Article in volume
Authors:
Title:
A novel approach to covers of multigraphs with semi-edges
PDFSource:
Discussiones Mathematicae Graph Theory 45(2) (2025) 451-481
Received: 2023-02-28 , Revised: 2024-01-25 , Accepted: 2024-01-26 , Available online: 2024-02-15 , https://doi.org/10.7151/dmgt.2540
Abstract:
We present three equivalent models for graphs and their covers, two of which
are applicable to more general structures such as mixed colored directed
multigraphs with semi-edges.
In this context, we extend the concept of equitable and degree partitions, and
provide efficient algorithms for their calculation.
We demonstrate that the dart model introduces simpler concepts. Leveraging this
model, we introduce a novel notion of the degree matrix for the general graph
model. Additionally, we reassert and expand upon Leighton's theorem regarding
the existence of a finite common cover for graphs containing semi-edges.
Keywords:
graph coverings, topological graph theory
References:
- J. Abello, M.R. Fellows and J.C. Stillwell, On the complexity and combinatorics of covering finite complexes, Australas. J. Combin. 4 (1991) 103–112.
- D. Angluin, Local and global properties in networks of processors, in: Proc. 12th ACM Symposium on Theory of Computing (1980) 82–93.
https://doi.org/10.1145/800141.804655 - D. Angluin and A. Gardiner, Finite common coverings of pairs of regular graphs, J. Combin. Theory Ser. B 30 (1981) 184–187.
https://doi.org/10.1016/0095-8956(81)90062-9 - N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974).
https://doi.org/10.1017/CBO9780511608704 - H.L. Bodlaender, The classification of coverings of processor networks, J. Parallel Distrib. Comput. 6 (1989) 166–182.
https://doi.org/10.1016/0743-7315(89)90048-8 - J. Bok, J. Fiala, P. Hliněný, N. Jedličková and J. Kratochvíl, Computational complexity of covering multigraphs with semi-edges: Small cases, in: 46th International Symposium on Mathematical Foundations of Computer Science, LIPIcs, Leibniz Int. Proc. Inform. 202, F. Bonchi and S.J. Puglisi (Ed(s)), (Dagstuhl Publishing, Germany 2021) 21:1–21:15.
https://doi.org/10.4230/LIPIcs.MFCS.2021.21 - P. Boldi and S. Vigna, Fibrations of graphs, Discrete Math. 243 (2002) 21–66.
https://doi.org/10.1016/S0012-365X(00)00455-6 - D.G. Corneil, Graph Isomorphism, PhD Thesis (University of Toronto, 1968).
- D.G. Corneil and C.C. Gotlieb, An efficient algorithm for graph isomorphism, J. ACM 17 (1970) 51–64.
https://doi.org/10.1145/321556.321562 - D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Applications, Revised Version (Huthing Pub. Ltd, 1995).
- J.R. Edmonds, A Combinatorial Representation for Oriented Polyhedral Surfaces, PhD Thesis (University of Maryland, 1960).
https://doi.org/10.13016/daw5-mvla - J. Fiala, P. Klavík, J. Kratochvíl and R. Nedela, Algorithmic aspects of regular graph covers with applications to planar graphs, in: Automata, Languages, and Programing, Lecture Notes in Comput. Sci. 8572, J. Esparza, P. Fraigniaud, T. Husfeldt and E. Koutsoupias (Ed(s)), (Springer, Berlin, Heidelberg 2014) 489–501.
https://doi.org/10.1007/978-3-662-43948-7_41 - J. Fiala and J. Kratochvíl, Partial covers of graphs, Discuss. Math. Graph Theory 22 (2002) 89–99.
https://doi.org/10.7151/dmgt.1159 - J. Fiala and J. Kratochvíl, Locally constrained graph homomorphisms–-structure complexity, and applications, Comput. Sci. Rev. 2 (2008) 97–111.
https://doi.org/10.1016/j.cosrev.2008.06.001 - J. Fiala, D. Paulusma and J.A. Telle, Locally constrained graph homomorphisms and equitable partitions, European J. Combin. 29 (2008) 850–880.
https://doi.org/10.1016/j.ejc.2007.11.006 - J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977) 273–283.
https://doi.org/10.1016/0012-365X(77)90131-5 - J.L. Gross and T.W. Tucker, Topological Graph Theory (Dover Publications, INC, Mineola, New York, 1987).
- A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique. I: Généralités. Descente par morphismes fidèlement plats, Séminaire N. Bourbaki 5 (1960) 299–327.
http://www.numdam.org/item?id=SB_1958-1960__5__299_0 - B. Jackson, T.D. Parsons and T. Pisanski, A duality theorem for graph embeddings, J. Graph Theory 5 (1981) 55–77.
https://doi.org/10.1002/jgt.3190050104 - G.A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. Lond. Math. Soc. 37(3) (1978) 273–307.
https://doi.org/10.1112/plms/s3-37.2.273 - D. König, Theorie der endlichen und unendlichen Graphen: Kombinatorische Topologie der Streckenkomplexe (Akademische Verlagsgesellschaft, Leipzig, 1936).
- J. Kratochvíl, A. Proskurowski and J.A. Telle, Complexity of colored graph covers I. Colored directed multigraphs, in: Graph-Theoretic Concepts in Computer Science, Proc. 23 WG'97, Lecture Notes in Comput. Sci. 1335, (Springer, Berlin Heidelberg 1997) 242–257.
https://doi.org/10.1007/BFb0024502 - J. Kratochvíl, A. Proskurowski and J.A. Telle, Covering directed multigraphs II. When 2-SAT helps (Tech. Rep. 1997–354 {KAM-DIMATIA} Preprint Series, 1997).
- J. Kratochvíl, A. Proskurowski and J.A. Telle, Covering regular graphs, J. Combin. Theory Ser. B 71 (1997) 1–16.
https://doi.org/10.1006/jctb.1996.1743 - J. Kratochvíl, A. Proskurowski and J.A. Telle, Complexity of graph covering problems, Nordic J. Comput. 5 (1998) 173–195.
- F.T. Leighton, Finite common coverings of graphs, J. Combin. Theory Ser. B 33 (1982) 231–238.
https://doi.org/10.1016/0095-8956(82)90042-9 - A. Malnič, R. Nedela and M. Škoviera, Lifting graph automorphisms by voltage assignments, European J. Combin. 21 (2000) 927–947.
https://doi.org/10.1006/eujc.2000.0390 - A.D. Mednykh and R. Nedela, Harmonic Morphisms of Graphs: Part I: Graph Coverings (Vydavatelstvo Univerzity Mateja Bela v Banskej Bystrici, 2015).
- R. Nedela and M. Škoviera, Regular embeddings of canonical double coverings of graphs, J. Combin. Theory Ser. B 67 (1996) 249–277.
https://doi.org/10.1006/jctb.1996.0044 - S. Negami, Graphs which have no planar covering, Bull. Inst. Math. Acad. Sin. 16 (1988) 377–384.
- W.D. Neumann, On Leighton's graph covering theorem, Groups Geom. Dyn. 4 (2010) 863–872.
https://doi.org/10.4171/ggd/111 - K. Reidemeister, Einführung in die kombinatorische Topologie, Monats. Math. 40 (1933) A9.
https://doi.org/10.1007/BF01708901 - H. Sachs, Simultane Überlagerung gegebener Graphen, Publ. Math. Inst. Hung. Acad. Sci. Ser. A 9 (1965) 415–427.
Close