DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

P. Borowiecki

Piotr Borowiecki

University of Zielona Góra

email: p.borowiecki@issi.uz.zgora.pl

0000-0002-5239-6540

E. Drgas-Burchardt

Ewa Drgas-Burchardt

University of Zielona Góra

email: e.drgas-burchardt@wmie.uz.zgora.pl

0000-0001-6229-177X

E. Sidorowicz

Elżbieta Sidorowicz

University of Zielona Góra

email: e.sidorowicz@wmie.uz.zgora.pl

0000-0002-7774-0512

Title:

Hypergraph operations preserving sc-greediness

PDF

Source:

Discussiones Mathematicae Graph Theory 44(3) (2024) 1217-1241

Received: 2023-08-22 , Revised: 2023-11-30 , Accepted: 2023-11-30 , Available online: 2023-12-16 , https://doi.org/10.7151/dmgt.2533

Abstract:

Given a hypergraph ${\cal H}$ and a function $f:V({\cal H})\longrightarrow \mathbb{N}$, we say that ${\cal H}$ is $f$-choosable if there exists a proper vertex colouring $\phi$ of ${\cal H}$ such that $\phi(v)\in L(v)$ for all $v\in V({\cal H})$, where $L: V({\cal H})\longrightarrow 2^{\mathbb{N}}$ is an assignment of $f(v)$ colours to a vertex $v$. The sum-choice-number $\chi_{sc}({\cal H})$ of ${\cal H}$ is a minimum $\sum_{v\in V({\cal H})}f(v)$ taken over all functions $f$ such that ${\cal H}$ is $f$-choosable. The hypergraphs for which $\chi_{sc}({\cal H})=|V({\cal H})|+|{\cal E}({\cal H})|$ are called $sc$-greedy. The class of $sc$-greedy hypergraphs is closed under the union of hypergraphs having at most one vertex in common. In this paper we consider $sc$-greediness of the union of hypergraphs having two vertices in common. We investigate this operation when one of the arguments is an arbitrary $sc$-greedy hypergraph while the second one is a hyperpath. Our research is motivated by the possibility of obtaining improved bounds on the sum-choice-number of graphs and new applications to the resource allocation problems in computer systems.

Keywords:

hypergraph, list colouring, generalized colouring, minimum sum, resource allocation, greedy algorithm

References:

  1. C. Berge, Hypergraphs: Combinatorics of Finite Sets (North-Holland, Amsterdam, 1989).
  2. P. Borowiecki, Computational aspects of greedy partitioning of graphs, J. Comb. Optim. 35 (2018) 641–665.
    https://doi.org/10.1007/s10878-017-0185-2
  3. P. Borowiecki, On-line partitioning for on-line scheduling with resource conflicts, in: Proc. 7th Int. Conf. on Parallel Processing and Applied Mathematics (PPAM'07), Lecture Notes in Comput. Sci. 4967, R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wasniewski (Ed(s)), (Springer, Berlin, Heidelberg 2007) 981–990.
    https://doi.org/10.1007/978-3-540-68111-3_104
  4. P. Borowiecki and E. Sidorowicz, Dynamic F-free coloring of graphs, Graphs Combin. 34 (2018) 457–475.
    https://doi.org/10.1007/s00373-018-1886-8
  5. P. Borowiecki and E. Sidorowicz, Dynamic coloring of graphs, Fund. Inform. 114 (2012) 105–128.
    https://doi.org/10.3233/FI-2012-620
  6. C. Brause, A. Kemnitz, M. Marangio, A. Pruchnewski and M. Voigt, Sum choice number of generalized $\theta$-graphs, Discrete Math. 340 (2017) 2633–2640.
    https://doi.org/10.1016/j.disc.2016.11.028
  7. R. Diestel, Graph Theory, Grad. Texts in Math. 173 (Springer, Berlin, Heidelberg, 2017).
    https://doi.org/10.1007/978-3-662-53622-3
  8. E. Drgas-Burchardt and A. Drzystek, Acyclic sum-list-coloring of grids and other classes of graphs, Opuscula Math. 37 (2017) 535–556.
    https://doi.org/10.7494/OpMath.2017.37.4.535
  9. E. Drgas-Burchardt and A. Drzystek, General and acyclic sum-list-coloring of graphs, Appl. Anal. Discrete Math. 10 (2016) 479–500.
    https://doi.org/10.2298/AADM161011026D
  10. E. Drgas-Burchardt, A. Drzystek and E. Sidorowicz, Sum-list-coloring of $\theta$-hypergraphs, Ars Math. Contemp. 22 (2022) #P1.05.
    https://doi.org/10.26493/1855-3974.2083.e80
  11. E. Drgas-Burchardt and E. Sidorowicz, Sum-list colouring of unions of a hypercycle and a path with at most two vertices in common, Discuss. Math. Graph Theory 40 (2020) 893–917.
    https://doi.org/10.7151/dmgt.2312
  12. P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congr. Numer. 26 (1979) 125–157.
  13. B. Heinold, Sum List Coloring and Choosability, PhD Thesis (Lehigh University, 2006).
  14. G. Isaak, Sum list coloring block graphs, Graphs Combin. 20 (2004) 499–506.
    https://doi.org/10.1007/s00373-004-0564-1
  15. G. Isaak, Sum list coloring $2× n$ arrays, Electron. J. Combin. 9 (2002) #N8.
    https://doi.org/10.37236/1669
  16. A. Kemnitz, M. Marangio and M. Voigt, Generalized sum list colorings of graphs, Discuss. Math. Graph Theory 39 (2019) 689–703.
    https://doi.org/10.7151/dmgt.2174
  17. M. Kubale, Graph Colorings, Contemp. Math. 352 (American Mathematical Society, 2004).
    https://doi.org/10.1090/conm/352
  18. M. Lastrina, List-Coloring and Sum-List-Coloring Problems on Graphs, PhD Thesis (Iowa State University, 2012).
    https://doi.org/10.31274/etd-180810-1195
  19. C. Thomassen, Every planar graph is $5$-choosable, J. Combin. Theory Ser. B 62 (1994) 180–181.
    https://doi.org/10.1006/jctb.1994.1062

Close