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Abstract

We present three equivalent models for graphs and their covers, two
of which are applicable to more general structures such as mixed colored
directed multigraphs with semi-edges.

In this context, we extend the concept of equitable and degree partitions,
and provide efficient algorithms for their calculation.

We demonstrate that the dart model introduces simpler concepts. Lever-
aging this model, we introduce a novel notion of the degree matrix for the
general graph model. Additionally, we reassert and expand upon Leighton’s
theorem regarding the existence of a finite common cover for graphs con-
taining semi-edges.
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1. INTRODUCTION

In a topological context, a covering projection refers to a mapping that is both
continuous and bijective within the neighborhood of any point in the domain.
When we view a graph as the set of points of its crossing-free drawing, then
the concept of topological covering projection naturally translates into graph
homomorphism that acts as an isomorphism on the neighborhood of every vertex
( up to vertices of degree two, for details see e.g. the survey [14]). This discrete
variant of the topological covering space is established as graph cover.

Graph covers already appeared in the classical monograph of Reidemeister
in 1932 [32, pages 109-114], called there "Isomorphismus von Streckenkomplex €
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zu Streckenkomplex € 7. Since then they appeared several times in constructions
in algebraic and structural graph theory, sometimes indeed rediscovered [4,7,
14-18, 30, 33]. Covers have applications in computer science within distributed
computing environments [2] that led to the concept of common covers [3,26].
Computational complexity of the decision problem whether a covering exists has
also been thoroughly studied [1,5,12,13,22-25], but so far the full characterization
is not known. These studies often involved the concept of equitable partition
well-known from practical and theoretical approaches to the graph isomorphism
problem [8] and graph spectra [10].

In the standard graph terminology developed in 1936 by Koénig [21], a graph
consists of a set of vertices and a set of edges that are pairs of vertices. (Although
it is well known that the concepts of his predecessors such as Euler in the Seven
bridges of Konigsberg problem (1736) or Kirchhoff in electronics (1847) or Cayley
(1874) and Sylvester (1878) in chemistry allow multiple edges.) For this model
of Koénig we use the term a simple graph.

More complex graph concepts involving multiple edges, loops, orientations,
and edge colors emerge naturally for graph covers as the result of the degree
reduction procedure proposed by Kratochvil, Proskurowski and Telle [22]. They
call these objects colored mixed directed multigraphs. Here, edges and vertices
are matched by an incidence relation, and we call this concept the incidence
model.

Semi-edges also naturally arose in a discrete model of branched coverings well
known in algebraic topology [19]. The dart description of a graph with possible
semi-edges was involved in studies of lifting automorphisms on discrete structures
[27,28]. Recently, computational complexity of graph covering problems involving
semi-edges was partially examined [6].

The dart model mentioned in the previous paragraph uses a different ap-
proach to the construction of graphs, where vertices and edges are built from
even more elementary objects called darts. In this model, vertices establish one
equivalence relation on darts, and edges another. This concept stems from the
inherent operation of splitting of an edge into two parts (often called arcs) fre-
quently used in topological and algebraic graph theory [4,17]. The initial formal-
ization of a graph embedding in combinatorial terms dates back to Edmonds in
1960 [11]. He employed a concept that aligns with what could be perceived as
the dart model of a graph for this purpose. The term dart was coined by Jones
and Singerman in their 1978 paper on orientable maps [20].

The primary contribution of this paper lies in offering a cohesive perspective
on the aforementioned graph models and delving into the respective advantages
and disadvantages, particularly regarding their relationship to graph cover theory.

We showcase the advantages of the dart model through a concise and elemen-
tary proof of Leighton’s common cover theorem [2,26]. Our approach extends
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the scope of previous versions [31] in accommodating semi-edges, rendering our
proof more comprehensive.

2. GRAPH MODELS

This section provides an overview of various approaches to defining a graph. We
start with the conventional definition of a graph as a set of vertices and edges.
Subsequently, we introduce an extended definition of a graph involving loops,
directed edges and loops and semi-edges, each allowing for multiple occurrences
and possible colors. From the variety of possible definitions, we present two.
Both of these new definitions are mutually equivalent, and consistent also with
the standard one, when restricted to simple graphs without isolated vertices.
Hence all statements and properties of graphs remain consistent regardless of
the specific definition obviating the need for constant specification. Nonetheless,
utilizing a particular definition occasionally simplifies significantly the proof of
these statements. To adhere to convention, we keep the concept of the graph in
mind and, when necessary, explicitly emphasize the definition we are employing.

2.1. Simple graph

Definition. A (simple) graph is a pair (V, E), where V is a set whose elements
are called vertices and F is a set of unordered pairs {u, v} of distinct vertices.

In the following we will use a standard shorter notation for edges, an undi-
rected edge e = {u, v} will be denoted by uv. We call the edge uv incidental with
vertices u and v. The degree of a vertex is the number of edges incident with this
vertex. We say that a graph is regular if all its vertices have the same degree and
we say it is k-reqular if all its vertices have degree k.

2.2. Incidence graph model

The first generalization towards multigraphs with loops and semi-edges retains
vertices as the fundamental building blocks.

Definition. A graph is a quadruple (V, A, ¢, k), with a set of vertices V and a set
of links A= FEULUSU E, where E is the set of undirected edges, L is the set
of undirected loops, S is the set of semi-edges and E is the set of directed edges
and loops. The function ¢ is an incidence mapping ¢ : A —> (‘2/) UV u((V xV),
such that ¢(e) € V for e € LUS, i(e) € (}) for e € E and t(e) € V x V is the

ordered pair of vertices for e € F.
The mapping x : A — C' is a link coloring, where C is a set of colors. Color
classes of k are inclusion-wise maximal sets of links of the same color. This
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coloring need not be proper in the sense that adjacent edges may receive the
same color.

In other words, since we allow multiple links of the same type incident with
the same vertex (or with the same pair of vertices), the links are given by their
names and the incidence mapping ¢ expresses which vertex (or vertices) ‘belong’
to a particular link. Observe, that a semi-edge has to be non-oriented.

The incidence definition allows us to consider various classical and some new
concepts of structures related to graphs, including:

e simple graphs, where A = E and ¢ is injective;

e multigraphs, where A = F U L;

e directed graph, where A = E \ {vv: v € V} and ¢ is injective;

e semi-simple graphs, where A = E' U S and ¢ is injective;

e uncolored graphs, where « is constant, i.e., it has only one color class.

The degree of a vertex is then defined as follows.

Definition. For a color ¢ € C, the c-degree of a vertex v € V is defined as
deg®(v) = [{e: v € 1(e),e € EUS,k(e) = c}| + 2|{e: v=1(e),e € L,k(e) = c}|
if ce K(FULULS), while for ¢ € Ii(ﬁ) we define
deg®(v) = (deg®™ (v), deg®" (v))

where the c-outdegree is

deg® (v) = |{e: t(e) = (v, u) for some (u,e € ﬁ,/ﬁ;(e) = c}|
and the c-indegree is

deg“" (v) = |[{e: 1(e) = (u,v) for some (u,e € B,Fc(e) =c}|.

The total degree of v is

deg(v)= D deg®(u)+ ) (deg® (u)+deg™ (u)).

cek(EULUS) cEn(g)

The degree of a vertex is the number of edges incident with this vertex. A
loop adds 2 to the degree of its vertex. This may not seem immediately intuitive,
but it aligns naturally with considerations of graph embeddings on surfaces and
becomes evident when exploring the definition of a covering projection. Moreover,
this notion remains coherent with the concept of edges being the amalgamation
of two semi-edges, a concept detailed in the subsequent sections.
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2.3. Dart graph model

This section presents a different approach to graphs with semi-edges, using the
set of so called darts as the fundamental set and defining both vertices and edges
with the help of darts.

Definition. A graph is a quadruple (D, V, A, k), where D is a set of darts, and
where V' and A are each a partition of D into disjoint sets and k : D — C'is a
dart coloring. Moreover, all sets in A have size one or two.

Vertices are here the sets of darts forming the partition V, i.e., V is the set
system on D, whose elements are disjoint subsets of D. The set of links A consists
of three disjoint sets A = F'U L U S, where E represents the edges, i.e., those
links of A that have non-empty intersection with two distinct vertices from V', L
are the loops, i.e., those 2-element sets of A that are subsets of some set from V,
and S are the semi-edges, i.e., the 1-element sets from A.

For an illustration and comparison to the incidence graph model of Definition
2.2 see Figure 1.

The usual terminology that a vertex v € V' is incident with an edge e € F
or that distinct vertices u and v are adjacent can be expressed as v Ne # () and
there exists e € E such that uNe # () and v Ne # (), respectively.

For a dart color ¢ € C, the c-degree of a vertex v € V is deg(v) = |{d €
v: k(d) = c}|. The degree of a vertex v € V is simply deg(v) = |v|]. Observe
that the degree of a vertex is always positive, hence isolated vertices cannot be
expressed in this model.

2.4. Terminology related to the dart model

The multiedge between v and v is an inclusion-wise maximal subset of links that
are incident with both u and v, ie., {e € F:enNv # 0 AvNe # 0} and the
cardinality of this set is the multiplicity of the (multi)edge uwv. In the same way
we define the multiplicity of a loop or of a semi-edge.

As the concept of a graph built from darts might seem unusual, we review
few further concepts that are well established for the classical definition.

A graph H = (Dy, Vi, Ay, ki) is a subgraph of a graph G = (Dg, Vg, Ag,
kq) if their sets of darts satisfy Dy C D¢ and their partitions fulfill Vi = Vg|p,,
AH = AG|DH and Rg = Iig|DH.

A path is a graph formed by a sequence of distinct darts such that consecutive
darts constitute either an edge or a vertex of degree 2. A path is closed if both
the first pair and the last pair constitute edges. A closed path corresponds to
the usual definition of a simple graph, which is a path. We also say that a closed
path connects the vertex forming the first dart to the vertex of the last one.
Our concept of a path is more general, as not all paths need to be closed, and
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such paths do not have counterpart in simple and incidence graph models. If the
first pair and the last pair are vertices, then the path is open. In all other cases
(including a sequence of length 1) the path is half-way.

° elements of D
classes of V
= classes of A

Figure 1. An example of a graph presented in the usual graph-theoretical way (left) and
using the dart model by Definition 2.3 (right).

By a component of a graph we mean an inclusion-wise maximal induced sub-
graph such that each two of its vertices are connected by a subgraph isomorphic
to a path. We say that a graph is connected if it has only a single component.

Semi-simple graphs have the property that whenever two darts are in the
same equivalence class of A, they belong to different vertices, which are distinct
equivalence classes of V', because there are no loops. For any two vertices wu, v
exists at most one link [ such that [ Nwu # () and also I Nv # () (there are no
multiple links). A simple graph then is a semi-simple graph where all equivalence
classes of A have cardinality 2.

Table 1 depicts and summarizes the differences and relationships between the
two graph models.

2.5. Transitions between the three models

Upon closer examination, it is evident that Definitions 2.1, 2.2 and 2.3 are equiv-
alent when restricted to simple graphs without isolated vertices.

To see that both our approaches to the general definition of a graph are
equivalent (up to isolated vertices), we demonstrate the reciprocal conversion
between the dart representation of a graph and the incidence representation.

To encode the orientations, we incorporate dart colors, as the darts corre-
sponding to a directed edge will be differentiated by distinct colors.

Note that regardless of the specific color chosen, directed/bichromatic links
can always be distinguished from undirected edges, loops, and semi-edges. To
simplify the technical intricacies of our arguments while maintaining the necessary
expressive power for graph covers, we make the following assumptions about
colorings.

e In the incidence model, the directed edges and loops are assigned colors
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Considered
models
of a graph

Classical
concepts:
simple graph

(colored)
directed graph

(colored
undirected)
multigraph

(colored)
semi-simple
graph

uncolored
graph

Incidence model (V, A, LK)
A=FULUS U

q>@

A= F, k= const,
¢ injective

%

A:E\{UU:UEV},

¢ injective

l>H

A=EUL
A=EUS,

¢ injective

%

Kk = const

(o

Dart model (D, V, A, k)
A=FEULUS

N
N N
\l_ I

A=E,
Kk = const, (x)
I\
~N

|~
A=EFE,
Vi€ A : K|} # const, (%)
I\
~N

|
A=EUL,
Vie A : k| = const

N
NN
7~
\I_

A=FUS,
Vi e A : k| = const, (%)
I\
N

-~
|

Kk = const

~N
N N

(%) no link multiplicities, i.e., Vu,o € V: [{l€ A:lNu#DANINv#P}H <1

Both columns display identical graphs, except for the uncolored graphs, where a
distinction arises due to the requirement for at least two dart colors to interpret

directions.

In the case of undirected graphs, vertices remain uncolored. The

assignment of distinct colors to adjacent vertices would implicitly imply directions
on the incident edges. Vertices and links in the dart model are represented by
gray disks and curves, respectively.

Table 1. Comparison of various graph models.
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distinct from those used for undirected edges, loops and semi-edges, formally
K(E)NK(EULUS) = 0.

e In the dart model, darts within bichromatic links are assigned colors from
a different subset than those within monochromatic links. Formally, the
partition of A into Ay ={l € A: c € C: k(l) = ¢} and Ay = A\ A; satisfies
H(Al) N H(AQ) = 0.

To fulfill these assumptions, we can modify the colorings by introducing pre-
viously unused colors, ensuring the specified conditions are met. Specifically, for
each c € k(E)Nk(EULUS), we introduce a new color ¢ into the set of colors.
We retain ¢ for the directed links, while for every undirected link previously col-
ored by ¢, we replace its color with ¢/. We follow a similar procedure for the dart
model.

We demonstrate that within graphs without isolated vertices, both the inci-
dence and dart models have identical expressive power.

Theorem 1. There exists a surjective map from the class of incidence graph mod-
els without isolated vertices to the class of dart graph models, such that every dart
graph model is isomorphic to an element of the image, and if G = (Vg, Ag, ta, ka)
is mapped on H = (Dyg,Vy, Ay, kg), then there is a bijection hy : Vg — Vi, a
bijection hp : A¢ — Ag and a bijection hy : kg(EULUS) U ng(ﬁ) x {0,1} —
ki (D) that preserve incidences.

e YweVg,Vee A:vele) = hy(v)Nhpe) #0,

as well as each c-degree of each vertex, formally:
o Vv e Vg, Ve kg(EULUS): deg(v)® = deg(hy (v))(©),

o Vv e Vg Vee HG(E): deg(v)¢™ = deg(hy (v))(©0) A deg(v)et
= deg(hy (v))=(e1)

Proof. Given (Vg,Ag,ta, ka), we define the set of darts as the set of triples

Dy = {(c(e),e,0): e € S}
U {(c(e),€,0), (c(e),e,1): e € L}
{(ueO),(w 0): u(e) ={u,v},e € E}
U {(u,e,0),(v,e,1): t(e) = (u,v),e € ﬁ}

Observe that in the second row each undirected loop gives rise to two darts.
The partition Vg is given by the equivalence relation ~v,: (v1,e1,%) ~vy,
(vg, €2, 7) if v1 = vy, and the bijection hy between the vertex sets Vi and Vi by
hy(v) = {(v,e,i) € Dy}, i.e., we choose all triples whose first component is v.
The partition Ay and the bijection hp is given by ~p,: (vi,e1,1) ~ay,
(va, e2,7) if e; = ey and thus hy(e) = {(u,e,i) € Dy}.
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The coloring kp and the bijection h, is obtained from the coloring kg as
follows:

e for undirected links, i.e., e € EULUS, kg ((v,e,i)) = kg(e) and thus h,, is
the identity,

o for directed links, i.e., if e € E, ki ((v,e,1)) = (ka(e), ).

The construction of H alongside the bijections hy, hy, and h, aligns well
with both the definition of an edge incident with a vertex and the definition of
the c-degree (as per Definition 2.2). Notably, we introduced two darts for each
loop to contribute to the degree by two.

To complete our argument, we need to establish that this construction yields
a surjective mapping between the two classes of structures. We demonstrate that
the reverse construction is also viable and, in fact, simpler.

Given H=(Dy,Vy,Ag, ky), where Vg =Vy, we define g (e) ={v: enwv # 0}.

Uncolored vertices are represented by undirected links meeting the following
conditions.

o S={ecAy:le=1},
o L={ecAg:e={di,do} Ndy #da Nkp(di) = kg(da) ANTv € Vz: e C v},
e E={ecAg:e={dy,do}Ndy #doNkg(d1) = kg(da) AN—=Fv € V: e Cv}.
The coloring of these undirected links is determined by rg(e) = kg(e) —
note that rg(e) itself is a single color even if e consists of two darts.
Dealing with the directed links is a bit more complicated, as the direction
cannot be uniquely derived from the bichromatic coloring of a link. To resolve

this issue we choose a complete ordering < of the color classes of k7 and define
directed links as follows.

° ﬁ = {(dl,dg) e = {dl,dg} cAg A /‘GH(dl) < HH(dg)}.

The coloring on G is completed by setting kg ((d1,d2)) = (ku(di), ku(d2)).
This step also concludes the construction of Aq = FULUSU E
Bijections hy, hp and h, are obtained as follows.

e hy(v) =w, i.e., hy is the identity on Vg = Vi,
e hy(e) = e for undirected edges and hy((u,v)) = {u, v} for directed ones;

e colors of undirected links are mapped onto colors of monochromatic links,
i.e., hy(c) = ¢ when ¢ € kg(F U LUS); and finally

e for every color ¢ € Iﬁg(ﬁ) used on directed links we know by the construction
of the coloring k¢ that the color ¢ is in fact a pair ¢ = (¢g, ¢1). Thus we may
define h,((c,4)) = ¢; for both choices of i € {0,1}.
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Finally, given a dart graph model H, we first select an ordering <, followed
by the construction of an incidence graph model G. From this intermediate
graph, we derive a dart graph model denoted as H’. Through a tedious yet
straightforward analysis, one can confirm the isomorphism between H and H’.
Consequently, the mapping between these two classes of models is surjective. ®

3. GRAPH COVERS

3.1. Simple and semi-simple graph covers

Definition. We say that a graph G = (Vig, Eg) covers a connected graph H =
(Vi, Eg) (denoted as G — H) if there exists a map f: Vi — Vi such that the
map f is a local isomorphism, i.e., f maps the neighborhood of each vertex u
bijectively on the neighborhood of f(u).

As a consequence of the assumption that H is connected, the map f is sur-
jective. This follows from the well known path lifting theorem [32].

From now on we will follow the convention that G (guest) is a source graph
and H (host) is the target of the map f, which we will often call a covering
projection.

3.2. Graph covers on incidence models

To extend the concept of graph covers onto multigraphs we have to consider also
a mapping of links. While in the case of simple graphs, this mapping is uniquely
determined by the vertex mapping, such definitiveness no longer holds when loops
and multiple edges are present. Additionally, it is crucial to differentiate between
various types of links and respect the coloring.

Definition. A graph G = (Vig, Ag, ta, kg) covers a graph H = (Vy, Ag, 1y, ki)
if and only if G allows a pair of mappings fi : Vo — Vg and fp : Aq — Ay
such that the following conditions are satisfied.

1. For every link e € Ag we have v (fa(e)) = fv(ta(e)), i.e., the pair of maps fy
and fj encode a homomorphism from G to H, with respect to the incidence
relations ¢ and tg.

(We use the usual convention that fy({u,v}) = {fv(u), fr(v)} and also
fv((u,v)) = (fv(u), fr(v)) to be able to apply fy also onto unordered and
ordered pairs.)

2. Each link e € Ag satisfies kg(e) = ku(fa(e)), i.e., this homomorphism is
color-preserving.
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3. For every semi-edge e € Sy, fgl(e) is a disjoint union of edges and semi-
edges spanning all vertices u € Vi such that fy (u) = tg(e), i.e., the preimage
of a semi-edge e is a 1-factor on fi,* (tx(e)).

4. For every loop e € Ly, fgl(e) is a disjoint union of loops and cycles spanning
all vertices u € Vi such that fy (u) = tg(e), i.e., the preimage of a loop e is
a 2-factor on fi,* (tp(e)).

5. For every edge e € Ey, fy'(e) is a disjoint union of edges spanning all
vertices u € Vi such that fi(u) € vi(e), i.e., the preimage of an edge e is a
perfect matching between the two sets forming f;,'(1z(e)).

6. For every directed loop e € E—H>, fgl(e) is a disjoint union of directed loops
and cycles spanning all vertices u € Vi such that fy(u) € tg(e), i.e., the
preimage of a directed loop e is a directed 2-factor on fy,* (cxr(e)).

(Here we use the convention that a directed link viewed as an ordered pair
(z,y) contains both of its elements z,y € (x,y).)

7. For every directed edge e € E_H) , fgl(e) is a disjoint union of directed edges
spanning all vertices u € Viz such that fy(u) € tg(e), i.e., the preimage of a
directed edge e is a directed perfect matching between the two sets forming
£ ne)).

(Note that the direction is uniquely determined when using the convention
stated in the first condition.)

See an example of a covering projection depicted in Figure 2(a).

Conditions 1 and 3 imply that semi-edges are mapped onto semi-edges. Sim-
ilarly, we can infer that (directed) loops are also correspondingly mapped to
(directed) loops.

Conversely, undirected edges can be mapped onto undirected edges, undi-
rected loops and semi-edges, while directed edges only allow mapping onto di-
rected edges and directed loops.

Conditions 3-7 express that the cover is locally bijective. For every undi-
rected edge or semi-edge e incident with fi (u) in H, there is exactly one ordinary
edge or semi-edge (but not both) of G which is incident with v and mapped to
e by fa. For every undirected loop e incident with fy (u) in H, there is exactly
one loop or exactly two ordinary edges (but not both) of G which are incident
with u and mapped to e by fa. Analogously for directed links.

Proposition 2. For simple graphs, Definition 3.1 and Definition 3.2 are equiv-
alent.

Proof. For both graphs G and H we first identify the sets V' in the standard
and incidence models, as well as we identify E in the first model with A = E in
the other. Thus for an edge e = {u,v} € A, the incidence mapping ¢ has in both
graphs the form «(e) = «({u,v}) = {u,v}.
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Let G — H according to Definition 3.1, i.e., there exists a map f: Vg —
Vi, which is a local isomorphism, mapping the neighborhood of each vertex u
bijectively on the neighborhood of the vertex f(u). We set fiy = f. This vertex
mapping naturally defines the mapping of edges fo: Ag — Ag as fa({u,v}) =
{f(u), f(v)}. Note that f, is well defined as f is a homomorphism.

Now we show that these maps fulfill the first and the fifth condition of Def-
inition 3.2. The other conditions need not be verified as they relate to sorts of
links that do not appear in G or in H.

By the definition of f,, the incidence relations ¢ and ¢y commute with fi
and fy. Formally, for any e = {u,v} € Ag we have tg(fa(e)) = e (fa({u,v})) =
ur(Lf (), F(0)}) = {f (), (v)} as well as we have fy(1c(€)) = f (t({u.v})) =
fv{u,v}) = f({u, v}) = {f(u), f(v)}.

When we choose any e = {u,v} € Ay, then f is bijective on the neighborhood
of any fi,'(u), i.e., fy'(e) is a perfect matching between f;,*(u) and f;,*(v).

For the reverse implication, suppose that G covers H according to Defini-
tion 3.2, i.e., consider mappings fy : Vo — Vi and fj : Aq — Ag. The map
fv is a homomorphism due to condition 1. As for any edge e € Ay the preimage
f~1(e) is a perfect matching by condition 5. It follows that for any vertex u € Vg
each edge incident with f(u) has a single preimage incident with u. Therefore f
is a local bijection, as required by the standard Definition 3.1. [ |

3.3. Graph covers on dart models

The lengthy and technical Definition 3.2 of covers using the incidence relation
stands in contrast to the concise and elegant Definition 3.3 formulated in terms
of darts.

Definition. A graph G = (Dg, Vg, Ag, kg) covers a connected graph H =
(Dgr, Vi, A, kpr) if there exists a map fp: Dg — Dp such that the following
conditions are satisfied.

1. For every u € Vg, there exists a u’ € Vjy such that the restriction of fp onto
u forms a bijection between u and u/'.

2. For every d € D¢ we have kg(d) = kup(fp(d)).
3. For every e € Ag, there is an ¢’ € Ay such that fp(e) = ¢'.

For an example see Figure 2(b).

We now show that Definition 3.2 of a graph cover in the incidence model is
equivalent to Definition 3.3 in the dart model.

To simplify our expressions, instead of using bijections hy and hy we simply
do not distinguish between Vg in the dart definition and Vi in the incidence
definition and use in both the same symbol V. Analogously for the sets of
links A.
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1 fa . 21
raTatk ’ e /SN ST /S

Figure 2. Covering between colored graphs G and H. Mappings fy, fa and fp are
indicated by colors and if more objects of the same color are in H, then also by numbers.
(a) The incidence model. (b) The dart model. Vertices and links are indicated by gray
disks and curves.

Theorem 3. Let G = (D¢, Vg, Ag,kg) and H = (D, Vi, Ag,kg) be dart
graph models and let G' = (Vg, A, tary ker) and H = (Vig, Ag, vy, k) be their
corresponding incidence models obtained through the surjective map described in
Theorem 1. Then G covers H if and only if G' covers H'.

Proof. Let fp: Dg — Dy be a covering from G to H. As fp respects the
partitions Vg and Ay, mappings fy: Vg — Vg and fa: Ag — Ay defined by

fv(u) = fp(u) and  fa(e) = fp(e)

are in fact well defined and are homomorphisms respecting the incidence functions
Lar, L, and colorings kv, Ky as required in conditions 1 and 2 of Definition 3.2.

Formally, for any e € Ag, examining the left-hand side of condition 1, we can
expand it as tg/(fa(e)) = {v € Vg : fale) Nv # 0} = {v € Vi : fple) Nv # 0},
while the right-hand side yields the same expression via fy (tgr(e)) = fr({u €
Vo:eNu#0}) =fo{ueVg:enu#0}) ={veVyg: fple)Nv#0D}.

For condition 2 consider any e € Ag. We have kgr(e) = he(ka(e)) =
hw(ku(fp(€))) = hu(km(fale))) = wm(fale)).

Conditions 3—7 come from the fact that for every vertex u € Vi the restriction
of fply is a bijection between u and fp(u) = fy(u).

In particular for undirected links (conditions 3-5) we argue as follows. If
¢/ = {dy,d2} € Ly is a loop and dy,dy € u/, it follows from the fact that fp is
a bijection between each vertex u and its image fp(u), that f5'(¢’) contributes
two darts to each vertex of f‘;l(u’), ie., le(e’) induces a graph where each
vertex is of degree two. Similarly, if e is an edge, its preimage is a set of edges.
The intersection of each of the edges of fgl(e) with each vertex is at most one,
hence le(e) induces a subgraph with degrees one — a matching in G. Finally,
if ¢ = {d'} with d' € o/, then f;'(d’) is a set of darts such that each dart
contributes one to the degree of each vertex of f, L(W/). In accordance with the
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third condition of Definition 3.3, the set le(e’ ) consists of semi-edges and edges
that form a 1-factor on f;,'(u').

The case for directed links (conditions 6 and 7) follows a similar pattern.
When ¢’ = (dy,dp) is a directed loop and dy,dy € o/, then f5*(e) contributes one
dart to the indegree of each vertex of f;, L(u/) as well as one dart to the outdegree,
thus f'(¢’) is a directed 2-factor. Finally, for a directed edge e’ = (d1,d2) with
di € u', dy € v/ we get analogously that fp'(e/) contributes one dart to the
outdegree of each vertex of f,;!(u') and one dart to the indegree of f,'(v'),
yielding a directed perfect matching from the set fy, L) to v L.

For the reverse implication, suppose G' = (Vg, Ag,tqr, kgr) covers H' =
(Vi,Ag, g, k) and we are given the covering projections fy: Vo — Vg and
fa: Ag — Ap fulfilling all the conditions of Definition 3.2. Recall the definition
of the set of darts as previously described in the proof of Theorem 1 as the
set of triples. We hence define the covering fp : Dg — Dy by fp((u,e,i)) =
(fv(u), fa(e), ).

This mapping is well defined due to condition 1 of Definition 3.2, see the
condition u € vgr(e) = fv(u) € fy(gr(e)) = v (fale)).

Colors are preserved as well, since for a dart d = (u,e,i) € D¢ belonging
to an undirected link e we have kg(d) = kg((u,e,1)) = kgr(e) = kg (fale)) =
ra((fu (), fa(€),9)) =k (Fold).

For directed links we have the same identity with an additional constraint
i = j. (Note that the third component of the triple is irrelevant for undirected
links.)

Regarding a link e in the graph G, our formal argument suggests that fp(e) =
{Up(d): d € e} = {fol(u,e,)): u € 16(e)} = {(fv(w), fale)i): u € tale)} =
fale) =€ € Ay to get the third condition of Definition 3.3.

Finally, to argue the first condition of Definition 3.3 we have to combine
conditions 3-7 of Definition 3.2 to see that fp preserves vertex degrees and thus
it is a local bijection. So for u € Vi, v/ = fy(u), any color ¢ € kg(Ag) and
undirected degree we have

degi(u) = |{d € u: kg(d) = c}|

= {(u,e,1): ter(e) du,e € Egr USe U Lgr, hi (kg (€)) = ¢}

= |{e: tgr(€) D u,e € Eg U Sqr, hy(ker(e)) = ¢}
+ 2{e: t¢i(e) = u,e € Ly, hi (kg (e)) = ¢}

= |{e': €' = fale),ia(€) 2 u,e € Egr U S, hy (ke (€)) = ¢}
+ 2|{e": ¢’ = fale),tar(e) = u,e € Layr, hu(hcr(e)) = c}|

= |{e: g (e) 2 ¢ € By U Sy, hy(kp (€)= c}]
+ 2{e (€)=, € € L, hi(kp(€)) = ¢}



A NovEL APPROACH TO COVERS OF MULTIGRAPHS WITH SEMI-EDGES 15

= ]{(u’,e',i): LH/(el) > u’,e’ € EgUSyg U LH/,hK(/iH/(el)) = C}’
= |{deu: kg(d) =c}| = degf(u).

For colors of directed links we maintain outdegrees as

degg; (u) = [{d € u: ri(d) = c}|
= {(u,e,0): tcr(€) 3 uye € Egr, hulkcr(€)) = ¢}
= |{e: (u,) = tq eeﬁgh (ke (e)) = ¢}
= [{¢: ¢ <>< )= 1(e).e € Ear,halrcr(e)) = }|
= [{e': () = (¢)), ¢ € E*H/,hﬁ (ke (¢')) = )]
= (e, 0): tar(¢)) 3¢’ € B, holbim (¢1)) = ¢}
= |{dev: kp(d) =c}| = degf (u).

Likewise, when considering the indegree deg®" where the third component of
the triple is 1, we use the second entry of pairs representing directed edges. m

4. DEGREE REDUCTION AND VERTEX COLORS

For the problem of determining the existence of a graph covering projection be-
tween two graphs, Kratochvil et al. designed degree reduction procedures. These
procedures allow us to focus solely on graphs with a degree of at least three [22].
They are based on the idea that the existence of a leaf can be represented by the
color of its neighbor and that a path between two vertices, each with a degree of
at least 3, where all intermediate vertices have a degree of 2, can be substituted
with a potentially colored and directed edge. We present their approach, which
reduces vertices of degrees 1 and 2 in a dart graph model, as the algorithm DE-
GREEREDUCTION. The pseudocode for this algorithm is detailed in Algorithm 1.
(The terminology we utilize was introduced in Section 2.4.)

The goal of first while loop is to eliminate all vertices of degree 1.

In the second while loop, our goal is to first identify a maximal subgraph
P in G with all internal vertices having a degree of at least two. Subsequently,
we replace this subgraph with an appropriate link. Such P induces in G either a
path or a cycle with a single vertex of degree at least 3. In the latter case u = v,
and to replace the cycle is by a loop we need to distinguish darts d,, and d,, we
utilize the prime notation.

It is important to note that when G’ = DEGREEREDUCTION(G), G’ has at
most as many darts as G. Additionally, the algorithm runs in quadratic time;
both while loops could execute at most |Vi| times, and each iteration requires
linear time.
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Input: a graph G = (D, V, A, k)
while G contains a vertex v € V of degree 1 with a neighbor u of degree
at least 2 do
let e = {d,d’'} € A be the link connecting u to v with v = {d}, d’ € u;
foreach dart d, € u,d, # d do
insert the triple (1, k(d), k(d')) into k(d,);
order k(d,) by =
end
remove d,d from D, v from V, e from A and d' from wu;

end
while a component of G distinct from a cycle and from a path contains a
vertexr v € V' of degree 2 do
let P = (dy,...,dg) be the inclusion-wise maximal subgraph of G
containing v that is isomorphic to a path or a cycle, and for which
all vertices of G that intersect {da,...,dr_1} have degree 2;
if P is half-way then
assume without loss of generality that {di,ds} € A, as otherwise
we may reverse P;
let u be the vertex of G containing dy;
add a new link containing only one dart dy;
insert d,, into u and color d, by (2, k(d1),...,k(d))
else if P is closed then
let u, v be the (not necessarily distinct) vertices of G, where
d1 € u and dj € v;
add a new link containing two new darts d,, and d, ;
insert d,, into u and d, into v;

color d,, by (2, k(d),... K (d§>) and d,, by
(2, k(dg), ...,k <d§+1))

end
remove di,...,d; from D and restrict all links and vertices to the
new set D;

end

return G .
Algorithm 1: DEGREEREDUCTION
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The result G’ of DEGREEREDUCTION(G) is unique and encodes the original
graph G up to the following two exceptions.

e When G is a simple tree, then a single edge remains. Its coloring encodes the
original tree, but it is not unique as it depends on the choice of the remaining
edge.

e When we eliminate all vertices of degree one in a tree G with two semi-edges
incident with distinct vertices, then we are left with an open path which
contains two maximal half-way paths.

However, these cases are simple from the perspective of computational com-
plexity. To maintain clarity in our presentation, we exclude such cases from our
reasoning as they could complicate the algorithm.

The following proposition characterizes outcomes of the Algorithm DEGREE-
REDUCTION.

Proposition 4. If a connected graph G is neither a simple tree, nor a tree with
two semi-edges incident with distinct vertices, then DEGREEREDUCTION(G) is a
unique

(i) single vertex graph consisting of only one or two semi-edges, if G is a tree
with one semi-edge or with two semi-edges incident with the same vertex,

(ii) cycle, if G is a simple cactus,
(iii) graph of minimum degree 3 otherwise.

Moreover, from DEGREEREDUCTION(G) we may reconstruct G if the coloring
of G does not use symbols 1 or 2.

Proof. We first describe the two reverse operations.

e If d, is a dart colored by (2, cy,. .., ck), then we replace it by a path di, ..., dj
such that each d; is colored by ¢;;

e if u is a vertex such that all darts d € u have color (1, ¢, ¢,), then we add a
link (dy,d,) such that d, € u, d, forms a new vertex v of degree 1, the new
links are colored by k(d,) = ¢, and k(d,) = ¢, and the triple (1, ¢y, ¢,) is
removed from the colors of all other darts in w.

Note that the assumption that 1 and 2 are not used on the coloring of G
allows us to distinguish between the original colors and those introduced by the
algorithm.

The order of processing vertices of degree one in the first while loop is
irrelevant. Once this loop is completed, the colors added to links incident with
any resulting vertex u of degree at least two encode the entire tree stemming
from wu, akin to the well-known tree isomorphism algorithm.
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Note that in a tree with a single semi-edge, the leaves are sequentially pruned
until only one semi-edge remains. In the case of a tree with two semi-edges
incident with the same vertex, the result is a one-vertex graph with two semi-
edges. [ |

Theorem 5. All connected non-trees G and H of maximum degree at least 3
satisfy that G covers H if and only if DEGREEREDUCTION(G) covers DEGREE-
REDUCTION(H).

Proof. For the forward direction assume that f : Dg — Dy is a covering. We
synchronize the execution of DEGREEREDUCTION on G with that on H as follows.

When a vertex v = {d} in H is eliminated, we identify f~!(d) and eliminate
from G all vertices formed from the darts of f~!(d). By local injectivity these
are of degree one, and as f preserves colors, it will also preserve the new colors
after this step.

Similarly, when a path P is removed from H, we identify its preimage in G
and eliminate these so that after this step the mapping f is still a covering.

In the opposite direction, assume that some graph G’ obtained as DEGREE-
REDUCTION(G) covers the graph H' = DEGREEREDUCTION(H). Once more,
we synchronize the reconstruction of G with that of H. When we reconstruct a
vertex v of degree 1 that is a neighbor of u, we identify the set f~!(u) and for
each its vertex we reconstruct one neighbor of degree one. The coloring of new
links in G’ is extended by using the same colors as on the new link in H’.

Likewise, when a path P in H' is reconstructed from a link e, we identify
f~1(e) and reconstruct the corresponding collection of paths with an adequate
coloring. [ |

Some papers on this topic utilize colored edges and vertices. However, as
demonstrated by our approach, a graph with colored vertices and edges may be
replaced by another graph with refined edge coloring, which also depends on the
colors of the vertices incident with those edges.

5. EQUITABLE AND DEGREE PARTITIONS AND THEIR MATRICES

As graph covers are local isomorphisms, they must preserve the degree of any
vertex as well as the degrees of its neighbors, the degrees of neighbors of neighbors,
etc. In this context, we define an equivalence relation on vertices in simple graphs
or incidence models. This relation ensures that vertices within the same class
cannot be distinguished based on their degrees, the degrees of their neighbors,
and so on. We then show that such an equivalence can also be generalized to the
dart model with a simple and natural matrix description.
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5.1. Partitions of simple graphs

The concept of vertex partition that must be preserved under any graph iso-
morphism was introduced by Corneil [8,9]. For our purposes we rephrase it as
follows.

Definition. An equitable partition of a simple graph G = (V, E) is a partition
B of the set V into disjoint blocks By, Bo, ... such that whenever vertices v and
v belong to the same block B;, then they have the same number of neighbors in
every block, formally Vi, j : u,v € B; = |N(u) N Bj| = |N(v) N Bj|.

The matrix M whose entries are m; ; = |N(u) N Bj| for v € B; is called the
matriz of the equitable partition.

Definition. A degree partition is the equitable partition that minimizes the num-
ber of blocks.

Observe that the degree partition of a graph always exists as in the worst
case, each vertex defines its own block. Degree partition can be obtained by an
iterative procedure DEGREEPARTITION whose pseudocode is shown in Algorithm
2. As in each iteration the new partition is sorted we get a unique canonical
ordering of the final degree partition B.

Definition. The matrix of the canonically ordered degree partition of a graph
G is called the degree matriz of G.

Input: a graph G = (V, F)

Initialize: set B° = {BY}, BY =V and i = 0.

repeat

For each vertex u € V set a vector %' having on the jth position the
number of neighbors of u in the jth block, i.e., u* = (ul,u,...),
where u = |[N(u) N B} for all j € {1,2,...,|B'[};

Refine the partition into blocks containing vertices with the same
vectors, i.e., create a new set system B! = {Bf+1, B§+1, ...} so
that whenever u,v € B§+1, then u! = v%;

Sort B! by the lexicographic ordering of the corresponding vectors
ﬁi;

Set i =i+ 1

until until no refinement of blocks is executed, i.e., BTt = BY;

return B’

Algorithm 2: DEGREEPARTITION

The following statement is well known [15].

Theorem 6. If a graph G covers a connected graph H, then they have identical
degree matrices.



20 J. FIALA AND M. SEIFRTOVA

5.2. Partitions in incidence graph models

Definition. An equitable partition of a graph G = (V, A, 1), for A = EULUSUE
is a partition B of the set V into disjoint blocks Bi, Bo, ... such that whenever
vertices u and v’ belong to the same block B;, then

1. they have the same number of undirected edges towards any other block B,
formally Vj # ¢ : [{e € E:u e we)ANle)NB; # 0} = |{e € E:u €
v(e) Aule) N B; # 0},

2. they have the same number of directed edges towards any block Bj, for
incoming edges, formally Vj : |{e € E: u= t(e)1 Nile)2 € Bt = [{e € E:
u' =(e)1 Au(e)2 € Bj}| as well as for outgoing edges, formally Vj : [{e € E :
u=1(e)2Ni(e)1 € Bj}|=|{ee E :u =1(e)2 Nile)1 € By},

3. within the block B; they have the same number of incident edges, loops
and semi-edges, where loops are counted twice, formally [{e € EUS : u €
eyNie) C B +2{eeL:u=1e)}={ee EUS:u €ile) Nile) C
B} +2{e€ L:u =1le)}.

Definition. An equitable partition of a colored graph G = (V, A, ¢, k), for A =

EFEUuLUSU ﬁ is a partition B of the set V into disjoint blocks By, Bs, ... such
that whenever vertices v and u’ belong to the same block B;, then

1. they have the same number of undirected edges of the same color ¢ towards
any other block Bj, formally Ve,Vj # i : [{e € E 1 u € v(e) Au(e) N Bj #
ONnk(e)=ct =|{eec E:u €ule) Nle)NBj # DA k(e) =c},

2. they have the same number of directed edges of the same color ¢ towards any
block Bj, for incoming edges, formally Ve, Vj : [{e € E.u= ve)1 Niu(e)s €
BjANk(e)=c}| = |{e € E = t(e)1 Ai(e)2 € Bj A k(e) = c}las well as for
outgoing edges, formally Ve, Vj : [{e € Eiu= t(e)a Ni(e)r € By Nk(e) =
ct=Hee€ E :u =u(e)a Aile)1 € Bj Ak(e) = c},

3. within the block B; they have the same number of incident edges, loops
and semi-edges of the same color ¢, where loops are counted twice, formally
Ve: {e € EUS :u € e) ANile) € BiAk(e) =c}|+2{e € L :u=
e)Nk(e) =c}={ee EUS :u € wle)ANi(e) C Bi ANk(e) = c}| + 2/{e €
L:u' =(e) Nr(e) =c}.

The degree partition of incidence graph models is a generalization of the
standard degree partition. The partition always exists, the utmost case is again
covered by one-vertex blocks. The algorithm also is similar to the previous DE-
GREEPARTITION, we only need to capture in the vector corresponding to each
vertex the number of incident undirected edges, and also the number of in-going
and out-going directed edges with the other end-vertex in particular blocks. A



A NovEL APPROACH TO COVERS OF MULTIGRAPHS WITH SEMI-EDGES 21

pseudocode for the algorithm for finding a degree partition of a graph in the
incidence model is given in Algorithm 3.

Input: a graph G = (V, A, 1)

Initialize: Set the initial partition B° = {B}, B3,... B} } of V, ko being
the number of distinct colors of V, BY containing vertices of the same
color and blocks being ordered by =< of the corresponding colors, i.e.,
c1(BY) < c_l(B?) whenever i < j.

Set ¢ = 0.

repeat

For each vertex u € Vz belonging to Bli, set a vector 4 of length 3k;
having on the j-th position:

o i =|{ee€ E:uele)Aule)N B # 0},
i.e., the number of undirected edges incident with
and the vertices of block Bj for j =1...1 1,14 1...k;

e il =|{ec EUS:u€le)Aile) C B} Nk(e) =c}
+2{ee L:u=1(e) Nk(e) =c}|,
i.e., the undirected degree of vertex u within block Bli;

e @, .. =HecEueue)rule)NBi£0AK(e)=c},
i.e., the number of outgoing edges of u with end-vertex in block B};

o Wy = l{e € E su=1le)2 Aule)r € Bi}
i.e., the number of incoming edges of u with the initial vertex
in block B;

Subdivide the blocks of the set system B! so that only the vertices
with identical vectors remain in each of the blocks of the new system
B+t :‘{Biﬂ, Byt .. ,Bézil}, i.e., whenever u,u’ € B;H, then

ut =l

Set k; the number of blocks of Bit1,

Sort B! by the lexicographic ordering of the corresponding vectors
',

Set i =1+ 1. ' '
until no subdivision is executed, i.e., B! = B,
return B*

Algorithm 3: INCDEGREEPARTITION

Generalizations of the degree matrix need to consider the presence of multiple
edges with diverse directions, multiplicities, and colors within a block of the
degree partition or between two blocks. In the next section, we demonstrate an
elegant resolution to this complexity within the dart graph model.
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5.3. Partitions in dart graph models

Definition. An equitable partition of a graph G = (D,V, A, k) is a partition B
of the set D into disjoint blocks By, Bs, ..., By such that whenever darts d and
d' belong to the same block, then

1. both vertices u© and u’ such that d € u and d’ € «' have the same number of
incident darts within each block: Vi € {1,...,k}: |un B;| = |u' N B;|, and

2. the links containing darts from the same block connect identical blocks, i.e.,
for [,/ € A such that d e land &' € I" and Vi € {1,...,k}: INB; # 0 <~
I'Nn B; # 0;

3. they have identical color: k(d) = k(d').

Note that the degree partition on darts is in fact a refinement of the standard
degree partition of a graph defined on the set of vertices (the latter emerges from
the union of the blocks of darts belonging to a given vertex).

A pseudocode for the algorithm for finding a canonically ordered degree par-
tition of a graph G = (D, V, A, k) is given in Algorithm 4. As in the preceding
section we assume that the set of colors C' is linearly ordered by <.

Note that the last vector component distinguishes darts of monochromatic
links from bicolored ones. Technically, whenever d & B} it always follows that
j € J}Q Although removing j from two-element sets could streamline sorting,
this optimization might complicate other arguments unnecessarily. An example
of getting the equitable partition is depicted in Figure 3.

]’;U Bll Bl BQ B 84
— — SNo— — N 7 -
{ \ / (/’lg() 0 {/1}) /> “\N /D “\ /\
( (3,1,0,0,{1h=\/ (3,1,0,0,{2,4}) \/ \/
(4,0, {l})ﬂ |\ (4,0,{1,2}) 3LO.0AL3N |\ p1 A A
(3,1, {l})ﬂl (0,0,3,1,{1731}) | | |
v\ Bg N\ A

(0,0,3,1,{3}~"

Figure 3. Example of the execution of DARTDEGREEPARTITION. The initial graph is
4-regular, but has darts of two distinct colors corresponding to initial blocks BY and BS.
The final degree partition has eight blocks and is obtained by three refining iterations.
For clarity, in B!, etc. we distinguish the new blocks of the partition by dart colors. In
B2, etc. the vectors are omitted.

Theorem 7. Let G and H be graphs such that G covers H. Then the covering
projection maps each block of the degree partition of G onto a block with the same
index in the degree partition of H.
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Input: a graph G = (D, V, A, k)

Initialize:

Set the initial partition B° = {BY, BY, ... ’Bl?:o} of D, ko being the
number of distinct colors of D, each block BY containing darts of the
same color and blocks being ordered by =< of the corresponding colors,
ie., ¢ (B) = ¢ 1(BY) whenever i < j;

Set i = 0.

repeat

For each dart d € D set a vector d* of length k; + 1 having on the
j-th position the number of darts from the jth block belonging to
the same vertex as d when j < k;, and on the (k; 4+ 1)-st position we
put the set of indices of blocks that contain darts of the link [ 5 d.
Formally d' = (d,d5, . . .J};iﬂ), where

7 lun B forueV:deuwand1<j <k,

{k:Binl#0} forleA:delandj=Fk +1.

Subdivide the blocks of the set system B! so that only the darts with
identical vectors remain in each of the blocks of the new system
B = (Bt Bit B,ijjl ).

Sort B! by the lexicographic ordering of the corresponding vectors
d;

Set i =141

until no subdivision is executed, i.e., B = Bt

return B

J

Algorithm 4: DARTDEGREEPARTITION

Proof. Let f: Dg — Dy be a covering and let By, Bo, ..., By be the blocks of
the degree partition of G. Let us define B, = f(B;) for i € 1,..., k. We argue
that this mapping is well defined, i.e., whenever darts d and d’ have the same
image, they are in the same block. Let us first prove that B, Bj..., B} is a
degree partition of H. The correctness of the definition will come as a special
case of the proof.

In the following, let § and 0’ be two darts and let d and d’ be their preimages
(guaranteed by surjectivity of f), i.e., f(d) = 6, f(d') = ¢'. Let u,u’ be vertices
such that d € u,d" € «'. When §,0" are in the same block B, then so are d
and d' and we have |u N Bj| = |v' N B;j|. Note that f(un Bj) = f|, (uN Bj)
for any u € Dg, and because f is a cover, f|, is a bijection, and it holds that
|f(un By)| = [f(u' N By)| or, equivalently, |f(u) N B})| = [f(u") N B;)'|.

Now consider links e, ¢’ such that 6 € e and ¢’ € ¢/. Because f is a covering,
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there exist links /,!’ such that f(I) = e and f(I') = €/. Furthermore, we know
that d € l and d’ € I'. Knowing that d,d’ are in the same block, we have | N B; #
) < U'NB;j #0. As f is a nonempty mapping, f(INB;) #0 <= INB; #0
and we are done.

The correctness of the definition of blocks B] can be established by setting
D ]

Notice that any equitable partition inherently induces a partition of vertices
V=VuU---UV, and links A = A;U---UAj akin to the incidence models. When
the blocks of an equitable partition are linearly ordered, it implicitly establishes
a linear order on both the blocks of vertices and links.

This arrangement permits the definition of its matrix in the following manner.
It is essential to note that instead of an adjacency-like matrix typically defined
for simple graphs, we employ an analogy of the incidence matrix.

Definition. We say that M is the matriz of an equitable partition Bq,..., By
with induced vertex blocks Vi, ..., V, and link blocks A1, ..., As if M has k rows
and r + s columns, where

|B; Nw| for je{l,...,r} and any u € V},
mi; =11 for j—re{l,...,s} andif IN B; # 0 for some [ € A,_,,
0 for j—re{l ...,s}andif INB; =0 for each [ € A;_,.

Analogously to Definition 5.1, the matrix associated to canonically ordered
degree partition is called the degree matrixz of a graph.

By . Vi Vo A1 As As
D o Gk 30100\ 5
5 Aeim= 10010
Vo X 02010 B
B, Ay e e 02001/ B

Figure 4. Example of a degree matrix in the dart model.

An example of a degree matrix is depicted in Figure 4. As a direct conse-
quence of Theorem 7, we assert that an analogous version of Theorem 6 remains
valid, even though the dart model employs a different concept of the degree ma-
trix.

Theorem 8. In the dart model, if a graph G covers a connected graph H, then
they have identical degree matrices.
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Proof. First, by Theorem 7, we can assume that the row indices in both degree
matrices align with corresponding blocks in the degree partitions of G and H.
This implies a one-to-one correspondence between vertex and link blocks, and
consequently, between the columns of the two matrices.

Identical values in the columns associated with vertices align with the first
condition of Definition 3.3. Similarly, the third condition corresponds to values
in the columns related to links. For instance, a value of 1 indicates a dart block
incident with a link block, irrespective of whether a single dart connects to a
semi-edge or an edge joining two distinct blocks, or if two darts are incident with
an edge inside a block. [ |

6. UNIVERSAL AND FINITE COMMON COVERS

The universal cover of a graph G is a simple, possibly infinite tree T" that allows
a covering projection to G. When G is colored, then T is colored accordingly as
well.

It is well known that the universal cover T' can be built on the elements of
the fundamental group of G and that it also could be constructed directly from
the relationships between blocks of an equitable partition that are described by
its matrix [2,15,26,31].

Leighton proved that isomorphic universal covers of two finite uncolored
multigraphs yield the existence of a common finite cover.

Theorem 9 [26]. Given any two finite, undirected, and connected multigraphs G
and G', the following are equivalent.

1. G and G’ share a common finite cover,
2. G and G’ have the same universal cover,

3. G and G’ have the same degree matriz.

Having proved implications 1 = 2 and 2 = 3, Leighton wrote that "the final
implication 3 = 1 is substantially more difficult.” Neumann rephrased Leighton’s
proof and extended it for the use of colors [31]. We claim that the statement
remains valid also when semi-edges are present.

Theorem 10. In the dart model, two finite connected graphs G and G’ have
identical degree matrices if and only if they have a finite common cover.

While a possible workaround would be to first build simple graphs covering
G and G’ and apply Theorem 9, our objective is to present a direct construction.
Despite the resemblance to the proofs by Neumann and Leighton, we include our
proof here for both completeness and to exhibit the benefits of employing the
dart model in this construction.
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Proof. The necessity has been proved as Theorem 8. The sufficiency is proved
as follows.

Denote by 3; for i € {1,...,k} the size of a (dart) block B; of the degree
partition of the graph G and by d;,j € {1,...,r} the number of vertices in the
class V; of the corresponding partition of vertices. Let ¢ be the least common
multiple of all numbers f(1,..., ;. As a consequence t is also multiple of each
01y ey O

Denote by a; = é for i € {1,...,k} and by ¢; = 5% for j € {1,...,r}.
Since 3; = m; j0; we get that a;m;; = ¢;. We may routinely derive that values
a;, c; could be directly derived from the matrix M and hence are independent on
further structure of G' and G'.

For i € {1,...,k} and j € {1,...,r} choose arbitrary sets A;: |4;| = aj,
Cj: |Cj| = ¢, groups I1; j: |II; ;| = m; ;, and bijections ¢; ; : II; j x A; = Cj.

Fori,i* € {1,...,k} such that m; ; = m;- ; = 1 for some j € {r+1,...,7+s}
we write ¢ ~ ¢* and define a bijection ~; ;» between A; and A;«. Note that 7 and
1" need not to be distinct.

In the graph G, choose for each vertex v € V; and block B;,i € {1,...,k}
a bijection v, ;: v N B; — 1I; ;. Obtain 7%/1' by the same process on the vertices
of G ’

The graph H is composed as follows.

Dy = {(i,d,d’,a): i€{l,....,k},de B;,d € Bl,a € Ai},

Vi = {{(z‘,d,d’,a):ie {1,....k},devnB;,d € v NB,,
a € Aiy i (Voi(d)ow o(d), @) =7}

je{l,...,r,ve Vg e VGI,'yeC']},

Ap = {{(i,d,d’,a),(i*,d*,d’*,a*)}:
1,1" € {1, R ,k},’i ~ i*,{d, d*} € Ag, {d/,d/*} € Ay,
o € Ai,a* S Ai*,Oé IRE Oé*}.

An example of the construction is depicted in Figure 5.

Projections (i,d,d',a) — d and (i,d,d’,a) — d' are the desired covering
projections H — G and H — G’ according to Definition 3.3. Both projections
are by the definition dart preserving. Both preserve colors, as the darts d and d’
have the same color ¢ as the dart (i,d,d’, a). They also map links onto links due
to the conditions {d,d*} € Ag,{d’,d™} € Ag in the construction of Ay. Also,
as ~; i+ is a bijection, every dart is matched with at most one other dart to form
a link. Note that an edge can be mapped on a semi-edge e.g. when d = d* and
d #d”.
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¢ Bl fi=4 & | B fj=6 a=ij=§=1
w N\ mom=2 N OB B=3  a=i=%=2
\l/ 01 =2 / \ (5'123 01:%:222
t=4 I = =6 2 1 0
N S _
M_<1 0 1)
Ay = {2} Il =Zy w11 : 11 x Ay = C4
(b) (0,2) =5
Cy =1{5,6} (1,2) = 6
G 0 0 1 1 0 1 0
G H
1 | —6 N\ / 6— /| 6—
(c) | | | N7
| | | N
1 | —6 N\ /6 /| 6~

Figure 5. Example of the construction of the common cover H of G and G’. (a) The
graphs G and G, their parameters and their common degree matrix. (b) The auxiliary
sets and mappings. (c¢) The color and position of darts of H correspond to i,d and d’. All
blue darts have a = 2. Red darts have « indicated, as well as vertices their . Bijections
¥y,; and 1/);,,1- are indicated on darts of G and G'. Both ~; 1 =~g o= id.

It remains to argue that both projections are bijective when restricted to the
neighborhood of any vertex. Consider without loss of generality the projection
H — G and a vertex u of H determined by v € Vi, v' € Vi, v € C;. Then, since
©;,j is a bijection, there is are unique 7 € II; ; and o € A; such that ¢; ;(7,a) = 7.
Now, as 1, ; and w,i(d’ ) are bijections and II; ; is a group, for any dart d € vNB;
there exists a unique dart d’ € v/ N Bj such that ¢, ;(d)¢y ;(d") = 7, namely d’ =
lbv_/,li((wv,z‘(d))*%). Thus d’ and « are unique satisfying ¢; ; (¢u,i(d)¢v',i(dl), a) =
~ for fixed d and ~. After integration along all colors i we get a bijection between

darts incident with u and the darts incident with v. For the projection to any
vertex of G’ we argue analogously. [
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Moreover, it is worth noting that universal covers correspond one-to-one with
degree matrices in the dart model. Consequently, Theorem 10 can be extended
to encompass universal covers as well.

7. CONCLUSION

We have demonstrated that the dart model is suitable and often simpler for
various concepts related to graph covers surveyed in this paper. Our generaliza-
tion includes possible presence of semi-edges, which are related to more general
covering concepts such as wrapped quasicoverings [19].

An interesting question arises: from the perspective of graph covers, is the
expressive power of graphs with semi-edges strictly stronger than that of simple
graphs? For instance, when H is formed by two semi-edges stemming from a
single vertex, the simple graphs that cover H are all cycles. Therefore, to preserve
the existence of a covering, one must transform H into a graph containing a
cycle. Note that classical constructions like Cartesian product with K5 or taking
two copies of a graph and matching corresponding semi-edges into edges do not
guarantee that edges obtained from semi-edges are only mapped by a covering
onto edges obtained from semi-edges in the target graph.

There are other natural directions for further explorations, e.g. structural
relationships of degree matrices suggested in [15] or other kinds of locally con-
strained homomorphisms [14].

Moreover, our model could be refined to graph embeddings where the vertex
embedding is modelled combinatorially with help of permutations [29]. Cycles
of the permutation yield the equivalence classes of the underlying graph, and
the particular order along a cycle yields the rotational scheme of links stemming
from a vertex. It is likely that our approach and results could be extended to
this situation.
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