DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

A.L. Gallo

Andrea L. Gallo

FAMAF-CIEM (CONICET)
Universidad Nacional de Córdoba

email: andregallo88@gmail.com

0000-0003-4017-3558

D.E. Videla

Denis E. Videla

FAMAF-CIEM (CONICET)
Universidad Nacional de Córdoba

email: denisv458@gmail.com

0000-0002-2074-2218

Title:

Number of cliques of Paley-type graphs over finite commutative local rings

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-08-22 , Revised: 2024-01-20 , Accepted: 2024-01-25 , Available online: 2024-02-08 , https://doi.org/10.7151/dmgt.2538

Abstract:

In this work, given $(R,\frak{m})$ a finite commutative local ring with identity and $k \in \mathbb{N}$ with $(k,|R|)=1$, we study the number of cliques of any size in the Cayley graph $G_R(k)=Cay(R,U_R(k))$ with $U_R(k)=\{x^k : x\in R^*\}$. Using the known fact that the graph $G_R(k)$ can be obtained by blowing-up the vertices of $G_{\mathbb{F}_{q}}(k)$ a number $|\frak{m}|$ of times, we reduce the study of the number of cliques in $G_R(k)$ over the local ring $R$ to the computation of the number of cliques of $G_{R/\frak{m}}(k)$ over the finite residue field $R/\frak{m} \simeq \mathbb{F}_q$. In this way, using known numbers of $\ell$-cliques of generalized Paley graphs ($k=2,3,4$ and $\ell=3,4$), we obtain several explicit results for the number of $\ell$-cliques over finite commutative local rings with identity.

Keywords:

local rings, generalized Paley graphs, cliques

References:

  1. R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel and D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16(1) (2009) #R117.
    https://doi.org/10.37236/206
  2. W. Ananchuen, On the adjacency properties of generalized Paley graphs, Australas. J. Combin. 24 (2001) 129–147.
  3. W. Ananchuen and L. Cacceta, Cubic and quadruple Paley graphs with the n-e.c. property, Discrete Math. 306 (2006) 2954–2961.
    https://doi.org/10.1016/j.disc.2006.03.073
  4. R. Atanasov, M. Budden, J. Lambert, K. Murphy and A. Penland, On certain induced subgraphs of Paley graphs, Acta Univ. Apulensis Math. Inform. 40 (2014) 51–65.
    https://doi.org/10.17114/j.aua.2014.40.05
  5. N. de Beaudrap, On restricted unitary Cayley graphs and symplectic transformations modulo $n$, Electron. J. Combin. 17 (2010) #R69.
    https://doi.org/10.37236/341
  6. A. Bhowmik and R. Barman, On a Paley-type graph on $\mathbb{Z}_n$, Graphs Combin. 38 (2022) 41.
    https://doi.org/10.1007/s00373-021-02426-2
  7. A. Bhowmik and R. Barman, Cliques of orders three and four in the Paley-type graphs (2023).
    arXiv: 2301.07021
  8. D.A. Cox, Primes of the Form $x^2+n y^2$ (John Wiley & Sons, Inc., 1989).
  9. A. Das, Paley-type graphs of order a product of two distinct primes, Algebra Discrete Math. 28 (2019) 44–59.
  10. M.L. Dawsey and D. McCarthy, Generalized Paley graphs and their complete subgraphs of orders three and four, Res. Math Sci. 8 (2021) 18.
    https://doi.org/10.1007/s40687-021-00254-7
  11. R.J. Evans, J.R. Pulham and J. Sheehan, On the number of complete subgraphs contained in certain graphs, J. Combin. Theory Ser. B 30 (1981) 364–371.
    https://doi.org/10.1016/0095-8956(81)90054-X
  12. P. Erdős, On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kutató Int. Kőzl 7 (1962) 459–464.
  13. J. Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1987) 77–101.
    https://doi.org/10.1090/S0002-9947-1987-0879564-8
  14. R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1–7.
    https://doi.org/10.4153/CJM-1955-001-4
  15. A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889.
    https://doi.org/10.1016/j.laa.2009.06.025
  16. G.A. Jones, Paley and the Paley graphs, in: Isomorphisms, Symmetry and Computations in Algebraic Graph Theory, WAGT 2016, Springer Proceedings in Mathematics & Statistics, 305, (Springer, Cham. 2020) 155–183.
  17. T.K. Lim and C.E. Praeger, On generalised Paley graphs and their automorphism groups, Michigan Math. J. 58 (2009) 294–308.
    https://doi.org/10.1307/mmj/1242071694
  18. X. Liu and S. Zhou, Spectral properties of unitary Cayley graphs of finite commutative rings, Electron. J. Combin. 19(4) (2012) #P13.
    https://doi.org/10.37236/2390
  19. X. Liu and S. Zhou, Quadratic unitary Cayley graphs of finite commutative rings, Linear Algebra Appl. 479 (2015) 73–90.
    https://doi.org/10.1016/j.laa.2015.03.037
  20. R.A. Podestá and D.E. Videla, The Waring's problem over finite fields through generalized Paley graphs, Discrete Math. 344(5) (2021) 112324.
    https://doi.org/10.1016/j.disc.2021.112324
  21. R.A. Podestá and D.E. Videla, Integral equienergetic non-isospectral unitary Cayley graphs, Linear Algebra Appl. 612 (2021) 42–74.
    https://doi.org/10.1016/j.laa.2020.12.001
  22. R.A. Podestá and D.E. Videla, A reduction formula for Waring numbers through generalized Paley graphs, J. Algebraic Combin. 56 (2022) 1255–1285.
    https://doi.org/10.1007/s10801-022-01154-x
  23. R.A. Podestá and D.E. Videla, Generalized Paley graphs equienergetic with their complements, Linear Multilinear Algebra (2022) , in press.
    https://doi.org/10.1080/03081087.2022.2159918
  24. R.A. Podestá and D.E. Videla, Waring numbers over finite commutative local rings, Discrete Math. 346(10) (2023) 113567.
    https://doi.org/10.1016/j.disc.2023.113567
  25. D.E. Videla, On diagonal equations over finite fields via walks in NEPS of graphs, Finite Fields App. 75 (2021) 101882.
    https://doi.org/10.1016/j.ffa.2021.101882
  26. C.H. Yip, On the directions determined by Cartesian products and the clique number of generalized Paley graphs, Integers 21 (2021) A51.
  27. C.H. Yip, On the clique number of Paley graphs of prime power order, Finite Fields Appl. 77 (2022) 101930.
    https://doi.org/10.1016/j.ffa.2021.101930

Close