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Abstract

Given a hypergraph H and a function f : V (H) −→ N, we say that H
is f -choosable if there exists a proper vertex colouring φ of H such that
φ(v) ∈ L(v) for all v ∈ V (H), where L : V (H) −→ 2N is an assignment of
f(v) colours to a vertex v. The sum-choice-number χsc(H) of H is a mini-
mum

∑
v∈V (H) f(v) taken over all functions f such that H is f -choosable.

The hypergraphs for which χsc(H) = |V (H)| + |E(H)| are called sc-greedy.
The class of sc-greedy hypergraphs is closed under the union of hyper-
graphs having at most one vertex in common. In this paper we consider
sc-greediness of the union of hypergraphs having two vertices in common.
We investigate this operation when one of the arguments is an arbitrary
sc-greedy hypergraph while the second one is a hyperpath. Our research
is motivated by the possibility of obtaining improved bounds on the sum-
choice-number of graphs and new applications to the resource allocation
problems in computer systems.
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1. Introduction

In this paper we consider the problem of sum-list choosability of hypergraphs in
the classical as well as the generalized variant in which the colour classes do not
have to be edgeless. Our main concern is the class Γsc of sc-greedy hypergraphs.
In this context we define and analyze new operations with respect to which Γsc

is closed. In particular we are interested in preserving the property of being
sc-greedy by the union of hypergraphs having two vertices in common.

Our motivation is twofold. On the one hand we are interested in sc-greedy
hypergraphs, since these are exactly the hypergraphs attaining an upper bound
on the hypergraph sum-choice number—a property that we further use to obtain
bounds on the sum-choice number of various graphs, both in the classical and
generalized variants of the problem. In this context, any operations that result
in sc-greedy hypergraphs are of primary interest. On the other hand we identify
new areas of applications of the generalized variant of sum-list choosability that
turns out to be a natural complement for one of the resource allocation models
by allowing the so-called resource preferences.

Since every sc-greedy hypergraph is linear, the above problems we consider
for simple, finite and linear hypergraphs H with the non-empty vertex set V (H)
and edge set E(H), where each edge in E(H) is a subset of V (H) and contains
at least two vertices (a hypergraph is simple if no edge is contained in the other,
and it is linear if any two distinct edges have at most one vertex in common).

1.1. Sum-list choosability

A proper colouring of a hypergraph H is a mapping φ : V (H) −→ N such that
every edge ofH contains at least two vertices v1, v2 coloured with distinct colours,
i.e., φ(v1) 6= φ(v2) (in other words no edge is allowed to be monochromatic). In
the most classical setting there are no other restrictions on colour assignment and
we simply aim at finding a colouring with the smallest number of colours. A well-
known way of imposing colour restrictions is a list assignment L : V (H) −→ 2N

under which an L-colouring (list colouring) of H is defined as a colouring φ such
that for every vertex v ∈ V (H) the colour φ(v) belongs to L(v). In the problem
of choosability we ask for smallest ` such that for every list assignment L with
|L(v)| ≥ ` for all v ∈ V (H), there exists a proper L-colouring of H.

A common approach is to consider list colouring with the lists of equal size.
However, if we allow lists of varying sizes, it is known that the average size can
get smaller (see, e.g. [12,19]). Therefore, let us consider a positive integer valued
function f on the vertex set of a hypergraph H. We call f a size function and
use size(f) to denote

∑
v∈V (H) f(v). An f -assignment for H is a list assignment

L such that |L(v)| = f(v) for every vertex v ∈ V (H). The size function f is a
choice function for H if for every f -assignment L there is a proper L-colouring
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of H. A hypergraph H is f -choosable if f is a choice function for H. Finally
the sum-choice-number χsc(H) of H is a minimum size(f) taken over all choice
functions f for H, i.e.,

χsc(H) = minf {size(f) | H is f -choosable} .

The sum-list colouring and sum-list choosability were first introduced for
graphs. Erdős, Rubin and Taylor [12] analyzed the size functions, and then Isaak
[15] was the first to consider the minimum sum of the list sizes. Many of the above
concepts and results related to the earlier work on graphs have been recently
generalized to hypergraphs (see, e.g. [10, 11]). Several generalizations, e.g. sum-
list colourings in which colour classes need not be edgeless were investigated
in [8, 9, 16]. Effectively computable upper bound on the minimum sum of the
list sizes for graphs we find in [14]. For a similar bound in terms of β-degrees in
hypergraphs see [9, 10].

1.2. Choice functions and sc-greedy hypergraphs

Let U be a subset of the vertex set of a hypergraph H. By the subhypergraph of H
induced by U , denoted by H[U ], we mean a hypergraph H′ for which V (H′) = U
and E(H′) = {E ∈ E(H) | E ⊆ U}, whereas a subhypergraph of H is an arbitrary
hypergraph H′ satisfying V (H′) ⊆ V (H) and E(H′) ⊆ E(H). In this context,
considering a choice function f for a hypergraph H and its subhypergraphs H′,
observe that f |V (H′) is a choice function for H′. Therefore χsc(H) ≥ χsc(H′) for
every subhypergraph H′ of a hypergraph H.

A little bit more insightful analysis shows that

(1) χsc(H) ≤ |V (H)|+ |E(H)|.

In order to see that (1) holds for every hypergraph H, take an arbitrary
ordering v1, . . . , vn of the vertices of H and let Hi stand for a subhypergraph of
H induced by {v1, . . . , vi}. Now, consider a special size function f∗ defined as
follows: f∗(vi) = degHi

(vi) + 1 for i ∈ {1, . . . , |V (H)|}. It is not hard to argue
that f∗ is a choice function for H. Indeed, if vertices are coloured according to
the above ordering, then for each vertex vi there are at most degHi

(vi) colour
choices resulting in a monochromatic edge containing vi. Consequently, there
always remains at least one colour in L(vi) that can be used for vi in any proper
list colouring of Hi. Hence χsc(H) ≤ size(f∗). Now, it remains to observe that
size(f∗) = |V (H)|+ |E(H)|.

Note that f∗ is a choice function for H, even if the colour of each vertex
is chosen greedily. Following [10, 18] the hypergraphs H satisfying χsc(H) =
|V (H)|+ |E(H)| are called sc-greedy. A fundamental property of this class is that
it is closed with respect to taking induced subhypergraphs but it is also known
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that it is not closed with respect to taking subhypergraphs [10, 18], where the
latter is easily seen by taking an sc-greedy graph obtained from K2,3 by joining
the vertices of degree 3 and observing that K2,3 is not sc-greedy. Several other
properties of sc-greedy hypergraphs are already known, where one of the most
important is their linearity [10]; we state it explicitly for a further reference.

Property 1. Every sc-greedy hypergraph is linear.

It is also known that hypertrees, hypercycles as well as graphs obtained
recursively by specific operation of identification of appropriate vertices of some
hypergraphs are sc-greedy (for more details see [10,11] and Section 2).

Since every sc-greedy hypergraph achieves the upper bound (1), one of the
approaches to determine the sum-choice-number of an arbitrary hypergraph H is
to focus on its sc-greedy subhypergraphs with relatively large sum of the order
and size, thus finding a lower bound on χsc(H). As we will see later this can be
further used to bound the sum-choice-number of graphs in proper and generalized
variants of colouring. With this as one of our aims in mind, we define and analyze
new operations on sc-greedy hypergraphs that preserve their sc-greediness. On
the way, we naturally narrow down to linear hypergraphs.

1.3. Related work and our results

The idea of investigating the operations on sc-greedy hypergraphs is partially
inspired by the result for graphs stating that the operation of adding a handle,
starting with an appropriate cycle, is sufficient to generate any 2-connected graph
(see, e.g. Diestel [7]). In papers [6, 13, 18] we find several results on preserving
sc-greediness by the operation of adding a handle to cycles and some special
graphs. In this context, similar but more general operations that we consider for
hypergraphs, also use elementary structures, such as hyperpaths or hypercycles,
as the ‘building blocks’ of structurally more complex hypergraphs. At this point,
however, it is necessary to remark that providing a set of basic operations whose
recursive application allows generation of all 2-connected hypergraphs seems chal-
lenging.

Presumably, the problem does not get easier even if following the results
in [10] we further restrict our analysis to linear 2-connected hypergraphs; starting
with a hypercycle and repeating the operation of adding a handle cannot guar-
antee that every linear 2-connected hypergraph is obtained. However, adding a
handle preserves linearity and 2-connectivity, when the handle has at least two
edges. The research on adding hypergraph handles was initiated in papers [10,11]
where necessary and sufficient conditions for preserving sc-greediness were given
in the case of handles added to a hypercycle. In this paper we continue this line
of research by considering the operation of adding handles to arbitrary sc-greedy
hypergraphs.
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The remainder of this article is organized as follows. In Section 2 we present
previously known hypergraph operations that preserve sc-greediness. In Sec-
tion 3.1 we prove several new properties of sc-greedy hypergraphs and use them
in Section 3.2 to prove our main result stating that the class of sc-greedy hyper-
graphs is closed with respect to two new variants of adding hypergraph handles.
In Section 4, on applications, we provide examples that demonstrate the use of
our new operations in bounding the sum-choice numbers of graphs, and describe
new areas of applications of the sum-list choosability to the resource allocation
problems in computer systems.

For any notions not defined in this paper the reader is referred to Berge [1]
and Diestel [7].

2. Basic Operations Preserving sc-Greediness

This section is based mainly on papers [10,11] and collects several results in the
area of the hypergraph operations that preserve sc-greediness, and is intended to
provide the necessary background for new operations on sc-greedy hypergraphs.
We start with a union of hypergraphs.

Definition 1. Let H1 and H2 be two not necessarily vertex disjoint hypergraphs.
The union of hypergraphs H1 and H2, denoted H1 ∪H2, is the hypergraph with
the vertex set V (H1 ∪ H2) = V (H1) ∪ V (H2) and the edge set E(H1 ∪ H2) =
E(H1) ∪ E(H2).

The following properties of hypergraph union were given in [10].

Property 2. If H1,H2 are vertex disjoint hypergraphs, then

χsc(H1 ∪H2) = χsc(H1) + χsc(H2).

Property 3. If H1, H2 are two hypergraphs that have exactly one vertex in
common, then

χsc(H1 ∪H2) = χsc(H1) + χsc(H2)− 1.

From Properties 2 and 3 we draw the following easy but important conclusion.

Corollary 1. If H1, H2 are two hypergraphs that have at most one vertex in
common, then H1 ∪H2 is sc-greedy if and only if both H1 and H2 are sc-greedy.

In order to keep our considerations precise, we need to define hyperpaths,
hypercycles and hypertrees. For the former two we also need a specific notation.

Definition 2. By a hyperpath in a given hypergraph H we mean a sequence
(v1, E1, v2, E2, . . . , Eq−1, vq) with q ≥ 2, where v1, . . . , vq are distinct vertices of
H and E1, . . . , Eq−1 are distinct edges of H. Moreover, for all i ∈ {1, . . . , q − 2}
it holds Ei ∩Ei+1 = {vi+1}, while for all edges Ei ∩Ej = ∅ whenever |i− j| > 1.



1222 P. Borowiecki, E. Drgas-Burchardt and E. Sidorowicz

Definition 3. By a hypercycle in a given hypergraph H we mean a sequence
(v1, E1, v2, E2, . . . , Eq−1, vq, Eq, v1) with q ≥ 3, where v1, . . . , vq are distinct ver-
tices of H and E1, . . . , Eq are distinct edges of H. Moreover, E1 ∩Eq = {v1} and
for all i ∈ {1, . . . , q−1} it holds Ei∩Ei+1 = {vi+1}, while for all edges Ei∩Ej = ∅
whenever |i− j| > 1.

The hyperpath (v1, E1, v2, E2, . . . , Eq−1, vq) is called (v1, vq)-hyperpath. For

a hyperpath P we also use Int(P) to denote the set
⋃q−1

i=1 Ei \ {v1, vq} consisting
of vertices called internal. By the length of a hyperpath (a hypercycle) we simply
mean the number of its edges. Naturally, both a hyperpath P and a hypercycle C
in a hypergraph H can be viewed as its subhypergraphs, with the vertex and edge
sets defined as V (P) =

⋃q−1
i=1 Ei and E(P) = {E1, . . . , Eq−1} and V (C) =

⋃q
i=1Ei

and E(C) = {E1, . . . , Eq}, respectively (clearly they are linear subhypergraphs).
Also, both can be treated as standalone hypergraphs, commonly called a hyper-
path and a hypercycle if their vertex and edge sets coincide with those of the
hypergraph H.

Definition 4. A hypertree is either a single-edge hypergraph or any hypergraph
that is the union of two hypertrees having exactly one vertex in common.

It is intuitive and easily proven that hypertrees and hypercycles are sc-greedy.

Property 4. Hypertrees and hypercycles are sc-greedy.

In the light of Properties 2–4 we conclude that further considerations on
hypergraph sc-greediness could be carried out in the class of linear 2-connected
hypergraphs, i.e., linear hypergraphs that cannot be obtained as a result of the
union of two hypergraphs having at most one vertex in common.

With reference to the idea of constructing 2-connected graphs and the ques-
tion of describing hypergraph operations that allow recursive construction of
preferably all 2-connected sc-greedy hypergraphs (see [10] for more details) we
need to recall the operation of adding a handle.

Definition 5 (Adding a handle). An operation of adding a handle to a hypergraph
H consists in taking the union of H and (v1, vq)-hyperpath P such that v1, vq are
the only common vertices of H and P. The vertices v1 and vq are called the
connectors, while the resulting hypergraph H′ is called a hypergraph with (v1, vq)-
handle or simply a hypergraph with handle.

The following results on adding handles to hypercycles we find in [11] (see
Figure 1 for an illustration).

Theorem 1. Let H be a hypercycle with handle and let the degrees of all vertices
of H be less than 3. The hypergraph H is sc-greedy if and only if at least one of
the following conditions holds:



Hypergraph Operations Preserving sc-Greediness 1223

(a) H does not contain a hypercycle of length 3,

(b) H has an edge containing four vertices of degree 2.

x

x

y

x

y

y

(a) (b)

(c)

x

y

(d)

Figure 1. Examples of sc-greedy hypergraphs resulting from Theorem 1 (see, (a) and (b)
in the upper row) and Theorem 2 (see, (c) and (d) in the bottom row). Connectors and
handles are marked grey.

Theorem 2. Let H be a hypercycle with handle and let the degrees of all vertices
of H be less than 3 except the distinguished vertex x of degree 3. The hypergraph
H is sc-greedy if and only if at least one of the following conditions holds:

(a) H does not contain a hypercycle of length 3,

(b) x belongs to an edge containing three vertices of degree at least 2.

In a similar way the following theorem for θ-hypergraphs (see [10]) can be
interpreted as a result on adding a handle to a hypercycle, when both connectors
are of degree 2 (a θ-hypergraph, denoted by θhk1,k2,k3 , is a hypergraph consisting
of two vertices of degree 3 connected by three internally disjoint hyperpaths of
lengths k1, k2, k3). Clearly, θ-hypergraphs need not to be linear (see, e.g. θh1,1,1).

Theorem 3. Let k1, k2, k3 be positive integers. A hypergraph θhk1,k2,k3 is sc-greedy
if and only if one of its distinguished hyperpaths, say the hyperpath of length k2,
has only edges of size 2, and one of the following conditions holds:

(a) both k1 + k2 and k2 + k3 are odd numbers, and k1 ≥ 2 or k3 ≥ 2,
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(b) k1 + k2 is an odd number and k2 + k3 is an even number and k3 ≥ 3,

(c) both k1 + k2 and k2 + k3 are even numbers and k1 ≥ 3 and k3 ≥ 3.

Although by starting from a hypercycle and repeating the operation of adding
a handle we are not able to generate all linear 2-connected hypergraphs, under
certain conditions the operation preserves sc-greediness. Theorems 1, 2 and 3
describe such conditions when handles are added to hypercycles. In the next
section we continue this topic by revealing sc-greediness preserving variants of
adding handles to arbitrary sc-greedy hypergraphs.

3. Adding Handles to sc-Greedy Hypergraphs

In this section we define two new variants of adding handles to sc-greedy hyper-
graphs. Similarly as in Theorems 1, 2 and 3, the necessary conditions for adding
a handle in both variants guarantee the resulting hypergraphs to be sc-greedy.
The key concept of the first variant is that of an almost generated hyperpath
of sufficient length. This allows adding handles of minimum length 3 and gives
much freedom of choice of the connectors provided they are far enough apart.
The second variant relies mainly on the closeness of the connectors and allows
short handles.

Let us start with appropriate definitions.

Definition 6. Let H be a hypergraph. We say that a hyperpath P in H is
generated if degP(v) = degH(v) for all v ∈ Int(P). Similarly, a hyperpath P in
H is called almost generated if for every v ∈

⋃q−2
i=2 Ei it holds degP(v) = degH(v),

where P = (v1, E1, v2, E2, . . . , Eq−1, vq).

Now, the main results of this paper can be stated as follows.

Theorem 4. Let H′ be an sc-greedy hypergraph and u,w ∈ V (H′) be two vertices
of degree one. If u,w are joined by an almost generated hyperpath of length at
least 5 containing at least three edges, each with more than two vertices, then
a hypergraph H obtained by adding to H′ a (u,w)-handle of length at least 3 is
sc-greedy.

Theorem 5. If H′ is an sc-greedy hypergraph and u,w are adjacent vertices of
degree one, then a hypergraph H obtained by adding to H′ a (u,w)-handle of
length at least 2 is sc-greedy.

In the next section we give several new properties of sc-greedy hypergraphs,
then we use them in Section 3.2 to prove Theorems 4 and 5.
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3.1. New properties related to sc-greediness

In what follows, for convenience we write H−U instead of H[V (H)\U ] and H−v
in place of H− {v}. Similarly we use the symbol H−E to denote a hypergraph
obtained from a hypergraph H by deleting a fixed edge. Also, for A ⊆ V (H), by
E(A) we mean

⋃
v∈A E(v), where E(v) = {E ∈ E(H) | v ∈ E}.

Lemma 6. Let f be a size function for H such that size(f) < |V (H)|+ |E(H)|. If
there exists A ⊆ V (H) such that H−A is sc-greedy and size(f |A) ≥ |A|+ |E(A)|,
then H is not f -choosable.

Proof. Suppose to the contrary that H is f -choosable. Let H′ = H−A. Clearly,

size(f |V (H′)) = size(f)− size(f |A) < |V (H)|+ |E(H)| − size(f |A)

≤ |V (H)|+ |E(H)| − (|A|+ |E(A)|) = |V (H′)|+ |E(H′)|.

Since size(f |V (H′)) < |V (H′)| + |E(H′)| and H′ is sc-greedy, we infer that H′ is
not f |V (H′)-choosable. Thus H is not f -choosable, a contradiction.

It follows from Lemma 6 that if H is not sc-greedy, f is a choice function
for H such that size(f) = χsc(H), and H − A is sc-greedy, then size(f |A) ≤
|A|+ |E(A)| − 1. Thus, for a singleton A we have the following.

Corollary 2. Let H be a hypergraph that is not sc-greedy and let f be a choice
function for H such that size(f) = χsc(H). If H − v is sc-greedy, then f(v) ≤
degH(v).

Lemma 7. If (v1, E1, v2, . . . , vq, Eq, v1) is a hypercycle in H, then∑
i∈{1,...,q}

degH(vi) ≥ |E({v1, . . . , vq})|+ q.

Proof. LetHi = H−{vi+1, . . . , vq} for i ∈ {1, . . . , q−1} and letHq = H. Clearly,
degH(vi) ≥ degHi

(vi) + 1 for i ∈ {2, . . . , q − 1} and degH(v1) ≥ degH1
(v1) + 2.

Thus, ∑
i∈{1,...,q}

degH(vi) ≥
∑

i∈{1,...,q}

degHi
(vi) + q = |E({v1, . . . , vq})|+ q.

Lemmas 6 and 7 now lead to the following.

Corollary 3. Let f be a size function for H such that size(f) < |V (H)|+ |E(H)|.
If H contains a hypercycle (v1, E1, v2, . . . , vq, Eq, v1) such that f(vi) = degH(vi)
for i ∈ {1, . . . , q} and H− {v1, . . . , vq} is sc-greedy, then H is not f -choosable.
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In the next lemma we present a useful property of a hypergraph for which
there is a choice function with the size smaller than the sum of the numbers of
vertices and edges.

Lemma 8. Suppose that hypergraph H is not sc-greedy and let v ∈ V (H) be such
that H−E is sc-greedy for every E ∈ E(v). If f is a choice function for H such
that size(f) = χsc(H), then degH(v) ≥ 2 implies f(v) ≥ 2 provided that each edge
in E(v) contains at most two vertices of degree greater than one.

Proof. Let degH(v) ≥ 2 and let v satisfy all assumptions (in particular all those
concerning the edges in E(v)). Suppose also that f(v) = 1. The assumption
that for every E ∈ E(v) the hypergraph H − E is sc-greedy implies that H − w
is sc-greedy for every neighbour w of v. Indeed, let E′ ∈ E(v) be an edge that
contains w, thus H−E′ is sc-greedy, however H−w is the induced subhypergraph
of H−E′, so it also has to be sc-greedy. Let E(v) = {E1, . . . , Ek}. Observe that
by Corollary 2, we have f(w) = 1 for w ∈ E1 ∪ · · · ∪ Ek with degH(w) = 1.

If there is an edge E ∈ {E1, . . . , Ek} that contains only one vertex of degree
greater than one (only v), then for each vertex in E the value of f is equal
to one, and consequently H is not f -choosable, a contradiction. Thus for each
i ∈ {1, . . . , k} there is exactly one vertex vi different from v such that vi ∈ Ei

and degH(vi) ≥ 2. Let H′ = H[(V (H) \
⋃k

i=1Ei) ∪ {v1, . . . , vk}], i.e., to obtain
H′ we delete from H the vertex v and some vertices of degree one, say we delete
t−1 vertices of degree one. Thus, |E(H′)| = |E(H)|−k and |V (H′)| = |V (H)|− t.
Now, we define the following size function f ′ for H′:
(a) f ′(u) = f(u) if u /∈ {v1, . . . , vk},
(b) f ′(vi) = f(vi)− 1 for i ∈ {1, . . . , k}.

Thus
∑

u∈V (H′) f
′(u) =

∑
u∈V (H) f(u)− k − t. By our assumption on H it holds∑

u∈V (H) f(u) ≤ |V (H)|+|E(H)|−1, and consequently
∑

u∈V (H′) f(u) ≤ |V (H)|+
|E(H)| − 1 − k − t = |V (H′)| + |E(H′)| − 1. Thus H′ is not f ′-choosable. Let
L′ be an f ′-assignment for H′ such that there is no proper L′-colouring of H′
and let a /∈

⋃
u∈V (H′) L

′(u). We define an f -assignment L for H in the following

way: L(u) = L′(u) for u ∈ V (H′) \ {v1, . . . , vk}, next L(vi) = L′(vi) ∪ {a} for
i ∈ {1, . . . , k} and L(u) = {a} for u ∈ V (H) \ V (H′). It is not hard to see that
there is no proper L-colouring of H, which means that H is not f -choosable and
contradicts the assumption. Hence f(v) ≥ 2, which completes the proof.

In the proofs of the main theorems we often use arguments related to extend-
ability of certain partial L-colourings. The following few lemmas are devoted to
extendability for hyperpaths.

Definition 7. Given an f -assignment L for H, {v1, . . . , vp} ⊆ V (H) and given
(c1, . . . , cp) ⊆ L(v1)× · · · × L(vp), we say that a p-tuple (c1, . . . , cp) is (L, v1, . . . ,
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vp)-extendable for H if there is a proper L-colouring φ of H such that φ(vi) = ci
for i ∈ {1, . . . , p}.

Lemma 9 [10]. Let P be a (v1, vq)-hyperpath with at least one edge, and let
f be a size function for P such that f(v1) = f(vq) = 2 and f(v) = degP(v)
for v /∈ {v1, vq}. If L is an f -assignment for P, then at most two pairs in
L(v1)× L(vq) are not (L, v1, vq)-extendable for P. Moreover,

(a) there are exactly two pairs that are not (L, v1, vq)-extendable for P if and
only if P contains only 2-edges and L(v1) = · · · = L(vq), and

(b) if P is of even length and there are exactly two pairs that are not (L, v1, vq)-
extendable for P, then (a, a) and (b, b) are (L, v1, vq)-extendable for P, where
a, b are colours in the list of v1, and

(c) if P is of odd length and there are exactly two pairs that are not (L, v1, vq)-
extendable for P, then (a, b) and (b, a) are (L, v1, vq)-extendable for P, where
a, b are colours in the list of v1.

Lemma 9 implies the following.

Corollary 4. Let P be a (v1, vq)-hyperpath that has at least one edge with more
than two vertices. If f is a size function for P such that f(v1) = f(vq) = 2 and
f(v) = degP(v) for v /∈ {v1, vq}, then for every f -assignment L for P there are
at least three distinct pairs (a, b) ∈ L(v1) × L(vq) that are (L, v1, vq)-extendable
for P.

Lemma 10. Let P be a hyperpath (v1, E1, . . . , Eq−1, vq) that has at least three
edges. If f is a size function for P such that f(v) = degP(v) for all v ∈ V (P),
then for every pair (a, b) there is an f -assignment L such that a ∈ L(v1), b ∈ L(vq)
and (a, b) is not (L, v1, vq)-extendable for P.

Proof. It is enough to define appropriate f -assignments L for P in the following
two cases.

Case 1. (a 6= b)

If length of P is even, we let

• L(v1) = {a}, L(vq) = {b} and L(vi) = {a, b} for i ∈ {2, . . . , q − 1},
• L(v) = {a} for v ∈ Ei \ {vi, vi+1} when i is odd,

• L(v) = {b} for v ∈ Ei \ {vi, vi+1} when i is even.

If length of P is odd, we assume c 6= a and c 6= b, and set

• L(v2) = {a, c}, L(v3) = {b, c}, L(vq) = {b} and L(vi) = {a, b} for i ∈
{4, . . . , q − 1},

• L(v) = {c} for v ∈ E2 \ {v2, v3},
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• L(v) = {a} for v ∈ E1 \ {v2}, and for v ∈ Ei \ {vi, vi+1} with even i in
{4, . . . , q − 1},

• L(v) = {b} for v ∈ Ei \ {vi, vi+1} with odd i ∈ {3, . . . , q − 1}.

Case 2. (a = b)

If length of P is even, we assume c 6= a, c 6= d and a 6= d, and set

• L(v2) = {a, c}, L(v3) = {c, d}, L(vi) = {a, d} for i ∈ {4, . . . , q − 1},
• L(v) = {a} for v ∈ {vq} ∪ (E1 \ {v2}), and for v ∈ Ei \ {vi, vi+1} with even i

in {4, . . . , q − 1},
• L(v) = {c} for v ∈ E2 \ {v2, v3},
• L(v) = {d} for v ∈ Ei \ {vi, vi+1} with odd i in {3, . . . , q − 1}.

If length of P is odd, we assume a 6= c and set

• L(vi) = {a, c} for i ∈ {2, . . . , q − 1},
• L(v) = {a} for v ∈ {vq} ∪ (E1 \ {v2}), and for v ∈ Ei \ {vi, vi+1} with odd i

in {3, . . . , q − 1},
• L(v) = {c} for v ∈ Ei \ {vi, vi+1} with even i in {2, . . . , q − 1}.

Naturally, if P is a hyperpath with two edges, i.e., P = (v1, E1, v2, E2, v3),
and f is a size function for P such that f(v) = degP(v) for every vertex v of
P, then for every pair (a, b) of distinct integers there exists an f -assignment L
such that (a, b) is not (L, v1, v3)-extendable for P. Thus by Lemma 10 we get the
following.

Lemma 11. Let P be a (v1, vq)-hyperpath with at least two edges. If f is a size
function for P such that f(v) = degP(v) for v ∈ V (P), then for every pair (a, b)
such that a 6= b there exists an f -assignment L such that a ∈ L(v1), b ∈ L(vq)
and (a, b) is not (L, v1, vq)-extendable for P.

This leads to the following statement.

Corollary 5. If P is a hyperpath and f is a size function for P such that f(v) =
degP(v) for every vertex v of P, then P is not f -choosable.

In the last lemma of this section the generated paths come into play.

Lemma 12. Let H be a hypergraph that is not sc-greedy and let v1, vq ∈ V (H)
be two vertices of degree two in H that are joined by a generated hyperpath P
of length at least 3. If H − Int(P) is sc-greedy, then f(v) = degH(v) for every
v ∈ V (P) and for every choice function f for H with size(f) = χsc(H).

Proof. The argument that H − Int(P) is sc-greedy implies that also H − v is
sc-greedy for every vertex v ∈ V (P). Indeed, H − v is a hypergraph H′′ with
some additional isolated vertices, where
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(a) if v ∈ Int(P), then H′′ is the union of H−Int(P) and two disjoint hyperpaths
P1,P2 such that v1 is the only common vertex of H − Int(P) and P1, vq is
the only common vertex of H− Int(P) and P2,

(b) if v = v1 (or v = vq), then H′′ is the union of H − (V (P) \ {vq}) (or
H − (V (P) \ {v1})) and some hyperpath that have one vertex vq (or v1) in
common.

Clearly H− (V (P)\{v1}) and H− (V (P)\{vq}) are sc-greedy, because they
are induced subhypergraphs of the sc-greedy hypergraph. Thus, by Corollary 1,
H− v is sc-greedy for v ∈ V (P). Similarly, we can see that for every E ∈ E(P),
the hypergraph H− E is sc-greedy.

Let f be a choice function for H with size(f) = χsc(H). Thus by Corollary 2,
f(v) ≤ degH(v) for v ∈ V (P), and consequently f(v) = degH(v) for vertices
of P of degree one. By Lemma 8, every internal vertex of P with degree two
has the list size equal to two. Thus, it remains to prove that also f(v1) = 2
and f(vq) = 2. Suppose first that f(v1) = 1 and f(vq) = 1. By Corollary 5,
P is not f |V (P)-choosable, so H is not f -choosable. Thus, at least one of v1, vq
has to have a list size equal to two. Let f(v1) = 1, f(vq) = 2 and suppose
that P = (v1, E1, v2, . . . , vq−1, Eq−1, vq), where q ≥ 4 by the assumptions (see
Figure 2).

vq

v1

vq−1

v2

v3

E1

E2

Eq−1

...

Figure 2. The hypergraph H that illustrates Lemma 12.

LetH′ = H−v2 and g be the size function forH′ such that g(v) = f(v) for v ∈
V (H′)\{v3} and g(v3) = f(v3)−1. Observe that size(g) < |V (H′)|+|E(H′)| and so
H′ is not g-choosable, becauseH′ is sc-greedy. So there is a g-assignment LH′ such
that H′ is not properly LH′-colourable. Let LH′(v1) = {a} and LH′(v3) = {b} (it
may be that a = b), thus (a, b) is not (LH′ , v1, v3)-extendable for H′. We define
an f -assignment LH for H in the following way:
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• LH(v) = LH′(v) for v ∈ V (H′) \ (E1 ∪ E2),

• LH(v2) = {a, c}, where c 6= a,

• LH(v) = {a} for every v ∈ E1 \ {v2},
• LH(v) = {c} for every v ∈ E2 \ {v2, v3},
• LH(v3) = {b, c}.

Now, since all vertices of E1 except v2 have exactly one colour on the lists
(the colour a), in any proper LH-colouring v2 must receive c. Next, since E2

cannot be monochromatic, v3 must receive b. However, as we observed before,
(a, b) is not (LH′ , v1, v3)-extendable for H′, so H is not properly LH-colourable.
Hence f(v1) = 2 = degH(v1) and f(vq) = 2 = degH(v2), which completes the
proof.

3.2. New variants of the operation of adding a handle

3.2.1. Variant 1 — proof of Theorem 4

Theorem 4. Let H′ be an sc-greedy hypergraph and u,w ∈ V (H′) be two vertices
of degree one. If u,w are joined by an almost generated hyperpath of length at
least 5 containing at least three edges, each with more than two vertices, then
a hypergraph H obtained by adding to H′ a (u,w)-handle of length at least 3 is
sc-greedy.

Proof. By Corollary 1 every component of an sc-greedy hypergraph is sc-greedy.
Hence, we assume that H′ is connected, for otherwise we can consider the compo-
nent of H′ containing u and w. Let (u,E′, x, E1, u1, . . . , uq−1, Eq, y, E

′′, w) be the
assumed almost generated (u,w)-hyperpath in H′ and let P be the (u,w)-handle,
where P = (u, F1, v1, F2, v2, . . . , vp−1, Fp, w). Clearly H = H′ ∪ P. Moreover, let
R = (x,E1, u1, . . . , uq−1, Eq, y). For an illustration see Figure 3.

Claim 1. H− Int(P) is sc-greedy.

Proof. Suppose, on the contrary, that H is not sc-greedy and observe that H−v
is sc-greedy for every v ∈ Int(P). Indeed, H− v can be seen as a hypergraph H′′
with some additional isolated vertices, where H′′ is either a union of H′ and a
hyperpath having one vertex in common or H′′ is a union of H′ and two disjoint
hyperpaths P1,P2, where u is the common vertex of H′ and P1, and w is the
common vertex of H′ and P2. Thus, by Corollary 1, H − v is sc-greedy for all
v ∈ Int(P) and hence also H− Int(P) is sc-greedy.

Similarly, we can show that H− v is sc-greedy for v ∈ E′∪E′′. We state this
fact explicitly for a further reference.
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u

vp−1

v1

w

x

uq−1

u1

y

E1

Eq

E′

E′′

F1

Fp

P R··
·

··
·

Figure 3. The hypergraph H in Theorem 4.

Claim 2. If v ∈ E′ ∪ E′′, then H− v is sc-greedy.

In order to finish the proof we need to argue that H − Int(R) is sc-greedy
(see Claim 3). Assuming Claims 1 and 3 hold, the proof proceeds as follows.

Let g be a choice function for H such that size(g) = χsc(H). Since by
the assumption H is not sc-greedy, size(g) < |V (H)| + |E(H)|. We know that
H−Int(P) is sc-greedy (Claim 1) and hence by Lemma 12 we have g(v) = degH(v)
for every v ∈ V (P). The argument that H − Int(R) is sc-greedy (Claim 3),
again by Lemma 12, implies that g(v) = degH(v) for every v ∈ V (R). Since
size(g|V (P)∪V (R)) =

∑
v∈V (P)∪V (R) degH(v) = |V (P) ∪ V (R)| + |E(P) ∪ E(R)|,

from Lemma 6 it follows that H is not g-choosable, which is a contradiction.
In the remaining part of the proof we need additional notation. Namely, let

S1, . . . , Sp be a family of sets and G be a hypergraph (we allow Si∩V (G) 6= ∅). By
G+ {S1, . . . , Sp} we denote a hypergraph with the vertex set V (G)∪S1 ∪ · · · ∪Sp
and the edge set E(G) ∪ {S1} ∪ · · · ∪ {Sp}.

Claim 3. H− Int(R) is sc-greedy.

Proof. Let HR = H− Int(R). First, observe that if each of both E′ and E′′ con-
tains exactly two vertices of degree at least two (say u, x and w, y, respectively),
then H is a hypercycle and hence sc-greedy, a contradiction. On the other hand,
if either E′ or E′′ contains exactly two vertices of degree at least two, then HR
is a union of two sc-greedy hypergraphs having exactly one vertex in common.
Indeed, suppose that E′′ is the edge that has exactly two vertices of degree at
least two in H. Now, by our assumption w and y are the only vertices of degree
at least two in E′′ and they have degree exactly two in H. Thus, the common
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vertex of these two sc-greedy hypergraphs is u and one of them is the hyperpath
P +E′′. From Corollary 1 it follows that HR is sc-greedy in this case. Thus, we
may assume that each of E′, E′′ has at least three vertices of degree at least two
(E′, E′′ may also contain vertices of degree one). Let E′ = {x1, . . . , xt, x, u} and
E′′ = {y1, . . . , ys, y, w}.

Suppose, contrary to our claim, that HR is not sc-greedy. The idea of the
remaining part of the proof is as follows. First, we will prove that every choice
function f for HR with the size at most |V (HR)| + |E(HR)| − 1 has special
properties: if restricted to V (HP,R), where HP,R = H− (V (P) ∪ V (R)), then it
has the size equal to |V (HP,R)|+ |E(HP,R)| (i.e., size(f |V (HP,R)) = |V (HP,R)|+
|E(HP,R)|) and it has the properties that we will denote by (1) and (2). Next,
we will construct the choice function g for H′ (for vertices of HP,R we will assign
the values of f , where f is any choice function for HR with the size at most
|V (HR)|+ |E(HR)|−1). Since the size of g will be equal to |V (H′)|+ |E(H′)|−1,
this will contradict the sc-greediness ofH′. Let f be a choice function forHR such
that size(f) = χsc(HR) ≤ |V (HR)| + |E(HR)| − 1. Since H − (Int(P) ∪ Int(R))
is sc-greedy as an induced subhypergraph of H′, Lemma 12 implies that f(v) =
degHR(v) for v ∈ V (P). Furthermore, by Claim 2, for each v ∈ E′ ∪E′′, HR − v
is sc-greedy and hence by Lemma 2, f(v) = 1 when degH(v) = 1 (in particular
f(x) = 1 and f(y) = 1). Recall that HP,R = H − (V (P) ∪ V (R)). Since H′ is
sc-greedy, HP,R is also sc-greedy. Considering f |V (HP,R), our remarks about list
sizes of the vertices of P imply

size(f |V (HP,R)) ≤ size(f)−
∑

v∈V (P)

f(v)− 2

≤ |V (HR)|+ |E(HR)| − 1−
∑

v∈V (P)

f(v)− 2

= |V (HR)|+ |E(HR)| − 3−
∑

v∈V (P)

degH(v)

= |V (HR)|+ |E(HR)| − 3− (|V (P)|+ |E(P)|+ 1)

= |V (HR)| − |V (P)| − 2 + |E(HR)| − |E(P)| − 2

= |V (HP,R)|+ |E(HP,R)|.

Since HP,R is sc-greedy and f |V (HP,R) is a choice function for HP,R, we have
size(f |V (HP,R)) ≥ |V (HP,R)| + |E(HP,R)|. Thus size(f |V (HP,R)) = |V (HP,R)| +
|E(HP,R)|.

Now, suppose that there exists an f |V (HP,R)-assignment LHP,R such that
(c1, . . . , ct, c

′
1, . . . c

′
s) is (LHP,R , x1, . . . , xt, y1, . . . , ys)-extendable only if c1 = · · · =

ct = a and c′1 = · · · = c′s = c (it may happen that a = c), where a ∈
LHP,R(x1) ∩ · · · ∩LHP,R(xt) and c ∈ LHP,R(y1) ∩ · · · ∩LHP,R(ys). Let b 6= a and
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d 6= c, by Lemma 10 there exists an f |V (P)-assignment LP such that LP(u) =
{a, b}, LP(w) = {c, d} and the pair (b, d) is not (LP , u, w)-extendable for P. The
f -assignment LHR for HR we define in the following way:

• LHR(v) = LHP,R(v) for v ∈ V (HP,R),

• LHR(v) = LP(v) for v ∈ V (P),

• LHR(x) = {a} and LHR(y) = {c}.

Since in every proper LHR-colouring of the vertices of V (HP,R) the vertices
in E1 \ {u} have to receive colour a and the vertices in E2 \ {w} have to receive
colour c, we have to choose colour b for u and d for w. However, the pair (b, d) is
not (LP , u, w)-extendable for P. Thus for every f |V (HP,R)-assignment LHP,R for
HP,R we have the following properties. Either

(1) there is a (t+s)-tuple of colours (c1, . . . , ct, c
′
1, . . . c

′
s) that is (LHP,R , x1, . . . , xt,

y1, . . . , ys)-extendable and (c1, . . . , ct) or (c′1, . . . , c
′
s) contains at least two

distinct colours—say this is (c1, . . . , ct), or

(2) all (t + s)-tuples (c1, . . . , ct, c
′
1, . . . c

′
s) that are (LHP,R , x1, . . . , xt, y1, . . . , ys)-

extendable satisfy c1 = c2 = · · · = ct and c′1 = c′2 = · · · = c′s, but there are
at least two (t + s)-tuples of colours that are (LHP,R , x1, . . . , xt, y1, . . . , ys)-
extendable, i.e.,

(a) (a, . . . , a, c, . . . , c) and (a, . . . , a, d, . . . , d), or

(b) (a, . . . , a, c, . . . , c) and (b, . . . , b, d, . . . , d)

are (LHP,R , x1, . . . , xt, y1, . . . , ys)-extendable.

Note that we can omit the cases (a, . . . , a, c, . . . , c) and (b, . . . , b, c, . . . , c) because
of the symmetry in (2a).

Now, we construct a function g on V (H′) and next we show that g is a choice
function for H′. Let g be defined as follows:

• g(v) = f(v) for v ∈ V (HP,R),

• g(u) = g(w) = 1,

• g(v) = degH(v) for v ∈ V (R).

Recall that f is an arbitrary choice function for HR with the size less than
or equal to χsc(HR) ≤ |V (HR)|+ |E(HR)| − 1. Observe that size(g) = |V (H′)|+
|E(H′)| − 1. Now, we claim that g is really a choice function for H′. For
this purpose, let LH′ be any g-assignment for H′. Clearly, LH′ |HP,R is the
f |V (HP,R)-assignment, so it has property (1) or (2). If (1) holds, then to make
E′′ not monochromatic at most one colour in LH′(y) is forbidden. However,
since (c1, . . . , ct) contains at least two different colours, x can be coloured with



1234 P. Borowiecki, E. Drgas-Burchardt and E. Sidorowicz

any colour from its list and E′ will not be monochromatic. Thus at most two
pairs of colours in LH′(x) × LH′(y) are forbidden in any proper LH′-colouring
of HP,R + {E′, E′′}. Recall that by our assumption there is at least one edge
in R that has more than two vertices. Consequently, by Corollary 4, at least
three pairs of colours in LH′(x) × LH′(y) are (LH′ |V (R), x, y)-extendable for R
and hence we have at least one available pair of colours for vertices (x, y) to
extend the proper LH′-colouring of HP,R + {E′, E′′} to a proper LH′-colouring
of H′. It remains to consider f |V (HP,R)-assignment with property (2). Similarly
as above, we can see that at most two pairs of colours in LH′(x) × LH′(y) are
forbidden in any proper LH′-colouring of HP,R + {E′, E′′}. Since by Corollary 4
at least three pairs of colours in LH′(x)× LH′(y) are (LH′ |V (R), x, y)-extendable
for R, there is at least one pair of colours for the pair (x, y) that can be used to
extend the proper LH′-colouring of HP,R+{E′, E′′} to a proper LH′-colouring of
H′. Thus, we have proved that there is a choice function for H′ with the size at
most |V (HR)|+ |E(HR)|−1, which contradicts the sc-greediness of H′. It follows
that HR must be sc-greedy.

Finally, Claims 1, 3 and Lemma 12 yield the sc-greediness of H, as explained
after Claim 2.

We have just proved that if an sc-greedy hypergraph contains appropriate
almost generated hyperpath of sufficient length, then it is possible to add a handle
of length at least 3 such that the resulting hypergraph is sc-greedy. In the next
theorem we consider a variant in which the existence of an almost generated
hyperpath is not required. Instead, we require the end-vertices of a handle to be
adjacent.

3.2.2. Variant 2 — proof of Theorem 5

Theorem 5. If H′ is an sc-greedy hypergraph and u,w are its adjacent vertices
of degree one, then hypergraph H obtained by adding to H′ a (u,w)-handle of
length at least 2 is sc-greedy.

Proof. Suppose, for a contradiction, that H is not sc-greedy. Let P be an
(u,w)-handle and let f be a choice function for H such that size(f) = χsc(H) <
|V (H)|+ |E(H)|. It is not hard to see that H−u and H−w are sc-greedy. Hence,
by Corollary 2 it holds f(u) ≤ 2 and f(w) ≤ 2. If f(u) = 1 and f(w) = 1, then H
is not f -choosable, since f |V (P) is not a choice function for P. Thus f(u) = 2 or
f(w) = 2. Furthermore, for every E ∈ E(P), the hypergraph H−E is sc-greedy.
Hence, by Lemma 8 for every internal vertex v of P it holds degH(v) = f(v).
Now, assume that f(u) = 2 and f(w) = 1. Consider the size function g for H′
such that g(v) = f(v) for v ∈ V (H′) \ {u} and g(u) = f(u)− 1. Observe that
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size(g) = size(f |V (H′))− 1 = size(f)− 1−
∑

v∈V (P)\{u,w}

deg(v)

< |V (H)|+ |E(H)| − 1−
∑

v∈V (P)\{u,w}

deg(v)

= |V (H)|+ |E(H)| − 1− (|V (P)| − 2 + |E(P)| − 1)

= |V (H′)|+ |E(H′)|.

Since H′ is sc-greedy, H′ is not g-choosable. So there is a g-assignment LH′ such
that H′ is not properly LH′-colourable. Let LH′(u) = {a} and LH′(w) = {b}.
Clearly, the pair (a, b) is not (LH′ , u, w)-extendable. The vertices u and w are
contained in the common edge and both have degree one in H′. This fact implies
that if a 6= b, then we may assume that also (a, a) is not (LH′ , u, w)-extendable.
Let c 6= a. By Lemma 11 there is an f |V (P)-assignment LP such that (a, c) is
not (LP , u, w)-extendable for P. We define an f -assignment LH in the following
way:

• LH(v) = LH′(v) for v ∈ V (H′) \ {u},
• LH(u) = {a, c},
• LH(v) = LP(v) for v ∈ V (P) \ {u,w}.

Since (a, a) is not (LH′ , u, w)-extendable for H′ and (a, c) is not (LP , u, w)-
extendable for P, the hypergraph H is not properly LH-colourable. Thus, we
may assume that f(u) = 2 and f(w) = 2 and hence f(v) = degH(v) for ev-
ery v ∈ V (P). Clearly

∑
v∈V (P ) degH(v) = |V (P)| + |E(V (P))|. Consequently,

size(f |V (P)) = |V (P)|+ |E(V (P))|. Thus, by Lemma 6 the hypergraph H is not
f -choosable and hence there is no choice function for H with the size less than
|V (H)|+ E(H)|. So H is sc-greedy.

4. Applications

In this section we focus mainly on giving examples of applications of our new
theorems, but we will also indicate new area of applications of sum-list colouring
and choosability in theoretical and practical variants of optimisation problems in
the field of resource allocation and chromatic scheduling. We believe that proper
as well as generalized variants of sum-list colouring will be interesting and worth
investigating not only in the above fields but also across the entire range of other
applications.

4.1. New bounds

As we already know every sc-greedy hypergraph achieves effectively computable
bound (1) and hence one of the approaches to determine a lower bound on the
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sum-choice-number of a given hypergraph H is to find its sc-greedy subhyper-
graph with large sum of the order and size. We will also use this approach to
bound the sum-choice-number of graphs in proper and generalized variants of
list-colouring.

Given a graph G and an ≤-hereditary class R (i.e., a class closed with respect
to taking induced subgraphs) we consider the hypergraphH(G,R) with the vertex
set V (G) and the edge set E(H(G,R)) = {E | E ⊆ V (G) and G[E] ∈ C(R)},
where C(R) is a set of minimal forbidden graphs characterizing the class R. We
use H(G,R) in conjunction with R-colouring of the graph G which is a partition
of V (G) such that each set of the partition induces in G a subgraph belonging
to R. Naturally, an assignment φ of colours to the vertices of G is an R-colouring
of G if and only if φ is a proper colouring of H(G,R). This clearly holds also
for sum-list R-colouring, the colouring variant introduced in [9] and investigated,
e.g. in [8, 16]. The R-sum-choice-number χRsc(G) of a graph G is simply the
minimum size(f) over all f -assignments L for which G admits an R-colouring
with the colour of each vertex v belonging to L(v).

Property 5. For every ≤-hereditary class R and every graph G it holds

(2) χsc(G) ≥ χRsc(G) = χsc(H(G,R)) ≥ χsc(H′),

where H′ is an arbitrary subhypergraph of H(G,R).

The main advantage of the operations defined in Theorems 4 and 5 over those
in Theorems 1, 2 and 3 is that they can be used recursively. Despite specific cases,
our new theorems allow recursive construction of connected subhypergraphs of
H(G,R) with the size larger than before; thus overcoming the main weakness of
taking unions which is the small number of ‘common’ vertices.

In the example that follows we consider R-sum choosability of grids and grids
with holes, where by the grid Gn,m we mean the Cartesian product Pn�Pm of the
paths Pn and Pm while grid with holes is an arbitrary induced subgraph of Gm,n.
The example is intended to present selected cases that reveal differences between
operations and show when Theorems 4 and 5 can be used to obtain improved
bounds compared to those in [8, 11].

Example 1. LetR1,R2 be the classes of P3-free and subcubic graphs (the graphs
G for which ∆(G) ≤ 3), respectively (recall that R1-colouring is also known as
P3-free colouring or subcolouring). Also note that the set of minimum forbidden
graphs defining R2 consists only of the graphs of order 5, each of which contains
a vertex of degree 4 and hence, on grids the problem of R2-colouring can be
seen as K1,4-free colouring. Let us briefly analyze the applications of individual
operations to establishing bounds on grids G1 = G6,22, G2 = G11,11 and the
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

(a)

(b)

Figure 4. Grid G1 and appropriate subhypergraphs for R1: (a) a hypertree, (b) a union
of hypergraphs obtained by the recursive application of Theorem 4 (selected connectors
and handles are marked grey).

grid with holes G3 that is an induced subgraph of G11,11 (see Figures 4 and 5,
respectively).

First, we consider the class R1. A hypertree H′ presented in Figure 4(a) is
sc-greedy by Corollary 1. From the definition of sc-greediness and formula (2)
it follows that χsc(G1) ≥ χR1

sc (G1) ≥ χsc(H′) = 132 + 65 = 197. However, using
Theorem 4 it is possible to obtain an improved bound χsc(G1) ≥ χR1

sc (G1) ≥
χsc(H′′) = 132+70 = 202, where the construction of each of the two components
ofH′′ starts at a hypercycle of length 12 with handle of length 5, and then consists
in adding subsequent handles; see Figure 4(b).

Now, consider the class R2. Applying the union operation and Theorem
4 we construct a subhypergraph consisting of a hypercycle of length 12 with
handle of length 7 and two disjoint hyperpaths of length 2; see Figure 5(a). It
is worth mentioning that for R2 the operation given in Theorem 4 seems to be
more appropriate in the case of grids with holes. On the other hand, however, the
pattern of holes can vary considerably, which allows the construction of grids with
holes for which none of the above-mentioned operations gives the result better
than the operation given in Theorem 5. Namely, several adjacent connectors can
be used to add subsequent handles of length 3 to the hypercycle of length 8; see
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(a) (b)

Figure 5. Grids G2 and G3 with appropriate subhypergraphs forR2: (a) a union of hyper-
paths and a hypercycle with handle, (b) the result of recursive application of Theorem 5
(connectors and handles are marked grey).

Figure 5(b). This results in sc-greedy hypergraph H′′ for which the following
bound holds χsc(G3) ≥ χR2

sc (G3) ≥ χsc(H′′) = 116 + 20 = 136.

The above example is just the tip of the iceberg, intended to demonstrate
basic relationships and motivate further investigation.

4.2. New areas of applications

The whole range of problems related to the classical list colouring and choosabilty,
e.g. the variant with the minimum sum criterion or generalization to R-colouring
have interesting applications in system modeling and optimization.

Restricting the colour choice by setting the list at each vertex is a natural
mechanism desired in many chromatic optimization models, e.g. in chromatic
scheduling such restriction is often termed an availability constraint and relates
to the resources such as time slots, machines (processors), storage cells or com-
munication channels, usually represented as colours (see, e.g. [17]). Appropriate
resources (colours) are assigned to jobs represented by the vertices of the so called
resource conflict graph thus resolving the resource sharing problem under mutual
exclusion constraint. Clearly, the list L(v) restricts the resources available to
vertex v, but on the other hand the same list can be viewed as job’s preference
specifying the resources that job prefers because of costs, quality or security rea-
sons. This complements well with the criterion of minimizing the sum of the list
lengths that is closer to the classical criteria representing the viewpoint of the
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system owner more than that of individual jobs or system users. The system
owner policy is therefore a kind of a trade-off between short lists (more profit)
and having to guarantee resource choosability.

All of the above-mentioned aspects become apparent in the context of the
problem of partitioning (R-colouring) for scheduling with resource conflicts (see
[3]), where the system is faced with a sequence of jobs competing for unsharable
resources. As the result of partitioning one gets distinct subsets of jobs that
form separate instances of the resource-constrained scheduling problem—in fact,
each instance is assigned to a distinct subsystem that holds its own replica of the
resources. The objective is to generate a partition into the smallest number of
such instances or equivalently, to minimize the number of subsystems (resource
replicas) such that the response time of each job in each instance (subsystem) is
bounded by a given constant. In [3] each job is allowed to have its own response
time requirement, and the above-mentioned partitions guarantee meeting jobs
quality of service criteria. This can be further extended by allowing each job
to have its own list of preferred subsystems (preferred colours) with their choice
guaranteed by appropriate f -assignment. Though originally stated as an online
problem [3], it seems equally interesting when partitioning as well as scheduling
are offline or dynamic (see [2, 4, 5]). At this point we mention that due to the
generality of the problem statement the scheduling part can be seamlessly re-
placed by other optimization problems. For a detailed description of the above
model and applications to communication channel assignment and scheduling
multiprocessor jobs on dedicated processors the reader is referred to [3].

5. Open Problem

As we already know, adding a handle of length at least two is a hypergraph oper-
ation preserving hypergraph linearity and 2-connectivity, the properties that play
an important role in the analysis of sc-greediness. In this paper we introduced
new variants of adding handles and proved that the class of sc-greedy hyper-
graphs is closed with respect to these operations. Despite the development of
new operations, the main question originating in [10] remains unanswered.

Problem 1. Under which conditions an sc-greedy hypergraph can be obtained by
adding a handle to an sc-greedy hypergraph?
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