DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

A. Cabrera-Martínez

Abel Cabrera-Martínez

Universidad de Córdoba

email: acmartinez@uco.es

0000-0003-2806-4842

M. Dettlaff

Magda Dettlaff

University of Gdańsk

email: magda.dettlaff@ug.edu.pl

0000-0002-7296-1893

M. Lemańska

Magdalena Lemańska

Gdansk University of Technology

email: magdalena.lemanska@pg.edu.pl

J.A. Rodríguez-Velázquez

Juan Alberto Rodríguez-Velázquez

Universitat Rovira i Virgili

email: juanalberto.rodriguez@urv.cat

0000-0002-9082-7647

Title:

Restrained differential of a graph

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-06-06 , Revised: 2023-11-16 , Accepted: 2023-11-21 , Available online: 2023-12-08 , https://doi.org/10.7151/dmgt.2532

Abstract:

Given a graph $G=(V(G), E(G))$ and a vertex $v\in V(G)$, the {open neighbourhood} of $v$ is defined to be $N(v)=\{u\in V(G): uv\in E(G)\}$. The {external neighbourhood} of a set $S\subseteq V(G)$ is defined as $S_e=\left(\bigcup_{v\in S}N(v)\right)\setminus S$, while the restrained external neighbourhood of $S$ is defined as $S_r=\{v\in S_e : N(v)\cap S_e \neq \emptyset\}$. The restrained differential of a graph $G$ is defined as $\partial_r(G)=\max \{|S_r|-|S|: S\subseteq V(G)\}.$ In this paper, we introduce the study of the restrained differential of a graph. We show that this novel parameter is perfectly integrated into the theory of domination in graphs. We prove a Gallai-type theorem which shows that the theory of restrained differentials can be applied to develop the theory of restrained Roman domination, and we also show that the problem of finding the restrained differential of a graph is NP-hard. The relationships between the restrained differential of a graph and other types of differentials are also studied. Finally, we obtain several bounds on the restrained differential of a graph and we discuss the tightness of these bounds.

Keywords:

differentials in graphs, restrained differential, restrained Roman domination

References:

  1. H. Abdollahzadeh Ahangar and S.R. Mirmehdipour, Bounds on the restrained Roman domination number of a graph, Commun. Comb. Optim. 1 (2016) 75–82.
    https://doi.org/10.22049/cco.2016.13556
  2. S. Bermudo, On the differential and Roman domination number of a graph with minimum degree two, Discrete Appl. Math. 232 (2017) 64–72.
    https://doi.org/10.1016/j.dam.2017.08.005
  3. S. Bermudo, H. Fernau and J.M. Sigarreta, The differential and the Roman domination number of a graph, Appl. Anal. Discrete Math. 8 (2014) 155–171.
    https://doi.org/10.2298/AADM140210003B
  4. S. Bermudo, J.M. Sigarreta and J.M. Rodríguez, On the differential in graphs, Util. Math. 97 (2015) 257–270.
  5. A. Cabrera Martínez and J.A. Rodríguez-Velázquez, On the perfect differential of a graph, Quaest. Math. 45 (2022) 327–345.
    https://doi.org/10.2989/16073606.2020.1858992
  6. A. Cabrera Martínez and J.A. Rodríguez-Velázquez, From the strong differential to Italian domination in graphs, Mediterr. J. Math. 18 (2021) 228.
    https://doi.org/10.1007s00009-021-01866-7
  7. A. Cabrera Martínez, M.L. Puertas and J.A. Rodríguez-Velázquez, On the $2$-packing differential of a graph, Results Math. 76 (2021) 157.
    https://doi.org/10.1007/s00025-021-01473-8
  8. E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22.
    https://doi.org/10.1016/j.disc.2003.06.004
  9. G.S. Domke, J.H. Hattingh, S.T. Hedetniemi R.C. Laskar and L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61–69.
    https://doi.org/10.1016/S0012-365X(99)00016-3
  10. W. Goddard and M.A. Henning, Generalised domination and independence in graphs, Congr. Numer. 123 (1997) 161–171.
  11. N. Jafari Rad and M. Krzywkowski, On the restrained Roman domination in graphs (2004), manuscript.
  12. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
    https://doi.org/10.1201/9781482246582
  13. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
  14. J.L. Lewis, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, Differentials in graphs, Util. Math. 69 (2006) 43–54.
  15. P.R.L. Pushpam and S. Padmapriea, Restrained Roman domination in graphs, Trans. Comb. 4(1) (2015) 1–17.
    https://doi.org/10.22108/toc.2015.4395
  16. P.R.L. Pushpam and D. Yokesh, Differentials in certain classes of graphs, Tamkang J. Math. 41(2) (2010) 129–138.
    https://doi.org/10.5556/j.tkjm.41.2010.664
  17. F. Siahpour, H. Abdollahzadeh Ahangar and S.M. Sheikholeslami, Some progress on the restrained Roman domination, Bull. Malays. Math. Sci. Soc. 44 (2021) 733–751.
    https://doi.org/10.1007/s40840-020-00965-0

Close