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Abstract

An ordered r-matching of size n is an r-uniform hypergraph on a linearly
ordered set of vertices, consisting of n pairwise disjoint edges. Two ordered
r-matchings are isomorphic if there is an order-preserving isomorphism be-
tween them. A pair of twins in an ordered r-matching is formed by two
vertex disjoint isomorphic sub-matchings. Let t(r)(n) denote the maximum
size of twins one may find in every ordered r-matching of size n.

By relating the problem to that of largest twins in permutations and
applying some recent Erdős-Szekeres-type results for ordered matchings, we
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show that t(r)(n) = Ω
(

n
3

5·(2r−1
−1)

)

for every fixed r > 2. On the other

hand, t(r)(n) = O
(

n
2

r+1

)

, by a simple probabilistic argument. As our main

result, we prove that, for almost all ordered r-matchings of size n, the size
of the largest twins achieves this bound.
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1. Introduction

Let r ≥ 2 be a fixed integer. An ordered r-matching of size n is an r-uniform
hypergraph M on a linearly ordered vertex set V , with |V | = rn, consisting of
n pairwise disjoint edges. One may represent such a matching as a word with
n distinct letters in which every letter occurs exactly r times. For instance,
the word AABCBDBDACCD represents an ordered 3-matching of size 4 whose
edges correspond to sets of positions occupied by a given letter, i.e., A = {1, 2, 9},
B = {3, 5, 7}, C = {4, 10, 11}, and D = {6, 8, 12}. We will frequently identify an
ordered matching with its representing word.

Two ordered matchings are isomorphic if there is an order-preserving bijec-
tion between their vertex sets inducing a one-to-one correspondence between their
edge sets. In particular, the words representing isomorphic ordered matchings
are identical up to renaming the letters. A pair of two vertex disjoint isomorphic
sub-matchings of an ordered matching M is called twins. By the size of twins we
mean the size of just one of the two in the pair. The maximum size of twins in
a matching M will be denoted by t(M). The corresponding extremal function is
defined by

t(r)(n) = min{t(M) : M is an ordered r-matching of size n}.

For instance, in the matching M represented by the word

AABECBDEEBDACCD

one can find a pair of twins of size two formed by the sub-matchings AACACC
and BBDBDD. So, t(M) = 2 as, trivially, we always have t(M) ≤ n/2 for a
matching of size n.

In a recent paper [5] (see also [6]) we demonstrated that the following in-
equalities hold for all n ≥ 2 (note that t(2)(1) = 0):

1

16 5
√
2
· n 3

5 6 t(2)(n) 6
e
3
√
2
· n 2

3 .
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The upper bound is obtained by a standard probabilistic argument based on the
expectation. In fact, we proved in [5] that this upper bound is a.a.s. (asymp-
totically almost surely) attained by almost all ordered matching of size n. The
lower bound is a consequence of a result by Bukh and Rudenko [3], concerning
the related problem for permutations.

By twins in a permutation π we mean a pair of disjoint order-isomorphic
subsequences of π. Let τ(n) be the maximum length of twins contained in every

permutation of length n. The result in [3] states that τ(n) ≥ 1
8 · n 3

5 , which

is so far the best lower bound, while τ(n) = O
(

n
2
3

)

follows by an elementary

probabilistic argument. It is conjectured by Gawron [9] that this upper bound
yields the correct order of magnitude for τ(n). If true, this would imply the same
for the function t(2)(n), since we proved in [5, 6] that t(2)(n) = Θ(τ(n)). For
other related results on twins in permutations, as well as for the rich background
of the problem, we encourage the reader to look at our paper [4].

In the present paper we extend the above results to ordered r-matchings,

r > 3, in both, the deterministic and the random setting. Let RMn := RM
(r)
n

denote a random ordered r-matching of size n (for precise definition, see the next
section).

Theorem 1. For every r ≥ 2, a.a.s.,

(1) t(RMn) = Θ
(

n
2

r+1

)

.

The proof of the upper bound follows, once again, by a standard application of
the first moment method. To get the lower bound we apply a more sophisticated
argument, similar to that in [4] and [5, 6], which is based on a concentration
inequality of Talagrand for permutations [11] (see Section 2).

Of course, the upper bound in (1) is also true in the deterministic case, so,

we have t(r)(n) = O
(

n
2

r+1

)

, for every r > 2. Our second result gives a lower

bound for t(r)(n).

Theorem 2. For every r > 2, we have

(2) t(r)(n) = Ω
(

n
3
5
· 1
2r−1

−1

)

.

The proof of Theorem 2 in Section 3, is based on a key lemma (Lemma
5), establishing a double recurrence for t(r), and a recent Erdős-Szekeres type
result [8] for ordered matchings obtained by Sauerman and Zakharov [13]. This
latter result states that every sufficiently large ordered r-matching M contains a
large homogenous “clique”, i.e., a sub-matching M ′ whose all pairs of edges form
pairwise isomorphic r-matchings (of size two). More specifically, the size of such
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a “clique” M ′ in any ordered r-matching with n edges is at least 1
2 · n 1

2r−1 , as
proved in [13].

Observe that if M ′ = {e1, . . . , em}, then by arbitrarily splitting M ′ in half,
e.g., {e1, . . . , e⌊m/2⌋} and {e⌈m/2⌉+1, . . . , em}, we obtain twins. Thus, we imme-

diately get the lower bound t(r)(n) = Ω
(

n
1

2r−1

)

, which is, however, much worse

than the bound in (2). For instance, the exponents of n in these two bounds are
equal, respectively, to 1

5 and 1
7 (r = 3), to 3

35 and 1
15 (r = 4), and to 1

25 and 1
31

(r = 5). In fact, their ratio converges to 6
5 as r is growing. Nonetheless, the ratio

of the logarithms of the current upper and lower bounds for t(r)(n) grows rather
rapidly with r.

We will use the standard notation [n] := {1, 2, . . . , n}.

2. Random Matchings

In this section we prove Theorem 1. Recall that RMn := RM
(r)
n denotes a random

ordered r-matching of size n, that is, an ordered r-matching picked uniformly at
random out of all

α(r)
n :=

(rn)!

(r!)n n!

such r-matchings on the set [rn].

The formula for α
(r)
n indicates that each ordered matching can be coupled

with exactly (r!)nn! permutations. Indeed, one can generate an ordered matching
by the following permutational scheme. Let π be a permutation of [rn]. Now π
can be chopped off into an r-matching consisting of the following collection of
edges

{π(1), . . . , π(r)}, {π(r + 1), . . . , π(2r)}, . . . , {π(rn− r + 1), . . . , π(rn)}.

Clearly, there are exactly (r!)nn! permutations π yielding the same matching.
Thus, a (uniformly) random permutation Πrn of [rn] generates a (uniformly) ran-
dom r-matching RMn. This scheme allows one to use concentration inequalities
(such as the Talagrand inequality [14]) for random permutations in the context
of random matchings.

Proof of Theorem 1: upper bound. The upper bound in formula (1) was al-
ready mentioned without proof in [7, Section 2]. The proof is based on the
standard first moment method. For each k, let Xk be the number of twins of size
k in RMn. Then

EXk =
1

2!
·
(

rn

rk, rk, rn− 2rk

)

·
α
(r)
k · 1 · α(r)

n−2k

α
(r)
n

=
1

2
· n!

(n− 2k)!
· 1

k!
· (r!)k · 1

(rk)!
,
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where the factor of 1 represents the second twin which is fully determined by the
first one.

Ignoring 1
2 and using inequalities n!/(n − 2k)! ≤ n2k, k! ≥ (k/e)k, r! ≤ rr,

and (rk)! ≥ (rk/e)rk, we thus get

EXk ≤ n2k ·
( e

k

)k
· rrk ·

( e

rk

)rk
=
(

n2 · e
k
· rr ·

( e

rk

)r)k
=

(

n2

(k/e)r+1

)k

,

which converges to 0 as n → ∞ for k ≥ cn2/(r+1), with any constant c > e. Hence,
for such k, P(Xk > 0) ≤ EXk = o(1) and so, a.a.s. t(RMn) ≤ cn2/(r+1).

An important ingredient of the proof of the lower bound in Theorem 1 is
a Talagrand’s concentration inequality for random permutations from [14]. We
quote here a slightly simplified version from [11, Inequality (2) with l = 2] (see
also [12, Inequlity (1.3)]). Let Πn′ be a random permutation of order n′ (we will
be applying this theorem with n′ = rn).

Theorem 3 (Luczak and McDiarmid [11]). Let h(π) be a function defined on

the set of all permutations of order n′ which, for some positive constants c and

d, satisfies

(i) if π2 is obtained from π1 by swapping two elements, then |h(π1)−h(π2)| ≤ c;

(ii) for each π and s > 0, if h(π) = s, then in order to show that h(π) ≥ s, one
needs to specify only at most ds values π(i).

Then, for every ǫ > 0,

P(|h(Πn′)−m| ≥ ǫm) ≤ 4 exp
(

−ǫ2m/
(

32dc2
))

,

where m is the median of the random variable h(Πn′).

As mentioned above, one can use this lemma for random r-matchings, as
they can be generated by random permutations.

Proof of Theorem 1: lower bound. Set

a := βn(r−1)/(r+1) with β :=
1

(20er!)1/(r+1)

and

N :=
rn

a
=

r

β
n2/(r+1).

For simplicity we assume that both a and N are integers. Partition [rn] =
A1 ∪ · · · ∪ AN , where Ai’s are consecutive blocks of a integers each. For every
I = {i1, . . . , ir} with 1 ≤ i1 < · · · < ir ≤ N , we call an r-element subset S ⊂ [rn]
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an I-set if |S ∩ Aij | = 1 for each 1 ≤ j ≤ r. Further, define a random variable
XI which counts the number of edges of RMn which are I-sets.

Consider an auxiliary r-uniform hypergraph H := H(RMn) on vertex set
[N ], where I is an edge in H if and only if XI ≥ 2. For better clarity the edges
of H will be sometimes called H-edges. Trivially, the maximum degree in H is
at most

(

N−1
r−1

)

, but also, due to the disjointness of edges in RMn, at most a/2.

It is easy to see that a matching of size k in H corresponds to twins in RMn of
size k. Indeed, let M = {I1, . . . , Ik} be a matching in H. For every 1 ≤ ℓ ≤ k, let

e
(ℓ)
1 , e

(ℓ)
2 ∈ RMn be two Iℓ-edges. Then, the sub-matchings M1 =

{

e
(1)
1 , . . . , e

(k)
1

}

and M2 =
{

e
(1)
2 , . . . , e

(k)
2

}

, owing to the sequential choice of Ai’s, form twins in

RMn. Thus, our ultimate goal is to show that a.a.s. H contains a matching of size
Ω(n2/(r+1)). Let ν(H) be the size of the largest matching in H. Our ultimate goal
is thus to show that a.a.s. ν(H) = Ω(N). Anticipating application of Theorem
3 to ν(H), it will be sufficient to bound E(ν(H)) from below. We will do it in a
most “silly” way by looking just for isolated H-edges.

Let H1 be a subgraph of H induced by the set V1 of vertices of degrees at
most 1 in H, that is, E(H1) consists of isolated edges in H which, of course,
form a matching. Set W = |E(H)| and W1 = |E(H1)| for the random variables
counting the edges in H and H1, respectively. Then, E(ν(H)) ≥ E(W1) and

W1 = W −
∣

∣

{

e ∈ E(H) : e ∩ (V \ V1) 6= ∅
}∣

∣ ≥ W −
⌊a/2⌋
∑

d=2

dZd,

where Zd counts the number of vertices of degree d in H. Note that E(Zd) =
NP(D = d), where D is the degree of a fixed vertex, say vertex 1, in H. Thus,
we have

(3) E(W1) ≥ E(W )− E





⌊a/2⌋
∑

d=2

dZd



 = E(W )−N

⌊a/2⌋
∑

d=2

dP(D = d)

and all we need are a lower bound on E(W ) and an upper bound on P(D = d),
so that (3) would yield E(W1) = Ω(N). We begin with the former task. From
the definition of H we have

(4) E(W ) =
∑

I∈([N ]
r )

P(XI ≥ 2)

which, however, unlike in [6], cannot be applied directly. The reason is that
to bound P(XI ≥ 2) from below one has to handle expressions like n!/(n − a)!
which are asymptotic to na as long as a = o(

√
n). In [6] the case of graphs
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(r = 2) was considered and we had a = Θ(n1/3), however, for r ≥ 3 we have
a = Θ(n(r−1)/(r+1)) = Ω(

√
n).

Hence, instead of applying (4) directly, we define a random variable Y that
counts the number of pairs of edges {e1, e2} for which there exists a set of indices
I = {i1 < · · · < ir} such that both e1 and e2 are I-edges. By definitions, Y and
XI are related by the identity

Y =
∑

I∈([N ]
r ), XI≥2

(

XI

2

)

.

Observe that for any integer t ≥ 2, using the obvious bound XI ≤ a, we get

Y =
∑

I∈([N ]
r ), 2≤XI≤t

(

XI

2

)

+
∑

I∈([N ]
r ), XI≥t+1

(

XI

2

)

≤
(

t

2

)

∑

I∈([N ]
r ), XI≥2

1 +

(

a

2

)

∑

I∈([N ]
r ), XI≥t+1

1.

Thus,

E(Y ) ≤
(

t

2

)

∑

I∈([N ]
r )

P(XI ≥ 2) +

(

a

2

)

∑

I∈([N ]
r )

P(XI ≥ t+ 1)

=

(

t

2

)

E(W ) +

(

a

2

)

∑

I∈([N ]
r )

P(XI ≥ t+ 1),(5)

where we used (4).

From here to obtain a lower bound on E(W ) it suffices to bound E(Y ) from
below and show that, for some constant t, the latter summation above is o(E(Y )).
Observe that E(Y ) can be calculated directly from its definition as

E(Y ) =

(

N

r

)(

a

2

)r

(2!)r−1 · α
(r)
n−2

α
(r)
n

=

(

N

r

)(

a

2

)r

(2!)r−1 · (r!)2 n!

(n− 2)!

(rn− 2r)!

(rn)!
.

Indeed, there are
(

N
r

)

choices of I = {i1, . . . , ir} and, given that, there are
(

a
2

)r
(2!)r−1 choices of two I-sets e1, e2. The quotient

α
(r)
n−2

α
(r)
n

equals the probability

that RMn contains e1 and e2 as edges and the formula follows by the linearity of
expectation.

Since r is fixed (and the asymptotic is taken in n), each binomial coefficient

can be easily approximated and furthermore n!
(n−2)! ∼ n2 and (rn−2r)!

(rn)! ∼ 1
(rn)2r

.
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This yields,

E(Y ) ∼ N r

r!

(

a2

2!

)r

(2!)r−1 ·
(

r!n

(rn)r

)2

=
N r

2r!

(

(r − 1)!ar

(rn)r−1

)2

.

Now expressing N and a as functions of n (leaving just one factor of N intact),
we get

E(Y ) ∼ N ·

(

r
βn

2/(r+1)
)r−1

2r!

(

(r − 1)!βrn(r−1)r/(r+1)

(rn)r−1

)2

= N · (r − 1)!βr+1

2rr

and thus, for large n,

(6) E(Y ) ≥ N · (r − 1)!βr+1

3rr
.

Next, we estimate the second summation in (5). Note that for a fixed I ∈
(

[N ]
r

)

,

P(XI ≥ t+ 1) ≤
(

a

t+ 1

)r

((t+ 1)!)r−1
α
(r)
n−(t+1)

α
(r)
n

∼ ar(t+1)

(t+ 1)!

(r!)t+1nt+1

(rn)r(t+1)
.

Hence,

P(XI ≥ t+ 1) = Or,t

(

n−
(r−1)(t+1)

r+1

)

and consequently,
(

a

2

)

∑

I∈([N ]
r )

P(XI ≥ t+1) = Or,t

(

a2N rn−
(r−1)(t+1)

r+1

)

= Or,t

(

n
2(r−1)+2r−(r−1)(t+1)

r+1

)

.

Since for any r ≥ 2 and t ≥ 4,

2(r − 1) + 2r − (r − 1)(t+ 1)

r + 1
=

(r − 1)(3− t) + 2

r + 1
<

2

r + 1
,

we obtain, taking t = 4,

(7)

(

a

2

)

∑

I∈([N ]
r )

P(XI ≥ 5) = o(N).

Using (6) and (7) in (5), this implies the bounds

N · (r − 1)!βr+1

3rr
≤ E(Y ) ≤

(

4

2

)

E(W ) + o(N)
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from which it follows that

E(W ) ≥ N · (r − 1)!βr+1

20rr
.

After having estimated E(W ) we move to the second major task which is
to bound P(D = d) from above where, recall, D is the degree of vertex 1 in H.
Every edge of H containing vertex 1 corresponds to a set I ∈

(

[N ]
r

)

with 1 ∈ I and
(not uniquely) to a pair of to-be I-edges e1, e2 in RMn. The number of choices of
the triple (I, e1, e2) is

(

N−1
r−1

)(

a
2

)r
(2!)r−1 and the same bound applies to the d− 1

remaining triples (I ′, e1, e
′
2). Of course, the edges selected to the triples should

be vertex-disjoint as otherwise they could not all appear in a matching. As we
bound from above, we may ignore this requirement. On the other hand, as the
H-edges containing vertex 1 are not ordered, we need to divide by d!.

Consequently, very crudely,

P(D = d) ≤ P(D ≥ d) ≤ 1

d!

((

N

r − 1

)(

a

2

)r

(2!)r−1

)d α
(r)
n−2d

α
(r)
n

∼ 1

d!

(

N r−1

(r − 1)!

a2r

2

)d
(rn− 2rd)!

(rn)!

n!

(n− 2d)!
(r!)2d.

Above we turned to estimating P(D ≥ d) instead of P(D = d) to avoid the issue
of producing incidentally more than d edges of H containing vertex 1.

Using the inequality 1 − x ≥ e−2x valid for x ≤ 1/2, the fraction (rn−2rd)!
(rn)!

can be estimated as

(rn− 2rd)!

(rn)!
=

1

(rn)2rd
(

1− 1
rn

)

· · ·
(

1− 2rd−1
rn

) ≤ e4rd
2/n

(rn)2rd

and the fraction n!
(n−2d)! is trivially bounded by n2d. Hence,

P(D = d) ≤ 1

d!

(

N r−1

(r − 1)!

a2r

2

)d
e4rd

2/n

(rn)2rd
n2d(r!)2d

=
1

d!

(

N r−1

(r − 1)!

a2r

2

e4rd/n

(rn)2r
n2(r!)2

)

d.

Since N r−1a2r n2

n2r = rr−1βr+1 and e4rd/n ≤ 2 as d ≤ a/2 = o(n), we get

P(D = d) ≤ 1

d!

(

1

(r − 1)!
· 1
2
· 2

r2r
(r!)2 · rr−1βr+1

)d

=
1

d!

(

βr+1r!

rr

)d

.
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We are now ready to apply (3) and get

E(W1)=E(W )−N
∑

d≥2

dP(D= d) ≥N





(r−1)!βr+1

20rr
−
∑

d≥2

1

(d− 1)!

(

βr+1r!

rr

)d


 .

Since βr+1r!
rr = 1

20err < 1, we can bound

∑

d≥2

1

(d− 1)!

(

βr+1r!

rr

)d

≤
(

1

20err

)2
∑

d≥2

1

(d− 1)!
≤
(

1

20err

)2

e,

and thus,

E(ν(H)) ≥ E(W1) ≥ N · 1

202err+1

(

1− 1

rr−1

)

= Ωr(N) = Ωr

(

n2/(r+1)
)

.

Finally, owing to the permutational scheme of generating RMn, we are in a posi-
tion to apply Theorem 3 with h(π) = ν(H). Let us check the assumptions. For a
permutation π of [rn], let M(π) be the corresponding matching. Observe that if
π2 is obtained from a permutation π1 by swapping some two of its elements, then
at most two edges of M(π1) can be destroyed and at most two edges of M(π1)
can be created, and thus the same can be said about the H-edges of in M(π1).
This, in turn, implies that the size of the largest matching in H has been altered
by at most two, that is, |h(π1)− h(π2)| ≤ 2. Moreover, to exhibit that h(π) ≥ s,
it obviously suffices to reveal 2s edges of RMn, that is, 2rs values of π.

Thus, Theorem 3 with c = 2, d = 2r, and ǫ = 1/2 yields that

P(|ν(H)−m| ≥ m/2) ≤ 4 exp(−m/(1024r)).

Moreover, there is a standard passage from the median to the expectation µ =
E(ν(H)). Indeed, we have (see for example [14], Lemma 4.6, or [12], page 164)
that |m − µ| = O(

√
m). As demonstrated above, µ → ∞, so it follows that

m → ∞ and, in particular, |m − µ| ≤ 0.01µ. This implies that P(|ν(H) −m| ≥
m/2) = o(1) and

P(|ν(H)− µ| ≥ (3/4)µ) = P(|ν(H)−m+m− µ| ≥ (3/4)µ)

≤ P(|ν(H)−m|+ |m− µ| ≥ (3/4)µ)

≤ P(|ν(H)−m| ≥ (2/3)µ) ≤ P(|ν(H)−m| ≥ m/2)

= o(1),

which means that a.a.s. ν(H) = Ωr(µ) = Ωr(n
2/(r+1)), from which the existence

of twins in RMn of size Ωr(n
2/(r+1)) follows.
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Notice that we could not apply Theorem 3 directly to the random variable
W1, as in order to exhibit s isolated edges of H, one would need to reveal an
unbounded number of values of π — to make sure that none of the r-element
subsets of [N ] intersecting the given s forms an edge of H. In fact, for r = 2, one
could use instead the Azuma-Hoeffding inequality (see, e.g., [6, Theorem 3.7] or
the references given there), avoiding the above issue with the witness assumption
of Talagrand’s inequality. Unfortunately, this does not work for r ≥ 3, as then
we only have E(W1) = Ω(n2/(r+1)), so we do not know if (E(W1))

2 /n tends to
infinity which makes the Azuma-Hoeffding inequality useless.

3. General Matchings

In this section we will give the proof of Theorem 2. We start with stating the
main lemma together with some explanations of how it leads to the desired lower
bound (2).

3.1. The main lemma and its consequence

In [6, Lemma 3.4, r = 2] we showed the following lower bound on t(2)(n) in terms
of τ(n). (Note that in [6], unlike here, r meant multiplicity of twins.)

Proposition 4. For all 3/5 ≤ α ≤ 2/3 and β > 0, if τ(n) ≥ βnα for all n ≥ 2,
then t(2)(n) ≥ β(n/4)α for all n ≥ 2.

It follows that t(2)(n) = Ω(τ(n)), but, in fact, we have t(2)(n) = Θ(τ(n)) (the
upper bound is trivial — see [6, Section 3.1] or [5, Section 3]).

Here we generalize Proposition 4 for all values of r. To this end, we first
show a (doubly) iterative lower bound on t(r)(n) which also depends on τ(n). Set
ℓ2 = n1/3 and, for every r ≥ 3, set ℓr(n) =

1
2n

1/(2r−1).

Lemma 5. For all n ≥ 1 and r ≥ 2, t(r)(n) ≥ min{t0, t1, t2}, where

t0 = 2t(r)(n/3), t1 = τ (ℓr−1(n/6r)) ,

and

t2 = min
2≤p≤r−2

max
{

t(r−p) (ℓp(n/6r)) , t
(p) (ℓr−p(n/6r))

}

.

For r ≤ 3, t2 is not defined, or, to the same effect, we may set it equal to n
in such cases, so that it does not affect the minimum.

From this we may derive recursively lower bounds on t(r)(n) in terms of n
and r, assuming a lower bound on τ(n). For r ≥ 1, let ηr = 1

2r−1 , so that now

we can write ℓr(n) =
1
2n

ηr .
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Corollary 6. For all 3/5 ≤ α ≤ 2/3 and β > 0, if τ(n) ≥ βnα for all n ≥ 2,
then for all r ≥ 2 and all n ≥ 2,

(8) t(r)(n) ≥ βr(n/6r)
αηr−1 ,

where β2 = β, while for r ≥ 3,

βr = min

{

min
2≤p≤r−2

βp(12r)
−αηp−1 , β2−α

}

.

In particular, t(3)(n) ≥ β3(n/18)
α/3, where β3 = β2−α.

For technical reasons we have not pulled out the constant (6r)−αηr−1 and
incorporated it into βr above. Note also, that just for the sake of unification, for
r = 2 the bound in Corollary 6 is slightly weaker than the bound in Proposition
4. The case r = 2 is special also in that we have t(2)(n) = Θ(τ(n)) (the upper
bound is trivial — see [6, Section 3.1]). On the other hand, for r ≥ 3 the lower
bound in Corollary 6 does not seem to be close to the truth.

Applying the above mentioned bound τ(n) = Ω
(

n3/5
)

, we obtain immedi-
ately that

t(r)(n) = Ω
(

n
3
5
ηr−1

)

holds for all r ≥ 2. This coincides with (2) and proves Theorem 2. (For r = 2 it
was already deduced in [6, Corollary 3.5].) So, to complete the proof of Theorem
2, it remains to prove Lemma 5 and Corollary 6.

3.2. Unavoidable patterns

Given r ≥ 2, there are exactly 1
2

(

2r
r

)

ways, called patterns, in which a pair of
disjoint edges of order r may intertwine on an ordered vertex set. We call them
r-patterns if the order r is to be emphasized. For instance, using convenient letter
notation, there are just three patterns for r = 2, namely AABB,ABBA,ABAB
and ten for r = 3, AAABBB, AABABB, AABBBA, AABBAB, ABBBAA,
ABBAAB, ABBABA, ABAABB, ABABBA, ABABAB. For a pattern P ,
a P -clique is defined as a matching whose all pairs of edges form pattern P .
For example, with P = ABAABB, a P -clique is a 3-matching with the struc-
ture A1 · · ·An A1A1 · · ·AnAn. Let LP (M) be the size of the largest P -clique in
a matching M , L(M) = maxP LP (M), and Lr(n) = minM L(M), where the
minimum is taken over all r-matchings M of size n.

In [6] (see also [5]) we showed that L2(n) = ⌊n1/3⌋ and used this result (the
lower bound) to prove Proposition 4. Very recently, building upon the concepts
and results contained in [7] and in [1], Sauerman and Zakharov proved in [13]
the following lower bound for every r. Recall our notation from the previous
subsection: ℓr(n) =

1
2n

1/(2r−1) and ηr =
1

2r−1 .
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Theorem 7 [13]. For all r ≥ 2 and all n ≥ 1, we have Lr(n) ≥ ℓr(n).

In fact, in [13] there is a better constant than 1
2 in front of nηr which depends

on r and goes to 1 as r → ∞. For our purposes this has very little effect and
therefore we stick to the weaker but easier to handle 1/2.

3.3. Proof of Lemma 5

Let M = M (r)(n) be an ordered r-matching on [rn] = H1 ∪ H2, where H1 =
{⌊rn/2⌋} and H2 = [rn] \ H1 are the first and second “half” of the vertex set.
Further, for p = 0, 1, 2, . . . , r − 2, r − 1, r, let

np = |{e ∈ M : |e ∩H1| = p}.

Note that
∑r

p=0 np = n, while
∑r

p=0 pnp = ⌊rn/2⌋ and, by symmetry,
∑r

p=0(r −
p)np = ⌈rn/2⌉. The latter identities imply that max{nr, n0} ≤ n/2. We consider
three cases (more precisely, two cases one of which splits further into two subcases)
with respect to the values of np. For two edges e, f ∈ M we write e < f whenever
the leftmost vertex of e is to the left of the leftmost vertex of f , i.e., min e < min f .

Case 1. min{n0, nr} ≥ n/3. Let Mr and M0 be the sub-matchings of M
consisting of the edges contained in, respectively, H1 and H2. Then, for i = 0, r,
we have |Mi| ≥ n/3, so t(r)(Mi) ≥ t(r)(n/3). Thus, by concatenation, t(r)(M) ≥
2t(r)(n/3).

Case 2. min{n0, nr} ≤ n/3. In this case, n0 + nr ≤ n/2 + n/3 = 5n/6, and
so

r−1
∑

p=1

np ≥ n/6.

Thus, we may consider two subcases (for simplicity we compromise r − 1 to r in
all denominators).

Subcase 2a. max{n1, nr−1} ≥ n/(6r). Without loss of generality we assume
that nr−1 ≥ n/(6r). Let Mr−1 ⊂ M consist of all nr−1 edges of M which intersect
H1 in exactly r − 1 vertices (and thus they intersect H2 in just one vertex). For
each e ∈ Mr−1 we write e = e∗ ∪ {ve}, where e∗ ⊂ H1 and ve ∈ H2. Let
M∗ = {e∗ : e ∈ Mr−1}. Note that |M∗| = |Mr−1| = nr−1. By applying Theorem
7 to the (r− 1)-matching M∗ we conclude that for some (r− 1)-pattern P there
is in M∗ a P -clique M∗

P = {e∗1 < · · · < e∗m} of size m = Lr−1(nr−1). Set vi := vei ,
for convenience.

Let π = v1, . . . , vm be the permutation of the right ends of the edges of M∗
P

and let π′ = vi1 , . . . , vit and π′′ = vj1 , . . . , vjt be the longest twins in π. Then,
we claim that M ′ = {ei1 < · · · < eit} and M ′′ = {ej1 < · · · < ejt} are twins
in M . Indeed, for 1 ≤ g < h ≤ t, consider two pairs of edges (eig , eih) ∈ M ′
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and (ejg , ejh) ∈ M ′′. The first r − 1 vertices of eig and eih , i.e., e
∗
ig

and e∗ih , as
well, as e∗jg and e∗jh form the same pattern P (as they all belong to the clique
M∗

P ). Moreover, the pairs of rightmost vertices, respectively, vig , vih and vjg , vjh ,
as being at the same positions in the twins π′ and π′′, are in the same relation:
(vig < vih and vjg < vjh) or (vig > vih and vjg > vjh).

As an example, consider a special case when r = 5, p = 4, and P =
ABBBAABA. Let eA, eB, eC , eD be four edges whose first four vertices form
mutually pattern P , while the last vertices satisfy vA < vB and vC < vD. Then
eA and eB form the pattern ABBBAABA|AB, while eC and eD — pattern
CDDDCCDC|CD which is the very same pattern indeed.

This shows that t(r)(M) ≥ τ (Lr−1(nr−1)) ≥ τ (Lr−1(n/6r)).

Subcase 2b. max2≤p≤r−2 np ≥ n/(6r). Let, for some 2 ≤ p ≤ r − 2, np ≥
n/(6r). Let Mp ⊂ M consist of all np edges of M which intersect H1 in exactly p
vertices (and thus they intersect H2 in r− p vertices). For each e ∈ Mp we write
e = e∗ ∪ e∗∗, where e∗ = e ∩ H1 and e∗∗ = e ∩ H2. Let M∗ = {e∗ : e ∈ Mp}.
Note that |M∗| = |Mp| = np. By applying Theorem 7 to the p-matching M∗ we
conclude that for some p-pattern P there is in M∗ a P -clique M∗

P = {e∗1 < · · · <
e∗m} of size m ≥ Lp(np).

Let M∗∗ = {e∗∗i : i = 1, . . . ,m} be the (r − p)-matching in H2 consisting
of the remainders of the edges in M∗

P . Further, let M∗∗′ = {e∗∗i1 < · · · < e∗∗it }
and M∗∗′′ = {e∗∗j1 < · · · < e∗∗jt } be the largest twins in M∗∗. Then, we claim that
M ′ = {ei1 < · · · < eit} and M ′′ = {ej1 < · · · < ejt} are twins in M . Indeed, for
1 ≤ g < h ≤ t, consider two pairs of edges (eig , eih) ∈ M ′ and (ejg , ejh) ∈ M ′′.
The p-long prefixes of eig and eih , i.e., e

∗
jg

and e∗jh) form pattern P , as the prefixes
e∗jg and e∗jh do. Moreover, the (r − p)-element suffixes e∗∗ig and e∗∗ih form the same
(r−p)-pattern Q as e∗∗jg and e∗∗jh do. So, the pairs (eig , eih) and (ejg , ejh) form the

same r-pattern R, which proves that M ′ and M ′′ are twins.

To illustrate this part of the proof, consider a special case when r = 5 and
p = 3. Let P = AABBBA be a collectible 3-pattern and let Q = ABBA. If
four edges, eA, eB, eC , eD each have 3 vertices in H1 which mutually form pattern
P and, moreover, the 2-vertex remainders of eA and eB form in H2 pattern Q,
and the same holds for the 2-vertex remainders of eC and eD, then edges eA and
eB from overall pattern AABBBAABBA, while edges eC and eD form pattern
CCDDDCCDDC, which is the very same pattern (we call it R in our proof).

Hence,

t(r)(M) ≥ t(r−p)(m) ≥ t(r−p) (Lp(np)) .

We could repeat the entire argument in Subcase 2b with the roles of p and r − p
swapped yielding the max in the definition of t2. Finally, we have to minimize
the obtained bound over all 2 ≤ p ≤ r − 2 and over all three subcases.
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3.4. Proof of Corollary 6

The proof is by double induction on r ≥ 2 and n ≥ 2. The case r = 2 was proved
in [6], see Proposition 4 above. Indeed, by Proposition 4 we have

t(2)(n) ≥ β(n/4)α ≥ β(n/12)α = β2(n/12)
α.

Moreover, for r ≥ 3, if 2 ≤ n ≤ 6r(1/βr)
1

αηr−1 , then the desired bound becomes

t(r)(n) ≥ 1 which is trivially true. Thus, assume that r ≥ 3, n ≥ 6r(1/βr)
1

αηr−1 ,
equivalently,

(9) βr(n/6r)
αηr−1 ≥ 1

and that (8) holds for all 2 ≤ r′ < r and 2 ≤ n′ < n.
Note that the assumption τ(n) ≥ βnα for all n ≥ 2 implies, by taking n = 2,

that 1 ≥ β2α, or β ≤ 2−α. Thus, whenever (9) holds, recalling that βr ≤ 2−αβ,
it follows that

1
2(n/6r)

1/ηr−1 ≥ 1
2β

−1/α
r ≥ β−1/α ≥ 2.

This, in turn, implies that n/6r > 1 and, consequently, that in Lemma 5 all
arguments appearing in the functions defining t0, t1, and t2 are larger or equal
to 2 (and, obviously, less than n) allowing to apply the induction assumptions.

By Lemma 5, we know that t(r)(n) ≥ min{t0, t1, t2}. So, consider three cases.
Case 0. t(r)(n) ≥ t0. As n/3 ≥ 2, by induction’s assumption we have

t(r)(n) ≥ t0 = 2t(r)(n/3) ≥ 2βr(n/18r)
αηr−1 ≥ βr(n/6r)

αηr−1 ,

the last inequality equivalent to 21/ηr−1 = 22
r−1−1 ≥ 3α, which is true for r ≥ 3

(recall that α ≤ 1).

Case 1. t(r)(n) ≥ t1. In this case, by the assumption,

t(r)(n) ≥ t1 = τ
(

1
2(n/6r)

ηr−1
)

≥ β2−α(n/6r)αηr−1 ≥ βr(n/6r)
αηr−1 ,

since βr ≤ 2−αβ.

Case 2. t(r)(n) ≥ t2. By induction’s assumption,

t(r)(n) ≥ t2 = min
2≤p≤r−2

max
{

t(r−p)
(

1
2(n/6r)

ηp
)

, t(p)
(

1
2(n/6r)

ηr−p
)

}

≥ min
2≤p≤r−2

max

{

βr−p

(

(n/6r)ηp

12(r − p)

)αηr−p−1

, βp

(

(n/6r)ηr−p

12p

)αηp−1
}

≥ min
2≤p≤r−2

max
{

βr−p(12r)
−αηr−p−1 , βp(12r)

−αηp−1
}

(n/6r)αηr−1

≥ βr(n/6r)
αηr−1 ,

by choosing βr ≤ min2≤p≤r−2 βp(12r)
−αηp−1 . (Above we used the facts that

n/6r > 1 and ηpηr−p−1 > ηr−1, both with a big margin.)
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4. Concluding Remarks

Let us conclude the paper with some problems for future considerations. Firstly,
it is natural to speculate on the true asymptotic order of the function t(r)(n).
Based on Theorem 1 and the former results around Gawron’s conjecture [9] on
twins in permutations (see also [4]), we dare to state the following.

Conjecture 8. For every r > 2, t(r)(n) = Θ
(

n
2

r+1

)

.

Notice that the case r = 2 of this statement is the original Gawron’s conjec-
ture. It seems that even increasing the exponent of n in the lower bound (2) to
the inverse of any polynomial in r will be quite a challenge.

One could also consider a generalization to t-tuplets, that is, t-tuples of
vertex disjoint order-isomorphic sub-matchings of a given r-matching. In fact,
the proof techniques from Section 2 yield that this generalized parameter is a.a.s.
Θ(nt/(r(t−1)+1)) (for t = 2 we thus recover Theorem 1). A highly technical analog
of Theorem 2 could be proved as well.

It seems also natural to study the problem of the largest twins in more
general classes of ordered graphs (r = 2) or hypergraphs (r ≥ 3). By twins in
an ordered graph G we mean a pair of edge-disjoint order-isomorphic subgraphs
of G. Let t(G) denote the maximum size of twins in G, and let t(m) be the
minimum of t(G) over all ordered graphs with m edges. What can be said about
the function t(m)? By the results for ordered matchings we know only that

t(m) = O(m
2
3 ), but is it optimal? It is worth mentioning that the analogous

problem for unordered graphs was solved by Lee, Loh, and Sudakov [10] who

proved that the corresponding function is Θ
(

(m logm)
2
3

)

.

Finally, one may also investigate the size of twins in general words over
finite alphabets. Therein, twins are defined as pairs of identical subsequences
occupying disjoint sets of positions. Actually, our motivation to study twins in
permutations and ordered matchings has been ignited by a beautiful result of
Axenovich, Person, and Puzynina [2], stating that every binary word of length n
contains twins of size 1

2n− o(n).

Inspired by the word representation of ordered matchings (used also in this
paper), one may consider a relaxed variant of twins in words, in which a pair of
disjoint subwords forms permuted twins if they are identical up to a permutation
of their letters. For instance, in this new setting, the subwords 112142212 and
223213323 of a word over alphabet {1, 2, 3, 4}, would form permuted twins (under
permutation 2341). How large permuted twins may one find in every word of
length n over a k-element alphabet? Will they be much bigger, especially for
large k, than in the classical case?
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