ϕ is a precoloring of at most n+1 edges of K2n−1�K2, then ϕ is extendable

to a proper 2n-coloring of K2n−1�K2.

We note that the number of colors used in part (ii) is best possible, since there
are partial colorings of just two edges in K2n−1�K2 that are not extendable to
proper (2n− 1)-colorings.

Before we prove the general case of Theorem 8, we separately consider the
case of K5�K2. We first note the following lemma, which is easily proved using
the fact that K2n−1�K2 is Class 1.
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Lemma 9. If ϕ is a precoloring of K2n−1�K2 with n+1 precolored edges, where

at least n edges have the same color, then ϕ is extendable to a proper 2n-coloring
of K2n−1�K2.

In the following, we shall say that a matching covers a set S of edges, if every
edge of S is adjacent to an edge of the matching.

Lemma 10. If ϕ is a partial coloring of at most 4 edges of K5�K2, then ϕ is

extendable to a proper 6-coloring.

Proof. Let M be a perfect matching in K5�K2 such that K5�K2 − M is iso-
morphic to two copies K1

5 and K2
5 of K5. If no precolored edge is in M , then we

may proceed as in the proof outline, so we assume that at least one edge of M is
precolored.

We shall consider many different cases. By Lemma 9, we may assume that
at least two different colors are used in the precoloring ϕ.

Case 1. All precolored edges are in E(K1
5 ) ∪ M . Suppose first that exactly

one color appears on the precolored edges of M , say color 1. Then we consider
the precoloring of K1

5 obtained from ϕ by removing the color 1 from any edge
of K1

5 that is precolored 1. By Theorem 7, this precoloring is extendable to a
proper coloring of K1

5 using colors 2, . . . , 6. By recoloring any edge of K1
5 that

is ϕ-precolored 1 by the color 1, coloring K2
5 correspondingly, and then coloring

every uncolored edge of M by an appropriate color missing at its endpoints we
obtain an extension of ϕ.

Suppose now that at least two colors appear on the precolored edges of M .
We consider some different subcases.

Case 1.1. Exactly two edges of M are precolored. If there is at least one
color c used on the precolored edges of K1

5 that neither appears on an edge of M ,
nor is the edge precolored c adjacent to a precolored edge of M , then there is a
matching M1 ⊆ E(K1

5 ) of uncolored edges satisfying the following

• every edge of M1 is adjacent to exactly one precolored edge of M ,

• every precolored edge of M is adjacent to an edge of M1,

• no edge of M1 is adjacent to two precolored edges e1 ∈ E(K1
5 ) and e2 ∈ M

that have the same color under ϕ.

We call such a matching a ϕ-good matching. Moreover, it is easy to see that
we can pick this matching such that if we color the edges of M1 by the color of
the precolored adjacent edges in M , then this coloring along with the restriction
of ϕ to K1

5 does not satisfy the condition in Theorem 7. Hence, the obtained
5-precoloring of K1

5 is extendable. By recoloring every edge of M1 by the color 6,
coloring K2

5 correspondingly, and then coloring the edges of M by an appropriate
color not appearing at its endpoints, we obtain an extension of ϕ.
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Suppose now that there is no ϕ-good matching, but there is a color c1 that
appears in K1

5 but not in M . Since there is no ϕ-good matching, the edge e1
colored c1 is adjacent to an edge e of M that is colored c2 6= c1, but not to the
other precolored edge of M . Moreover, there is another edge e′1 in K1

5 colored
c2. Now, it is easy to see that this implies that there is a proper edge coloring
of K5�K2 with colors {1, . . . , 6} \ {c2} that agrees with all precolored edges that
are not precolored c2. Hence, ϕ is extendable.

Next, assume that the same two colors, say 1 and 2, are used both on the
precolored edges of M and on K1

5 . Then there is at most one vertex of degree 4
in the graph obtained from K1

5 by removing all precolored edges. We properly
color the uncolored edges of K1

5 using colors 3, 4, 5, 6, color K2
5 correspondingly,

and then proceed as before.

Case 1.2. Exactly three edges of M are precolored. Let e1 be the precolored
edge of K1

5 and assume first that only two colors, say 1 and 2, are used in the
precoloring ϕ. By Lemma 9, we may assume that ϕ(e1) = 1 and exactly one
edge of M is colored 1. Then we can pick an uncolored edge e′1 of K1

5 , that is
not adjacent to any edge ϕ-colored 1. We color K1

5 − {e1, e′1} properly by colors
3, 4, 5, 6, color e1 and e′1 by 1 and proceed as before.

Suppose now that three colors appear in the precoloring ϕ. If the color of
the precolored edge in K1

5 does not appear on an edge of M , then there is some
color c that appears on two edges in M , and a color c′ that only appears on one
edge of M . This implies that there is a matching M1 ⊆ E(K1

5 ) of uncolored edges
satisfying the following

• every edge of M1 is adjacent to exactly one precolored edge of M ,

• every precolored edge of M colored c is adjacent to an edge of M1,

• the edge precolored c′ is not adjacent to an edge of M1.

Consider the precoloring obtained from the restriction of ϕ to K1
5 by in addition

coloring every edge of M1 by the color c. It follows from Theorem 7 that there
is an extension of this coloring to K1

5 using colors {1, 2, 3, 4, 5, 6} \ {c′}. Now, we
obtain an extension of ϕ by coloring the edges of M1 by the color c′, coloring K2

5

correspondingly, and finally coloring the edges of M appropriately.

If, on the other hand, there is a color c which appears both in K1
5 and in

M , then we proceed as follows. We pick a proper coloring f of K1
5 using colors

{1, 2, 3, 4, 5, 6} \ {c}, so that for every vertex v ∈ V (K1
5 ), if there is a precolored

edge of M incident with v, then the color of the edge of M does not appear at
v under f . Next, we recolor the edges of K1

5 ϕ-precolored c by the color c, and
obtain an extension of ϕ as before.

The case when four colors appear on edges under ϕ can be dealt with using
a similar argument as in the preceding paragraph.
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Case 1.3. Exactly four edges of M are precolored. Suppose now that all four
precolored edges are in M . If only two colors appear in ϕ, then by Lemma 9,
we may assume that both colors appear on two edges. Thus there is a matching
M1 in K1

5 covering all precolored edges of M and such that no edge in M1 is
adjacent to two edges precolored with different colors. Thus, ϕ is extendable, as
before. If, on the other hand, three colors appear in ϕ, then there is a color c
that appears on at least two edges. We can pick a proper coloring f of K1

5 using
colors {1, . . . , 6}\{c}, such that no precolored edge of M is adjacent to an edge of
the same color under f . Hence, ϕ is extendable. Note that we can use a similar
argument if four colors appear on edges under ϕ.

Note that in all cases above, K1
5 is first colored, and then K2

5 is colored
correspondingly. We shall use this property when we consider the next case.

Case 2. Both K1
5 and K2

5 contains at least one precolored edge. The condition
implies that M contains one or two precolored edges. Assume first that M
contains only one precolored edge, and so we may assume that K1

5 contains two
precolored edges, and K2

5 one. Let e1 and e′1 be the precolored edges of K1
5 , e2

and e′2 the corresponding edges of K2
5 respectively, and let e′′2 be the precolored

edge of K2
5 , and e′′1 the corresponding edge of K1

5 . Furthermore, let e be the
precolored edge of M .

Consider the restriction of ϕ to K1
5 . If we can assign the color ϕ(e′′2) to e′′1 so

that the resulting coloring ϕ1 of K1
5 is proper, then we may proceed as in Case 1

(since in that case K2
5 is always colored correspondingly). Thus we may assume

that either

(a) e′′1 ∈ {e1, e
′

1}, or

(b) e′′1 is adjacent to one of the edges in {e1, e
′

1} and e′′2 has the same color as
one adjacent edge in {e1, e

′

1}.

By Lemma 9, we may further assume that no color appears on three edges,
and thus at most two edges are precolored by the same color. Then, unless e is
adjacent to two precolored edges and there is another edge e1 precolored ϕ(e),

that is disjoint from all these three edges, there is an uncolored edge e
(3)
1 in K1

5

that is adjacent to e but not adjacent to a precolored edge of K1
5 colored ϕ(e),

and, similarly for the corresponding edge e
(3)
2 of K2

5 . From the restriction of ϕ

to K1
5 and K2

5 we obtain new 5-precolorings by coloring the edges e
(3)
1 and e

(3)
2

by the color ϕ(e). Now by Theorem 7 these precolorings are extendable, and we
may finish the argument by proceeeding as above.

Suppose now that e is adjacent to two precolored edges and there is one
additional edge e1 precolored ϕ(e) in E(K1

5 ) ∪ E(K2
5 ). It is not hard to see

that this implies that there are uncolored corresponding edges e
(4)
1 ∈ E(K1

5 )

and e
(4)
2 ∈ E(K2

5 ) that are not adjacent to any edges precolored ϕ(e). We now
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construct new precolorings from the restrictions of ϕ to K1
5 and K2

5 , respectively,

by coloring e
(4)
1 and e

(4)
2 ϕ(e), and also e2 by the color ϕ(e). These partial

colorings are extendable using colors 1, 2, 3, 4, 5. Moreover, by construction, the
extensions of these precolorings satisfy that no edge colored c is adjacent to e.
Hence, ϕ is extendable.

Let us now assume that M contains two precolored edges. So K1
5 and K2

5

both contains precisely one precolored edge, e1 and e′2, respectively. Denote the
corresponding edges of K2

5 and K1
5 by e2 and e′1, respectively. As above, it follows

that we may assume that either

(a) e1 = e′1 and ϕ(e1) 6= ϕ(e′2), or

(b) e1 and e2 are adjacent and ϕ(e1) = ϕ(e′2).

Suppose first that (a) holds. If both colors in {ϕ(e1), ϕ(e′2)}, say 1 and 2,
appear on the precolored edges of M , then we pick corresponding uncolored edges
e′′1 ∈ E(K1

5 ) and e′′2 ∈ E(K2
5 ) that are not adjacent to e1 or e2 and color e′′1 and

e′′2 by 1 or 2 so that the resulting coloring of K5 ×K2 is proper. Thereafter, we
color K1

5 −{e′1, e
′′

1} and K2
5 −{e′2, e

′′

2} properly using colors 3, 4, 5, 6, and proceed
as above.

If, on the other hand, at least one of the colors in {ϕ(e1), ϕ(e2)} do not
appear on the precolored edges of M , then there are matchings M1 ⊆ E(K1

5 ) and
M2 ⊆ E(K2

5 ) of corresponding uncolored edges such that

• every precolored edge of M is adjacent to exactly one edge of Mi,

• every edge of Mi is adjacent to a precolored edge of M ,

• no edge of Mi is adjacent to two precolored edges of the same color.

Now, consider the restriction of ϕ to K1
5 and K2

5 , respectively. By, in addition,
coloring the edges of M1 and M2 by the color of the adjacent precolored edge
of M we obtain extendable 5-precolorings of K1

5 and K2
5 , respectively. Given

extensions of these precolorings, we may recolor the edges of M1 and M2 by color
6, and then color the edges of M appropriately to obtain an extension of ϕ as
before.

Suppose now that (b) holds. Since ϕ(e1) = ϕ(e′2), and we may by Lemma 9
assume that any color appears on at most two edges under ϕ, there are matchings
M1 and M2 as described in the preceding paragraph. Thus, we proceed similarly,
and this completes the proof of the lemma.

Proof of Theorem 8. We first prove part (i). Denote by M the matching of
K2n�K2 such that K2n�K2 − M is isomorphic to two copies K1

2n and K2
2n of

K2n. The cases when no precolored edges are in M can be handled as in the
proof of Theorem 6, so we omit the details here.
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In the case when M contains at least one precolored edge, then we may select
a matching M1 in K1

2n as in the proof of Theorem 6 (and possibly also a matching
M2 of corresponding edges in K2

2n). The only essential difference in the argument
is that since K2n contains triangles, we can only ensure that n such edges forming
the matching M1 can be selected greedily, although K2n has vertex degree 2n−1.
Nevertheless, since K2n�K2 contains at most n precolored edges, this suffices for
our purposes. Apart from this difference, the argument is very similar to the one
in the proof of Theorem 6, so we omit the details.

Let us now prove part (ii). Denote by M the matching of K2n−1�K2 such
that K2n−1�K2 −M is isomorphic to two copies K1

2n−1 and K2
2n−1 of K2n−1.

The case of K3 follows from the result on odd cycles proved in Section 4, and
the case of K5 is dealt with by the above lemma, so let us assume that n ≥ 4.

We shall consider a number of different cases. In many of these cases we
shall use strategies which are similar to the ones used in the proofs of Theorem
6 and/or Lemma 10, so we generally omit many details.

As before, the case when no precolored edge is in M can be dealt with as in
the proof outline, so in the following we assume that at least one precolored edge
is contained in M . The rest of the proof breaks into the following cases.

(1) Only one color appear on the precolored edges in M .

(2) At least two colors appear on the precolored edges in M , but at most one
color appears on the edges in E(K1

2n−1) ∪ E(K2
2n−1).

(3) At least two colors appear on the precolored edges of M , and at least two
colors appear on the precolored edges in E(K1

2n−1) ∪ E(K2
2n−1).

In many of the different subcases below we shall use matchingsM1⊆E(K1
2n−1)

and M2 ⊆ E(K2
2n−1) of corresponding uncolored edges that covers all precolored

edges of M , and in addition satisfy that

• no edge of Mi is adjacent to two precolored edges of M of different colors,

• no edge of Mi is adjacent to an edge of Ki
2n−1 and an edge of M that are

precolored by the same color.

We simply say that (M1,M2) is a ϕ-good pair of matchings, and that each of
M1,M2 is a ϕ-good matching. When using such matchings, we usually consider
the precolorings obtained from the restriction of ϕ to K1

2n−1 and K2
2n−1, respec-

tively, by coloring the edges of M1 ∪M2 by the color of the adjacent precolored
edge of M . The resulting precolorings will be extendable to (2n − 1)-colorings
of K1

2n−1 and K2
2n−1, respectively; indeed, it suffices to verify that none of these

precolorings satisfy the condition in part (ii) of Theorem 7. Since such verifi-
cations are straightforward, we omit the exact details in the arguments below.
Now, from these extensions, we obtain an extension of ϕ by recoloring the edges
of M1 ∪M2 by the color 2n, and then coloring the edges of M appropriately.
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Case 1. Only one color appears on the precolored edges of M . Assume that
color 1 appears on the edges of M . If all precolored edges are in M ∪E(K1

2n−1),
then consider the precoloring obtained from the restriction of ϕ to K1

2n−1 by
removing the color 1 from all edges ϕ-colored 1. By Theorem 7, this precoloring is
extendable to a proper coloring using colors 2, . . . , 2n, and we obtain an extension
of ϕ by recoloring the edges of K1

2n−1 that are ϕ-colored 1 by the color 1, coloring
K2

2n−1 correspondingly and then coloring every edge of M by the color 1 or 2n.
Suppose now that both K1

2n−1 and K2
2n−1 contains at least one precolored

edge. By Lemma 9, we may assume that there are at least two edges in E(K1
2n−1)∪

E(K2
2n−1) precolored by a color distinct from 1. If there is a ϕ-good pair of match-

ings (M1,M2), then we consider the precolorings obtained from the restrictions
of ϕ to K1

2n−1 and K2
2n−1, respectively, by in addition coloring all edges of M1

and M2 by the color 1, and then proceed as outlined above.
Suppose now that there is no ϕ-good pair of matchings (M1,M2). Since at

most n− 2 edges of E(K1
2n−1) ∪ E(K2

2n−1) are precolored 1, it follows that only
one edge u1u2 of M is precolored (where ui ∈ V (Ki

2n−1)), there is a matching
M ′ of n− 2 edges in K1

2n−1 such that every edge of M ′ is either precolored 1, or
the corresponding edge of K2

2n−1 is precolored 1. Moreover, u1 is incident with
two edges e1 and e2 that are independent from M ′ and satisfy that ei or the
corresponding edge of K2

2n−1 is precolored by a color distinct from 1. Now, from
the restriction of ϕ to K1

2n−1 we define a new precoloring ϕ1 by coloring all edges
of M ′ by the color 1, and, in addition, coloring the unique edge of K1

2n−1 that is
adjacent to both e1 and e2 by the color 1. We define an analogous precoloring
ϕ2 of K2

2n−1.
By Theorem 7, both ϕ1 and ϕ2 are extendable to proper (2n− 1)-colorings.

Moreover, it is easy to see that neither u1 nor u2 is incident with an edge colored
1 in these extensions. Consequently, ϕ is extendable.

Case 2. At least two colors appear on the precolored edges of M , but at most

one color appears on the precolored edges of E(K1
2n−1) ∪ E(K2

2n−1).
We first consider the case when all precolored edges are in M ∪ E(K1

2n−1).
Suppose first that all precolored edges are contained in M . If every color

appears on at most one edge in M , then ϕ is extendable, because we can choose
a proper (2n − 1)-coloring f of K1

2n−1 so that for every vertex v ∈ V (K2n−1), if
the edge of M incident with v is colored i ∈ {1, . . . , 2n−1}, then no edge incident
with v is colored i under f . A similar argument applies if one color appears on
at least two edges in M and all other colors appear on at most one edge.

If, on the other hand, there are two colors c1 and c2 that both appear on at
least two precolored edges, then there is a ϕ-good matching M1 in K1

2n−1. Thus
ϕ is extendable.

Suppose now that E(K1
2n−1) contains at least one precolored edge, precolored

c say. If all precolored edges ofM are colored differently, except that several edges
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of M may be colored c, then there is a proper coloring f of K1
2n−1 using colors

{1, . . . , 2n} \ {c}, such that no precolored edge of M is adjacent to an edge of the
same color under f . Hence, ϕ is extendable.

Assume instead that some color c1 6= c appears on at least two edges of M
and every other color appears on at most one edge of M . If at most one edge
of K1

2n−1 is precolored c, then we proceed as before and pick a proper coloring f
of K1

2n−1 using colors {1, . . . , 2n} \ {c1} that agrees with the restriction of ϕ to
K1

2n−1, and where no precolored edge of M is adjacent to an edge of the same
color under f . If instead color c is used on at least two edges of K1

2n−1, then it is
easy to see that there is a ϕ-good matching M1. Hence, ϕ is extendable.

Finally, let us assume that there are two colors c1, c2 6= c that both appear
on at least two edges of M . Again, this implies that there is a ϕ-good matching
M1, and so, ϕ is extendable.

Let us now consider the case when both K1
2n−1 and K2

2n−1 contains at least
one edge precolored c. If all the colors on edges of M are distinct, except that
several edges of M may be colored c, then ϕ is extendable as in the case when all
precolored edges are in K1

2n−1. Consequently, we assume that there is a color c1 6=
c that appears on at least two edges u1u2, v1v2 ∈ M , where ui, vi ∈ V (Ki

2n−1).

We may assume that at least one precolored edge of K2
2n−1 satisfies that the

corresponding edge of K1
2n−1 is adjacent to a precolored edge of K1

2n−1, since
otherwise we can define a precoloring of K1

2n−1 by coloring every edge e that is
precolored c, or satisfying that the corresponding edge of K2

2n−1 is precolored c,
by the color c, and then proceed as in the case when only edges of K1

2n−1 and M
are precolored. This assumption implies that there is a pair of ϕ-good matchings
(M1,M2) (containing u1v1 and u2v2, respectively, if these edges are uncolored).
As before, this implies that ϕ is extendable.

Case 3. At least two colors appear on the precolored edges of M and at least

two colors appear on the precolored edges of E(K1
2n−1) ∪ E(K2

2n−1).

Suppose first that all precolored edges lie in M ∪ E(K1
2n−1). If there is a

ϕ-good matching M1 in K1
2n−1, then ϕ is extendable. Otherwise, if there is no ϕ-

good matching, then at most two edges ofM are precolored, because otherwise we
could select three edges forM1, each of which is adjacent to at least one precolored
edge of K1

2n−1, and thereafter select the rest of the edges of M1 greedily.

Furthermore, since at least two colors appear on the edges in K1
2n−1, if there

is no ϕ-good matching, then one precolored edge of M , colored c1 say, must
be adjacent to an edge e′ precolored c2 6= c1, and there is a matching M ′ of
n− 2 edges in K1

2n−1, disjoint from e′, all edges of which are precolored c1. It is
straightforward to verify that this precoloring is extendable, e.g. by first taking
an extension of the restriction of ϕ to the edges precolored by colors distinct from
c1 using colors {1, . . . , 2n} \ {c1}.
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Let us now consider the case when both K1
2n−1 and K2

2n−1 contains at least
one precolored edge. Again, the idea is to find a pair of ϕ-good matchings
(M1,M2). If there are such matchings M1 and M2, then we can use them for
finding an extension of ϕ as before.

On the other hand, if there are no such matchings, then at most two edges
of M are precolored; suppose e.g. that e1, e2 ∈ M are precolored c1 and c2,
respectively. Again it follows that one of e1 and e2, say e1, is adjacent to an
edge e′ ∈ E(K1

2n−1) (or e
′ ∈ E(K2

2n−1)) colored c3 6= c1, and there is a matching
M ′ in K1

2n−1 (K2
2n−1) of n− 2 edges, every edge of which is either colored c1, or

satisfies that the corresponding edge ofK2
2n−1 (K

1
2n−1) is precolored c1. Moreover,

M ′ ∪ {e′, e2} is independent.
Thus we can color every edge of M ′ by the color c1, retain the color of e′ if

c3 6= c2, and also color the unique edge adjacent to both e′ and e2, but not e1, by
the color c1 to obtain a precoloring of K1

2n−1 that is extendable using colorings
{1, . . . , 2n} \ {c2}. Moreover, every extension of this precoloring satisfies that no
edge adjacent to e1 is colored c1. Hence, ϕ is extendable. This completes the
proof of the theorem.

3. Cartesian Products with General Graphs

We have not been able to confirm Conjecture 1 in the general case, but we can
prove it for the case of regular triangle-free graphs when the precolored edges are
independent.

Theorem 11. If G is a triangle-free regular graph where every precoloring of

at most k < ∆(G) independent edges are extendable to a χ′(G)-coloring, then

every precoloring of at most k+1 independent edges in G�K2 is extendable to a

(χ′(G) + 1)-coloring.

Proof. Without loss of generality, we assume that k + 1 edges of G�K2 are
precolored. We denote this precoloring by ϕ, by G1 and G2 the copies of G in
G�K2, respectively, and by M the perfect matching between G1 and G2.

If no precolored edges are in M , then we proceed as in the proof outline
above, so we assume that at least one precolored edge is contained in M , and
consider two different cases.

Case 1. All precolored edges are in E(G1)∪M . We assume that at least one
precolored edge is in M . Let EM be the set of all precolored edges in M . As in
the proof outline, we shall select a matching M1 of |EM | uncolored edges in G1

satisfying the following:

(i) every edge of EM is adjacent to exactly one edge of M1;

(ii) every edge of M1 is adjacent to exactly one precolored edge of G.



Extending Partial Edge Colorings of Cartesian Products 499

Since G1 is regular and triangle-free, at most one endpoint of a precolored
edge of G1 is adjacent to an endpoint of a precolored edge in M . Thus, since
G�K2 contains at most ∆(G1) precolored edges and all those precolored edges
are independent, it is straightforward to verify that there is a set M1 ⊆ E(G1)
satisfying (i)–(ii); indeed, since every vertex of G1 has degree ∆(G1), we can
simply select edges adjacent to the precolored edges of M greedily.

Now, by coloring all edges of M1 by the color of the adjacent edge of M ,
and taking this coloring together with the restriction of ϕ to G1, we obtain a
precoloring ϕ1 of G1 with k + 1 precolored independent edges. Without loss of
generality we assume that some edge is colored 1 under ϕ1. By removing the
color 1 from every such edge ϕ1-precolored 1, we obtain a precoloring that is
extendable to a proper coloring of G1 using colors 2, . . . , χ′(G) + 1.

Next, for every edge of G1 that is ϕ-precolored 1, we recolor this edge by 1.
Similarly, for every ϕ1-precolored edge e of M1 such that ϕ1(e) 6= 1, we recolor e
by the color 1 and the adjacent edge of M by the color ϕ1(e). Finally, we recolor
any edge of M that is ϕ-precolored 1 by the color 1. Since all ϕ1-precolored
edges are independent, the resulting partial coloring of G is proper. By coloring
G2 correspondingly and coloring all uncolored edges of M by a color missing at
its endpoints, we obtain a proper coloring that is an extension of ϕ.

Case 2. E(G1), E(G2) and M contains at least one precolored edge each.

Let ϕ1 and ϕ2 be the restrictions of ϕ to G1 and G2, respectively. As in the
preceding case we shall select a matching of |EM | uncolored edges M1 ⊆ E(G1)
and a matching M2 ⊆ E(G2) of uncolored corresponding edges satisfying the
following:

(i) every edge of EM is adjacent to exactly one edge of Mi;

(ii) every edge of M1 ∪M2 is adjacent to exactly one precolored edge of G.

The existence of such sets M1 and M2 follows as in Case 2, since G1 and G2

are ∆(G)-regular and G�K2 contains altogether at most ∆(G) precolored edges.

Now, consider the precolorings obtained from ϕ1 and ϕ2, respectively, by
coloring every edge of M1 and M2 by the color of the adjacent precolored edge of
M . Since G1 and G2 both contains at least one ϕ-precolored edge, the obtained
precolorings ϕ′

1 and ϕ′

2, respectively, are by assumption extendable to proper
χ′(G)-colorings. Now, we recolor every edge of M1 ∪M2 by the color χ′(G) + 1,
and then color every edge of M that is adjacent to an edge of M1 ∪M2 by the
color of the adjacent edge of M1 ∪M2 (i.e., the color under ϕ if the edge of M is
precolored). We color every edge of M that is not adjacent to an edge of M1∪M2

by the color χ′(G) + 1. Since Mi is a matching, the resulting coloring is proper,
and thus also an extension of ϕ.
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For graphs with triangles we have the following variant of Theorem 11.

Theorem 12. If G is a regular graph where every precoloring of at most k <
∆(G)/2 independent edges is extendable to a χ′(G)-coloring, then every precolor-

ing of at most k + 1 independent edges in G�K2 is extendable to a (χ′(G) + 1)-
coloring.

The proof of this theorem is almost identical to the proof of the preceding
one. The only essential difference is that when G is not triangle-free we have to
assume that at most ∆(G)/2 edges are precolored to be able to ensure that we
can select independent edges in G1 and G2 that are adjacent to precolored edges
of M and also not adjacent to any precolored edges in G1 or G2. We omit the
details.

4. Cartesian Products with Subcubic Graphs

In this section, we consider Conjecture 1 for subcubic graphs, that is, graphs
with maximum degree at most 3. First we prove that it holds for graphs with
maximum degree two. The case of paths was considered above, so it suffices to
consider cycles. We shall need some well-known auxiliary results on list coloring.

Lemma 13. For every path P , if one edge e ∈ E(P ) has a list of size at least

1 and all other edges have lists of at least 2 colors, then P has a proper coloring

using colors from the lists.

Lemma 14. If L is a list assignment for the edges of a cycle C, where every list

has size at least two and not all edges have the same list, then C has a proper

coloring using colors from the lists.

Proposition 15. Let n ≥ 2 be a positive integer. If ϕ is a precoloring of two

edges in C2n�K2, then ϕ can be extended to a proper 3-coloring of C2n�K2.

Proof. Let M be matching of C2n�K2, so that C2n�K2 − M consists of two
copies C1

2n and C2
2n of C2n. The cases when no precolored edge is contained in the

matching M can be dealt with as above. If M contains exactly one precolored
edge, then if the two precolored edges have distinct colors, then ϕ is trivially
extendable. If, on the other hand, the two precolored have the same color, say 1,
then we can properly color the uncolored edges in the copy of C2n containing a
precolored edge by colors 2 and 3; thus ϕ is extendable.

It remains to consider the case when no precolored edges are in C1
2n or C2

2n.
If the two precolored edges have the same color, then ϕ is trivially extendable. If
they have different colors and have distance at least 2, then ϕ is extendable by
Lemma 14. The case when the precolored edges are at distance 1 is straightfor-
ward.
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Note that Proposition 15 does not hold for odd cycles. For instance, consider
the Cartesian product C2n+1�K2 where two corresponding edges of the two copies
of C2n+1 are colored by 1 and 2, respectively. If this precoloring is extendable
to a proper 3-coloring of C2n+1�K2, then every edge in the matching M joining
vertices of the copies of C2n+1 must be colored 3. Hence, the precoloring is not
extendable.

Nevertheless, for odd cycles, we have the following analogue of Proposition 15.

Proposition 16. Let n ≥ 1 be a positive integer. If ϕ is a precoloring of three

edges in C2n+1�K2, then ϕ can be extended to a proper 4-coloring of G.

Proof. Let M be a perfect matching in C2n+1�K2 such that C2n+1�K2 −M is
isomorphic to two copies C1

2n+1 and C2
2n+1 of C2n+1. Without loss of generality

we assume that the precoloring of G uses colors 1, 2, 3. We shall consider some
different cases. Again, we omit the details in the case when M contains no
precolored edges.

Case 1. M contains exactly one precolored edge. For any uncolored edge
e ∈ E(C2n+1�K2), we define a color list L(e) ⊆ {1, 2, 3, 4} by setting

L(e) =
{

1, 2, 3, 4} \ {ϕ(e′) : e′ is adjacent to e
}

.

If no precolored edges are in C2
2n+1, then at most one uncolored edge of C1

2n+1

is adjacent to precolored edges of three distinct colors, which implies that at most
one edge e has a list L(e) of size 1 and all other edges of C1

2n+1 have lists of size
at least 2. By Lemma 13, there is a proper coloring ϕ1 of C1

2n+1, which is an
extension of the restriction of ϕ to C1

2n+1. Hence, we obtain an extension of ϕ
by coloring every edge of C2

2n+1 by the color of its corresponding edge in C1
2n+1,

and then coloring every edge of M with some color in {1, 2, 3, 4} that is missing
at its endpoints.

Suppose now that both C1
2n+1 and C2

2n+1 each contains exactly one precolored
edge. Let e1 ∈ E(C1

2n+1), e2 ∈ M , and e3 ∈ E(C2
2n+1) be the precolored edges of

C1
2n+1, M and C2

2n+1, respectively.

First we treat the case when n = 1; it needs to be considered separately.
If e1 and e2, and e2 and e3 are adjacent, then ϕ is extendable since ϕ(e2) /∈
{ϕ(e1), ϕ(e3)}; we can e.g. first properly color C1

3 and C2
3 using colors from

{1, 2, 3, 4} \ {ϕ(e2)}, and then color the remaining uncolored edges of M . If
exactly two of the edges e1, e2, e3 are pairwise adjacent, say e1 and e2, and
ϕ(e3) = ϕ(e2), then we can instead use colors ϕ(e1), ϕ(e2) and one additional
color from {1, 2, 3, 4} for coloring C1

3 and C2
3 ; if ϕ(e3) 6= ϕ(e2), then we proceed

similarly using colors {1, 2, 3, 4} \ {ϕ(e2)}.
Suppose now that all the edges e1, e2, e3 are pairwise nonadjacent. If at most

two colors c1 and c2 appear on the precolored edges, then we may assume that
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c1 appears on at most one edge under ϕ. We color C3�K2 properly using the
colors in {1, 2, 3, 4} \ {c1}, so that the edges precolored c2 get the color c2. Then
we recolor the edge precolored c1 by the color c1. If, on the other hand, three
colors appear on the precolored edges, then we properly color C1

3 and C2
3 using

colors {1, 2, 3, 4} \ {ϕ(e2)}.
Now we treat the case when n ≥ 2. We define a list assignment L for C1

2n+1

by setting

L(e) = {1, 2, 3} \
{

ϕ(e′) : e′ ∈ E(C2n+1�K2) is adjacent to e
}

.

Since at most one edge is adjacent to both e1 and e2, at most one uncolored
edge e of C1

2n+1 satisfies that |L(e)| = 1, and all other edges of C1
2n+1 have lists

of size at least two. By Lemma 13, there is a proper coloring ϕ1 of C1
2n+1 using

colors 1, 2, 3 which is an extension of the restriction of ϕ to C1
2n+1. Arguing

similarly, we can define a proper coloring ϕ2 of C2
2n+1 using colors 1, 2, 3 which is

an extension of the restriction of ϕ to C2
2n+1. Finally, we obtain an extension of

ϕ by coloring every uncolored edge of M with color 4.

Case 2. M contains at least two precolored edges. For the uncolored edges of
C2n+1�K2, we define a list assignment L by setting

L(e) = {1, 2, 3, 4} \
{

ϕ(e′) : e′ ∈ E(C2n+1�K2) is adjacent to e
}

.

If M contains exactly two precolored edges, then exactly one precolored edge
is in C1

2n+1 or C2
2n+1, say C1

2n+1. Then at most one edge of C1
2n+1 is adjacent

to precolored edges of three distinct colors, so at most one edge e satisfies that
|L(e)| = 1, and all other edges of C1

2n+1 have lists of size at least 2. Hence by
Lemma 13, there is a proper coloring ϕ1 of C1

2n+1 using colors from the lists. By
coloring C2

2n+1 correspondingly, and then coloring the uncolored edges of M , we
obtain an extension of ϕ. If, on the other hand, M contains all three precolored
edges, then we can obtain an extension of ϕ by first coloring the uncolored edges
of M , and then apply Lemma 14.

Note that even though any partial 3-coloring of C2n+1 is extendable, the
upper bound of three precolored edges in Proposition 16 is best possible. For
instance, consider a precoloring where two adjacent edges e1 and e2 of C1

2n+1 are
precolored 1 and 2, respectively, and the corresponding edges e′1 and e′2 of C2

2n+1

are precolored 3 and 4, respectively (using the same notation as in the preceding
proof).

Next, we shall verify that Conjecture 1 holds for Class 1 graphs of maximum
degree 3.

Theorem 17. If G is a Class 1 graph with ∆(G) = 3 and every partial 3-coloring
of at most k < 3 edges in G is extendable, then every partial 4-coloring of at most

k + 1 edges in G�K2 is extendable.
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Proof. The case when k = 1 is trivial, so let us assume that k = 2. Let G1 and
G2 be copies of G in G�K2 and M the perfect matching joining vertices of G1

with corresponding vertices of G2.

Consider a partial 3-coloring ϕ of G�K2 with three precolored edges. Note
that we may assume that G is connected, since otherwise we just consider every
component of G separately. Next, we prove that G contains no triangle.

If G is a triangle, then we can apply Proposition 16, so we may assume that
this is not the case. Thus if G contains a triangle xyzx, then at least one vertex,
say x has degree 3. Then we can color an edge incident with x, which is not
contained in the triangle, by the color 2, and yz by the color 1. The resulting
partial coloring is not extendable to a proper 3-coloring, contradicting that any
partial coloring with 2 precolored edges is extendable. Thus G is triangle-free.

In the remaining part of the proof of Theorem 17 we shall consider a large
number of different cases. In many of these cases, we shall employ ideas that have
been used above. Thus, in several places we just sketch the arguments, rather
than giving all the details. As usual, we shall omit the details in the case when
no precolored edges are contained in M , since we may proceed as in the proof
outline above.

Case 1. M contains exactly one precolored edge. If the color of the precolored
edge e of M only appears on e under ϕ, then the result is trivial. So assume that
e = u1u2 is a precolored edge of M , that ϕ(e) = 1, where ui ∈ V (Gi), and that
at least one other edge is precolored 1 under ϕ.

If the remaining two precolored edges are in G1, then we consider the precol-
oring ϕ′ of G1 obtained from the restriction of ϕ to G1 by removing color 1 from
all edges precolored 1 in G1. Then ϕ′ is extendable to a proper 3-coloring using
colors 2, 3, 4. Next, we recolor the edges precolored 1 by the color 1, color G2

correspondingly, and color every edge of M by a color missing at its endpoints
to obtain an extension of ϕ.

Suppose now that both G1 and G2 contains precolored edges. If dG1
(u1) =

3, then dG2
(u2) = 3, and since G − M contains at most two precolored edges

and G is triangle-free, there are uncolored corresponding edges e1 ∈ E(G1) and
e2 ∈ E(G2), adjacent to e, such that neither e1, nor e2, is adjacent to an edge
of G−M precolored 1. We define a new precoloring ϕ′ from the restricton of ϕ
to G−M by coloring e1 and e2 by the color 1. The restrictions of ϕ′ to G1 and
G2, respectively, are extendable to proper 3-colorings of G1 and G2, respectively.
Next we color e1 and e2 by the color 4, e by the color 1, and every uncolored edge
of M by a color in {1, 2, 3, 4} missing at its endpoints.

Now assume that dG1
(u1) = 2. If there is an uncolored edge e1 ∈ E(G1)

adjacent to e such that neither e1, nor the corresponding edge e2 ∈ E(G2), is
adjacent to an edge of G−M precolored 1, then we proceed as in the preceding
paragraph. Otherwise, there are corresponding edges e1 ∈ E(G1) and e2 ∈ E(G2)



504 C.J. Casselgren, F.B. Petros and S.A. Fufa

that are adjacent to e and satisfies that e1 is precolored or adjacent to an edge
precolored 1, and e2 is neither precolored, nor adjacent to a precolored edge of G2;
moreover, there are corresponding edges e′1 ∈ E(G1) and e′2 ∈ E(G2) adjacent
to e that satisfy analogous conditions with the roles of G1 and G2 interchanged.
Hence, from the restriction of ϕ to G1 and G2, respectively, we obtain extendable
partial 3-colorings by coloring e′1 and e2 with colors from {2, 3}. Note that in
these extensions no edge colored 1 is adjacent to e. Hence, ϕ is extendable. A
similar argument applies when dG1

(u1) = 1.

Case 2. M contains exactly two precolored edges. We assume thatG1 contains
the third precolored edge e3. If all precolored edges of M have the same color,
then we proceed as in Case 2 when E(G1) ∪ M contains all precolored edges.
Thus, we assume that two different colors 1 and 2 appear on the precolored edges
of M ; let u1 and v1 be the endpoints of these edges in G1, respectively, where u1
is incident with an edge of M precolored 1.

Suppose first that e3 is colored by some color appearing on M , say 1. If
there is an uncolored edge e′ incident with u1 that is neither incident with v1,
nor adjacent to e3, then we color e′ by the color 1 and take an extension of the
coloring of e′ and e3 using colors 1, 3, 4. We now proceed as before to obtain an
extension of ϕ. Otherwise, if there is no such edge e′, then

(a) dG1
(u1) = 1 and u1 is adjacent to an endpoint of e3, or

(b) dG1
(u1) = 1 and u1 and v1 are adjacent, or

(c) dG1
(u1) = 2 and u1 is adjacent both to v1 and an endpoint of e3 (and these

vertices are distinct).

If (a) holds, then we may simply take an extension of the restriction of ϕ to G1

using colors 1, 3, 4; if (b) or (c) holds, then we color u1v1 by color 3 and take
an extension of the obtained coloring of G1 using colors 1, 3, 4. In all cases, it is
straightforward that ϕ is extendable.

Suppose now that ϕ(e3) = 3. If there is no uncolored edge incident with
u1 or v1, then the result is trivial. Otherwise, if there is such an edge, then we
proceed as in the preceding paragraph.

Case 3. M contains exactly three precolored edges. If all three precolored
edges of M have the same color, then the result is trivial.

Suppose now that two colors appear on the precolored edges in M , say 1 and
2, and that color 2 appears on only one edge. Denote this edge by e = u1u2, where
u1 ∈ V (G1). If dG1

(u1) ≤ 2, then properly color the edges incident with u1 by 3
and 4. This precoloring of G1 is extendable to a proper coloring of G1 using colors
2, 3, 4. We obtain an extension of ϕ by coloring G2 correspondingly, coloring u1u2
by the color 2 and all other edges of M by the color 1. If dG1

(u1) = 3, then there
is an edge u1x of G1 that is adjacent to only one precolored edge of M . We
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define a precoloring of G1 by coloring u1x by the color 2. This precoloring is
extendable to a precoloring of G1 by colors 2, 3, 4. We now obtain an extension
of ϕ by recoloring u1x and proceeding as before.

Suppose now that three colors appear on the edges of M , i.e., that u1u2 is
colored 1, v1v2 is colored 2, and w1w2 is colored 3, where ui, vi, wi ∈ V (Gi).

If there exist two distinct vertices x, y ∈ V (G1)\{u1, v1, w1} such that x and
y can be matched to distinct vertices in {u1, v1, w1} by two independent edges,
say u1x and v1y, then we color these edges by 1 and 2, respectively and take an
extension of this precoloring of G1 using colors 1, 2, 4. Next, we recolor both u1x
and v1y by the color 3, color u1u2 by the color 1, v1v2 by the color 2 and all
other edges of M by the color 3; this yields an extension of ϕ. Otherwise, if no
such edges exist, then {u1, v1, w1} has at most two neighbors outside {u1, v1, w1}
in G1. Moreover, since G1 is connected, there must be at least one neighbor of
{u1, v1, w1} in V (G1) \ {u1, v1, w1} in G1.

Suppose first that {u1, v1, w1} has exactly one neighbor x /∈ {u1, v1, w1} in
G1. If all vertices in {u1, v1, w1} are adjacent to x, then we color xu1 by 1 and xv1
by color 4. By assumption, this coloring of G1 is extendable to a proper coloring
of G1 using colors 1, 2, 4. Since G is triangle-free, it follows that ϕ is extendable
(by recoloring xu1 by 3).

If only one vertex in {u1, v1, w1} is adjacent to x, say u1, then either both
v1 and w1 are adjacent to u1, or both u1 and w1 are adjacent to v1. In the first
case we color u1v1 by 4 and u1w1 by 2; in the latter case we color v1w1 by 4 and
u1v1 by 3. Both these partial colorings of G1 are extendable to proper colorings
of G1 using colors 2, 3, 4. Hence, ϕ is extendable.

Suppose now that two vertices in {u1, v1, w1} are adjacent to x, say u1 and
v1. If w1 is adjacent to both u1 and v1, then we color xv1 by the color 1, and
u1w1 by the color 2. This precoloring of G1 is extendable (using colors 1, 2, 4),
and so, ϕ is extendable. If w1 is only adjacent to one of u1 and v1, then we may
proceed similarly.

Let us finally consider the case when {u1, v1, w1} has exactly two neighbors
x, y /∈ {u1, v1, w1} in G1. Then x and y has only one common neighbor in
{u1, v1, w1}, say u1. Thus v1 and w1 are only adjacent to vertices in {u1, v1, w1}.
Since G is triangle-free, we can properly color the edges incident with w1 and
v1 by two colors from {2, 3, 4} so that no vertex is incident with two edges of
the same color. By assumption, there is an extension of the obtained coloring of
G1 using colors 2, 3, 4. Hence, ϕ is extendable. This completes the proof of the
theorem.

Unfortunately, we are not able to prove a corresponding result for Class 2
graphs with maximum degree 3, since we cannot handle the presence of more
precolored edges using our method. Nevertheless, we note that since ∆(L(G)) ≤
4 if G is 3-regular, where L(G) denotes the line graph of G, it follows from
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the characterization of non-degree-choosable graphs1 proved in [5, 10] that one
can decide in a polynomial time whether a given partial 4-coloring of a graph
with maximum degree 3 is extendable to a proper 4-coloring. In particular, any
partial coloring with at most three precolored edges of a subcubic Class 2 graph
is extendable (while a precoloring of four edges is obviously not always possible to
extend). Thus, subcubic Class 2 graphs constitutes another large family of graphs
which admits an Evans-type result. So while there are well-known examples of
subcubic Class 1 graphs that do not admit an Evans-type result (see e.g. [8]),
such examples do not exist for Class 2 graphs.

Furthermore, let us note that the condition on degree here is best possible
since there are 4-regular Class 2 graphs where not every partial coloring of at
most 4 edges is extendable to a proper 5-coloring [3]; indeed K5 is such a graph.
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