DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

A. Dudek

Andrzej Dudek

Western Michigan University

email: andrzej.dudek@wmich.edu

0000-0002-6410-5413

J. Grytczuk

Jaros\l aw Grytczuk

Warsaw University of Technology

email: grytczuk@gmail.com

0000-0002-0258-6143

A. Ruciński

Andrzej Ruciński

A. Mickiewicz University, POznań

email: rucinski@amu.edu.pl

0000-0002-0742-7694

Title:

Twins in ordered hyper-matchings

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-10-02 , Revised: 2024-01-04 , Accepted: 2024-01-09 , Available online: 2024-01-26 , https://doi.org/10.7151/dmgt.2535

Abstract:

An ordered $r$-matching of size $n$ is an $r$-uniform hypergraph on a linearly ordered set of vertices, consisting of $n$ pairwise disjoint edges. Two ordered $r$-matchings are isomorphic if there is an order-preserving isomorphism between them. A pair of twins in an ordered $r$-matching is formed by two vertex disjoint isomorphic sub-matchings. Let $t^{(r)}(n)$ denote the maximum size of twins one may find in every ordered $r$-matching of size $n$. By relating the problem to that of largest twins in permutations and applying some recent Erdős-Szekeres-type results for ordered matchings, we show that $t^{(r)}(n)=\Omega\left(n^{\frac{3}{5\cdot(2^{r-1}-1)}}\right)$ for every fixed $r\geqslant 2$. On the other hand, $t^{(r)}(n)=O\left(n^{\frac{2}{r+1}}\right)$, by a simple probabilistic argument. As our main result, we prove that, for almost all ordered $r$-matchings of size $n$, the size of the largest twins achieves this bound.

Keywords:

hypergraphs, ordered matchings, twins

References:

  1. M. Anastos, Z. Jin, M. Kwan and B. Sudakov, Extremal, enumerative and probabilistic results on ordered hypergraph matchings (2023).
    arXiv: 2308.12268
  2. M. Axenovich, Y. Person and S. Puzynina, A regularity lemma and twins in words, J. Combin. Theory Ser. A 120 (2013) 733–743.
    https://doi.org/10.1016/j.jcta.2013.01.001
  3. B. Bukh and O. Rudenko, Order-isomorphic twins in permutations, SIAM J. Discrete Math. 34 (2020) 1620–1622.
    https://doi.org/10.1137/20M1323357
  4. A. Dudek, J. Grytczuk and A. Ruciński, Variations on twins in permutations, Electron. J. Combin. 28(3) (2021) #P3.19.
    https://doi.org/10.37236/9734
  5. A. Dudek and J. Grytczuk and A. Ruciński, Patterns in ordered $($random$)$ matchings, in: LATIN 2022: Theoretical Informatics, Lecture Notes in Comput. Sci. 13568, A. Castañeda and F. Rodrdríguez-Henrríquez (Ed(s)), (Springer Cham 2022) 544–556.
    https://doi.org/10.1007/978-3-031-20624-5_33
  6. A. Dudek, J. Grytczuk and A. Ruciński, Ordered unavoidable sub-structures in matchings and random matchings (2022).
    arXiv: 2210.14042
  7. A. Dudek, J. Grytczuk and A. Ruciński, Erdős-Szekeres type theorems for ordered uniform matchings (2023).
    arXiv: 2301.02936
  8. P. Erd\H {o}s and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935) 463–470.
  9. M. Gawron, Isomorphic Substructures in Words and Permutations, Master Thesis, Jagiellonian University (2014) in Polish.
  10. C. Lee, P.-S. Loh and B. Sudakov, Self-similarity of graphs, SIAM J. Discrete Math. 27 (2013) 959–972.
    https://doi.org/10.1137/120861436
  11. M.J. Luczak and C. McDiarmid, Concentration for locally acting permutations, Discrete Math. 265 (2003) 159–171.
    https://doi.org/10.1016/S0012-365X(02)00628-3
  12. C. McDiarmid, Concentration for independent permutations, Combin. Probab. Comput. 11 (2002) 163–178.
    https://doi.org/10.1017/S0963548301005089
  13. L. Sauermann and D. Zakharov, A sharp Ramsey theorem for ordered hypergraph matchings (2023).
    arXiv: 2309.04813
  14. M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. Inst. Hautes Études Sci. 81 (1995) 73–205.

Close