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Abstract

Given a graph G = (V (G), E(G)) and a vertex v ∈ V (G), the open
neighbourhood of v is defined to be N(v) = {u ∈ V (G) : uv ∈ E(G)}. The
external neighbourhood of a set S ⊆ V (G) is defined as Se =

(⋃
v∈S N(v)

)
\

S, while the restrained external neighbourhood of S is defined as Sr = {v ∈
Se : N(v) ∩ Se 6= ∅}. The restrained differential of a graph G is defined as
∂r(G) = max{|Sr| − |S| : S ⊆ V (G)}. In this paper, we introduce the study
of the restrained differential of a graph. We show that this novel parameter
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is perfectly integrated into the theory of domination in graphs. We prove a
Gallai-type theorem which shows that the theory of restrained differentials
can be applied to develop the theory of restrained Roman domination, and
we also show that the problem of finding the restrained differential of a graph
is NP-hard. The relationships between the restrained differential of a graph
and other types of differentials are also studied. Finally, we obtain several
bounds on the restrained differential of a graph and we discuss the tightness
of these bounds.

Keywords: differentials in graphs, restrained differential, restrained Roman
domination.
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1. Introduction

Given a graphG = (V (G), E(G)) and a vertex v ∈ V (G), the open neighbourhood
of v is defined to be N(v) = {u ∈ V (G) : uv ∈ E(G)}. The open neighbourhood
of a set S ⊆ V (G) is defined as N(S) =

⋃
v∈S N(v), while the external neigh-

bourhood of S, or boundary of S, is defined as Se = N(S)\S. The differential of
a set S ⊆ V (G) is defined as ∂(S) = |Se| − |S|, while the differential of a graph
G is defined to be

∂(G) = max{∂(S) : S ⊆ V (G)}.

As described in [14], the definition of ∂(G) was given by Hedetniemi about
25 years ago in an unpublished paper, and was also considered by Goddard and
Henning [10]. After that, the differential of a graph has been studied by several
authors, including [2–4, 16]. Currently, the study of differentials in graphs and
their variants is of great interest because it has been observed that the study
of different types of domination can be approached through a variant of the dif-
ferential which is related to them. Specifically, we are referring to domination
parameters that are necessarily defined through the use of functions, such as
Roman domination, perfect Roman domination, Italian domination and unique
response Roman domination. In each case, the main result linking the domina-
tion parameter to the corresponding differential is a Gallai-type theorem, which
allows us to study these domination parameters without the use of functions. For
instance, the differential ∂ is related to the Roman domination number γR [3], the
perfect differential ∂p is related to the perfect Roman domination number γpR [5],
the strong differential ∂s is related to the Italian domination number γI [6], while
the 2-packing differential ∂2ρ is related to the unique response Roman domination
number µR [7]. We will omit here the definition and properties of most of the
above-mentioned differentials, referring the reader to the corresponding papers
for details. Next we introduce the study of the restrained differential.
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Given a set S ⊆ V (G) we define the restrained external neighbourhood of S
as

Sr = {v ∈ Se : N(v) ∩ Se 6= ∅}.

The restrained differential of a set S ⊆ V (G) is defined as

∂r(S) = |Sr| − |S|.

In this paper we study the restrained differential of a graph G, which is
defined as

∂r(G) = max{∂r(S) : S ⊆ V (G)}.

Two examples are shown in Figure 1.

a b u v

Figure 1. For the left hand side graph we have ∂(G) = ∂({a, b}) = 10 > 7 = ∂r({a}) =
∂r(G), while for the right hand side graph we have ∂(G) = ∂({u, v}) = ∂r({u, v}) =
∂r(G) = 10.

From now on, for simplicity we say that a set S ⊆ V (G) is a ∂r(G)-set if
∂r(S) = ∂r(G).

We will show that the restrained differential is perfectly integrated into the
theory of domination. The paper is organised as follows. In Section 2 we prove
a Gallai-type theorem which shows that the theory of restrained differentials can
be applied to develop the theory of restrained Roman domination and we also
show that the problem of finding the restrained differential of a graph is NP-hard.
Section 3 is devoted to the relationships between restrained differential and other
types of differentials of graphs. In Sections 4 and 5 we obtain several bounds on
the restrained differential of a graph and we discuss the tightness of these bounds.
Specifically, in Section 4 we obtain results for arbitrary graphs while Section 5 is
devoted to trees.

2. A Gallai-Type Theorem

Let f : V (G) −→ {0, 1, 2} be a function on a graph G and let Vi = {x ∈ V (G) :
f(x) = i} for i ∈ {0, 1, 2}. Since f is defined from the sets V0, V1 and V2, and vice
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versa, the function f will be denoted by f(V0, V1, V2). The weight of f(V0, V1, V2)
is defined to be

ω(f) =
∑

v∈V (G)

f(v) = |V1|+ 2|V2|.

Cockayne et al. [8] defined a Roman dominating function (RDF) on a graph
G as a function f(V0, V1, V2) such that N(v) ∩ V2 6= ∅ for every vertex v ∈ V0.
The Roman domination number of G, denoted by γR(G), is the minimum weight
among all RDFs on G.

A restrained Roman dominating function (RRDF) on a graph G is a RDF
f(V0, V1, V2) such that the subgraph of G induced by V0 has no isolated ver-
tex. The restrained Roman domination number of G, denoted by γrR(G), is the
minimum weight among all RRDFs on G.

A Gallai-type theorem has the form a(G) + b(G) = n, where n denotes the
order of G, while a(G) and b(G) are other parameters defined on G. In [2, 5–7]
we can find Gallai-type results for a ∈ {∂, ∂p, ∂s, ∂2ρ} and b ∈ {γR, γpR, γI , µR},
respectively. Here we present the similar result for a = ∂r and b = γrR.

Theorem 1 (Gallai-type theorem). For any graph G,

γrR(G) + ∂r(G) = n.

Proof. Let D be a ∂r(G)-set. Notice that the function g(W0,W1,W2), defined
from W2 = D and W0 = Dr, is a RRDF on G, which implies that

γrR(G) ≤ ω(g) = 2|D|+ |V (G) \ (Dr ∪D)| = 2|D|+ n− |Dr| − |D|

= n− (|Dr| − |D|) = n− ∂r(G).

We proceed to show that γrR(G) ≥ n−∂r(G). Let f(V0, V1, V2) be a γrR(G)-
function. By definition of f and the fact that V0 ⊆ (V2)r, we obtain that

∂r(G) ≥ ∂r(V2) = |(V2)r| − |V2| ≥ |V0| − |V2|

= n− 2|V2| − |V1| = n− γrR(G).

Therefore, the result follows.

According to the result above we can see the theory of restrained differential
in graphs as a new approach to the theory of restrained Roman domination. One
of the advantages of this approach is that it allows us to study the restrained
Roman domination number of a graph without the use of functions.

By Theorem 1 we can also show the relation between the γrR(G)-functions
and the ∂r(G)-sets.
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Proposition 2. If f(V0, V1, V2) is a γrR(G)-function, then V2 is a ∂r(G)-set.
Conversely, for any ∂r(G)-set S, there exists a γrR(G)-function f(V0, V1, V2) such
that V2 = S and V1 = V (G) \ (Sr ∪ S).

Proof. Let f(V0, V1, V2) be a γrR(G)-function. Since V0 = (V2)r,

γrR(G) = 2|V2|+ |V1| = n+ |V2| − |V0|

= n− (|(V2)r| − |V2|) = n− ∂r(V2).

Thus γrR(G)+∂r(V2) = n, and so Theorem 1 leads to ∂r(V2) = ∂r(G), which
implies that V2 is a ∂r(G)-set.

Conversely, let S be a ∂r(G)-set, and define a function g : V (G)→ {0, 1, 2} by
g(v) = 2 whenever v ∈ S and g(v) = 1 for every v ∈ V (G) \ (Sr ∪S). Notice that
g is an RRDF of weight w(g) = n− ∂r(S) = n− ∂r(G) (since S is a ∂r(G)-set).
Thus, from Theorem 1 we conclude that g is a γrR(G)-function. Therefore, the
result follows.

Now we analyse the case of the computational complexity. Given a positive
integer k and a graph G, the problem of deciding if G has a restrained Roman
dominating function f of weight w(f) ≤ k is NP-complete [1]. Hence, the problem
of computing the restrained Roman domination number of a graph is NP-hard.
Therefore, by Theorem 1 we immediately obtain the analogous result for the
restrained differential.

Theorem 3. The problem of computing the restrained differential of a graph is
NP-hard.

3. Relations Between Restrained Differential and Other Types
of Differentials

It is known that for any graph G,

γI(G) ≤ γR(G) ≤ γpR(G) ≤ µR(G),

where γI is the Italian domination number, γR is the Roman domination number,
γpR is the perfect Roman domination number and µR(G) is the unique response
Roman domination number. Hence, the correspondent differentials are related
by the following inequality chain.

Remark 4. For any connected graph G, ∂s(G) ≥ ∂(G) ≥ ∂p(G) ≥ ∂2ρ(G).

Now, by the definitions of ∂(G) and ∂r(G) we derive the following remark.
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Remark 5. For any graph G,

∂(G) ≥ ∂r(G).

In Remark 6 we will show that there are graphs with ∂(G) = ∂r(G), and also
there are graphs where the difference between ∂(G) and ∂r(G) can be arbitrarily
large. Moreover, we will show that ∂r(G) and ∂2ρ(G) are incomparable; the same
for ∂r(G) and ∂p(G). To this end, we consider the following families of graphs.

Let G1 be a family of graphs obtained from two different copies of a complete
graphs K` joined by the edge for ` ≥ 3. A tree Sk,` of order `+ k + 2 containing
exactly two support vertices u, v such that u has degree k + 1 and v has degree
`+1, is called a double-star. Let G2 be a family of double stars S`,` for ` ≥ 2. Let
G3 be a family of generalized lexicographic product graphs P5◦{P`, P1, P`, P1, P`}
for ` ≥ 3. Figure 2 on the left shows a graph belonging to G3 for ` = 4, while the
same figure on the right shows the graph S4,4 ∈ G2.

a b x y

u v

Figure 2. For the left hand side graph we have ∂(G) = ∂({a, b}) = ∂r({a, b}) = ∂r(G) =
10, while for the right hand side graph we have ∂(G) = ∂({x, y}) = 6 and ∂r(G) =
∂r({u, v}) = 0.

Remark 6.
• If G ∈ G1, then ∂s(G) = ∂(G) = ∂r(G) = ∂p(G) = ∂2ρ(G) = 2`− 4.

• If G ∈ G2, then ∂r(G) = 0, ∂s(G) = ∂(G) = ∂p(G) = 2`− 2 and ∂2ρ(G) = `.

• If G ∈ G3, then ∂p(G) = ∂2ρ(G) = 2`+ 1, ∂s(G) = ∂(G) = ∂r(G) = 3`− 2.

These examples show that ∂r(G) and ∂2ρ(G) (∂p(G), respectively) are incom-
parable. If G ∈ G3, then ∂r(G)−∂2ρ(G) = ∂r(G)−∂p(G) = `−3, while if G ∈ G2,
then ∂2ρ(G)− ∂r(G) = ` and ∂p(G)− ∂r(G) = 2`− 2.

The following result shows another family of graphs with ∂r(G) = ∂(G).

Proposition 7. If G is a claw-free cubic graph, then ∂r(G) = ∂(G).

Proof. Let D be a ∂(G)-set such that |Dr| is maximum among all ∂(G)-sets.
We suppose that De \Dr 6= ∅. Let v ∈ De \Dr, u ∈ N(v) ∩D and N(v) \ {u} =
{u1, u2}. As u1, u2 ∈ V (G) \ Dr, we obtain that either {u1, u2} ∩ D 6= ∅ or
u1, u2 ∈ V (G) \ (D ∪Dr). Next, we analyse these two cases.
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Case 1. u1, u2 ∈ V (G) \ (D ∪Dr). In this case, it is easy to see that u1u2 ∈
E(G), because G is claw free. Now, we consider D′ = D ∪ {u1}. Observe that
∂(D′) = |D′e|−|D′| ≥ |De|+1−|D|−1 = ∂(D) = ∂(G). Moreover, Dr∪{u2} ⊆ D′r.
Hence, D′ is a ∂(G)-set with |D′r| > |Dr|, which is a contradiction.

Case 2. {u1, u2} ∩D 6= ∅. In this case, we consider that u1 ∈ D. Recall that
u2 ∈ V (G) \ Dr and that N(x) ∩ D = ∅ for every vertex x ∈ V (G) \ (De ∪ D).
From the previous facts and as G is claw-free, we can assume, without loss of
generality, that uu1 ∈ E(G). Now, if we consider the set D′′ = D \ {u1}, we
deduce that ∂(D′′) = |D′′e | − |D′′| ≥ |De| − |D| + 1 > ∂(D) = ∂(G), which is a
contradiction.

Therefore, from the two cases above we deduce that De = Dr, and as a
consequence,

∂r(G) ≤ ∂(G) = ∂(D) = |De| − |D| = |Dr| − |D| = ∂r(D) ≤ ∂r(G),

which implies that ∂r(G) = ∂(G).

4. General Bounds

In this section we present lower and upper bounds of the restrained differential of
a graph. To begin with, we need to state some notation and terminology. A set
of vertices S is a dominating set if S∪N(S) = V (G); or equivalently, every vertex
in V (G)\S is adjacent to at least one vertex in S. The domination number γ(G)
is the minimum cardinality of a dominating set in G. For detailed information
on the theory of domination in graphs we suggest the books [12,13].

A set S ⊆ V (G) is a restrained dominating set if every vertex not in S is
adjacent to a vertex in S and to a vertex in V (G)\S. The restrained domination
number of G, denoted by γr(G), is the smallest cardinality among all restrained
dominating sets of G [9]. As a consequence of Theorem 1 and the bounds γr(G) ≤
γrR(G) ≤ 2γr(G) given in [15], we deduce the following result.

Proposition 8. For any graph G of order n,

n− 2γr(G) ≤ ∂r(G) ≤ n− γr(G).

Next we discuss the case where the equalities hold.

Proposition 9. For any graph G of order n, the following statements hold.

(i) ∂r(G) = n− γr(G) if and only if γr(G) = n.

(ii) ∂r(G) = n− 2γr(G) if and only if every γr(G)-set is a ∂r(G)-set.
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Proof. If γr(G) = n, then Proposition 8 leads to ∂r(G) = 0 and so ∂r(G) =
n− γr(G).

Conversely, assume ∂r(G) = n − γr(G). Let D be a ∂r(G)-set and let D′ =
V (G) \ (D ∪Dr). Notice that D ∪D′ is a restrained dominating set of G, and so
γr(G) ≤ |D′|+ |D|. Hence,

n− γr(G) = ∂r(G) = |Dr| − |D| = n− |D′| − 2|D|,

which implies that |D′| + 2|D| = γr(G) ≤ |D′| + |D|. Therefore, D = ∅ and
γr(G) = |D′| = n, concluding the proof of (i).

Now, if ∂r(G) = n− 2γr(G), then for any γr(G)-set S we have n− 2γr(G) =
∂r(G) ≥ ∂r(S) = |Sr| − |S| = n− 2γr(G), and so S is a ∂r(G)-set.

Conversely, if every γr(G)-set F is a ∂r(G)-set, then ∂r(G) = ∂r(F ) = n −
2|F | = n− 2γr(G), which concludes the proof of (ii).

Corollary 10. If G is a graph with at least two adjacent vertices of degree at
least two, then ∂r(G) ≤ n− γr(G)− 1.

As an example of graph G with ∂r(G) = n−γr(G)−1 we can take a graph of
order n ≥ 3 having at least one vertex of degree n−1 and exactly k ∈ {0, . . . , n−3}
vertices of degree one. In such a case, γr(G) = k + 1 and ∂r(G) = n− k − 2.

Using Theorem 1 and some results obtained in [15, 17] for the restrained
Roman domination number we immediately obtain the following.

Proposition 11. For any connected graph G of order n ≥ 2,

(a) 0 ≤ ∂r(G) ≤ n− 2.

(b) ∂r(G) = n− 2 if and only if n = 2 or G has maximum degree ∆ = n− 1 and
minimum degree δ ≥ 2.

(c) ∂r(G) = 0 if and only if G is a tree of diameter at most 5 or G ∈ {C4, C5, G1,
G2}, where G1, G2 are the graphs shown in Figure 3.

G1 G2

Figure 3. Graphs G1 and G2.
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Proof. To prove that ∂r(G) ≥ 0, it is enough to show that ∂r(∅) = 0. Obviously,
∅r = ∅, what implies ∂r(∅) = |∅r| − |∅| = 0. Concerning the upper bound, since
γrR(G) ≥ 2, Theorem 1 leads to ∂r(G) ≤ n− 2.

It was shown in [17] that γrR = 2 if and only if n = 2 or ∆ = n−1 and δ ≥ 2.
Hence, by Theorem 1 we conclude that (b) holds. It is known from [15] that
γrR(G) = n if and only if G is a tree with diam(G) ≤ 5 or G ∈ {C4, C5, G1, G2},
where G1, G2 are graphs from the Figure 3, so again by Theorem 1 we conclude
that (c) holds.

Remark 12. Characterization of trees and graphs G with small girth 3, 4 or
5 with ∂r(G) = 1 can be obtained from Propositions 15-20 from [17] and by
Theorem 1. Moreover, characterization of graphs G with ∂r(G) = n − 3 is a
consequence of Proposition 5 from [17] and by Theorem 1.

Lemma 13. Let G be a graph of minimum degree δ ≥ 2. If D is a ∂r(G)-set of
maximum cardinality among all ∂r(G)-sets, then either D′ = V (G)\(D∪Dr) = ∅
or the subgraph induced by D′ is empty.

Proof. Suppose, to the contrary, that there exist two adjacent vertices u, v ∈
D′. If N(u) ∩ Dr 6= ∅, then ∂r(D ∪ {v}) ≥ ∂r(D), which is a contradiction.
Hence, Dr ∩ (N(u) ∪ N(v)) = ∅. Now, if N(u) ∩ D 6= ∅, then there exists
v′ ∈ N(v) ∩ D′ \ {u} and so ∂r(D ∪ {v′}) ≥ ∂r(D), which is a contradiction.
Hence, (D ∪ Dr) ∩ (N(u) ∪ N(v)) = ∅. Obviously, N(u) ∩ N(v) ∩ D′ = ∅,
which implies that there exist two different vertices u1 ∈ N(u) ∩ D′ \ {v} and
v1 ∈ N(v) ∩D′ \ {u}, and so ∂r(D ∪ {u1, v1}) ≥ ∂r(D), which is a contradiction
again. Therefore, the result follows.

Lemma 14. For any graph G and any ∂r(G)-set D,

|D| ≤ γr(G).

Proof. Suppose, to the contrary, that D is a ∂r(G)-set with |D| > γr(G). In
such a case, |Dr| ≤ n− |D| < n− γr(G), and so

∂r(G) = |Dr| − |D| < n− γr(G)− |D| < n− 2γr(G),

which contradicts Proposition 8. Therefore, |D| ≤ γr(G), as required.

Lemma 15. For any graph G and any subgraph H of G,

∂r(G) ≥ ∂r(H).

Proof. Given a set D ⊆ V (H), we use the notation Dr(H) = Dr, just to em-
phasize that Dr(H) is defined on H, while Dr(G) is the analogous one, but
defined on G. Thus, Dr(H) ⊆ Dr(G), and so if D is a ∂r(H)-set, then ∂r(H) =
|Dr(H)| − |D| ≤ |Dr(G)| − |D| ≤ ∂r(G).
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Recall that the largest cardinality of a set of vertices of G, no two of which
are adjacent, is called the independence number of G and it is denoted by α(G). A
set S ⊆ V (G) is a 2-packing if the distance between any two vertices belonging to
S is at least three. The 2-packing number of G, denoted by ρ(G), is the maximum
cardinality among all a 2-packings of G. The following result improves the upper
bound given in Proposition 8 for the graphs with minimum degree at least two.

Proposition 16. For any graph G of order n and minimum degree δ ≥ 2,

∂r(G) ≤ n− γr(G)−max

{
γr(G)− α(G),

⌈
γr(G) + n(δ − 1)

δ(∆ + 1)

⌉}
.

Proof. Let D be a ∂r(G)-set of maximum cardinality among all ∂r(G)-sets. By
Lemma 13, either D′ = V (G) \ (D ∪Dr) = ∅ or the subgraph induced by D′ is
empty.

Now, since D ∪D′ is a restrained dominating set of G and |D′| ≤ α(G), we
deduce the following.

∂r(G) = |Dr| − |D| = n− 2(|D|+ |D′|) + |D′| ≤ n− 2γr(G) + α(G).

Finally, we proceed to prove the bound ∂r(G) ≤ n − γr(G) − γr(G)+n(δ−1)
δ(∆+1) . Let

D′′ = {x ∈ D′ : N(x) ⊆ Dr}. We now claim that if D′′ 6= ∅, then D′′ is
a 2-packing of G. Suppose that there exist two vertices v, v′ ∈ D′′ such that
u ∈ N(v) ∩N(v′). Since u ∈ Dr and δ ≥ 2, it follows that ∂r(D ∪ {u}) ≥ ∂r(D),
which is a contradiction. Therefore, if D′′ 6= ∅, then D′′ is a 2-packing of G, as
required. This implies that |D′′| ≤ ρ(G), and as a consequence,

|D′′| ≤ |Dr|
δ

and |D′ \D′′| ≤ ∆|D| − |Dr|.

Hence,

|D|+ |D′| ≤ (∆ + 1)|D| − (δ − 1)|Dr|
δ

= (∆ + 1)|D| − (δ − 1)(n− (|D|+ |D′|)
δ

,

which implies that

|D| ≥ |D|+ |D
′|+ n(δ − 1)

δ(∆ + 1)
≥ γr(G) + n(δ − 1)

δ(∆ + 1)
.

Since |D| is an integer,

|D| ≥
⌈
γr(G) + n(δ − 1)

δ(∆ + 1)

⌉
.

Therefore,

∂r(G) = |Dr| − |D| = n− (|D|+ |D′|)− |D| ≤ n− γr(G)−
⌈
γr(G) + n(δ − 1)

δ(∆ + 1)

⌉
,

which completes the proof.
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To see that the bound ∂r(G) ≤ n−γr(G)−
⌈
γr(G)+n(δ−1)

δ(∆+1)

⌉
is tight we consider

the graph shown in Figure 4. In this case, ∂r(G) = 4 and γr(G) = 2. We
would like to emphasize that we are not sure about the tightness of the bound
∂r(G) ≤ n− 2γr(G) + α(G).

Figure 4. A graph with ∂r(G) = n− γr(G)−
⌈
γr(G)+n(δ−1)

δ(∆+1)

⌉
.

Proposition 17. If G is a graph of diameter three and minimum degree δ, then

∂r(G) ≥ ρ(G)(δ − 1).

Proof. Let D be a ρ(G)-set. Notice that |D| ≥ 2, as diam(G) = 3. Let u ∈ D
and u′ ∈ N(u). If N(u′) ∩N(v) = ∅ for some v ∈ D \ {u}, then the eccentricity
of u is greater than three, which is a contradiction. Hence, De = Dr, and so

∂r(G) ≥ ∂r(D) = |Dr| − |D| =
∑
u∈D

deg(u)− ρ(G) ≥ ρ(G)(δ − 1).

As the next result shows, the bound above is tight.

Proposition 18. If G is a regular graph of order n and degree δ ≥ 2 with
γ(G) = ρ(G), then

∂r(G) = n− 2ρ(G) = ρ(G)(δ − 1) =
n(δ − 1)

δ + 1
.

Proof. Let S1 be a γ(G)-set and let S2 be a ρ(G)-set. Since |S1| = γ(G) =
ρ(G) = |S2|,

n− |S2| = n− γ(G) = |(S1)e| ≤ δ|S1| = δ|S2|,
which implies that S2 is a γ(G)-set, and therefore a γr(G)-set. Hence,

∂r(S2) = n− 2γ(G) = n− 2ρ(G).

Notice also that ∂r(S2) = ρ(G)(δ − 1), as S2 is a γ(G)-set and a ρ(G)-set.
Now, let S′ be a ∂r(G)-set. If |S′| > ρ(G), then |S′r| ≤ n − |S′| < n − ρ(G),

and so ∂r(G) = ∂r(S
′) < n − ρ(G) − |S′| < n − 2ρ(G) = ∂r(S2), which is a

contradiction. Hence, |S′| ≤ ρ(G) and, as a consequence,

∂r(G) = ∂r(S
′) ≤ |S′|δ − |S′| = |S′|(δ − 1) ≤ ρ(G)(δ − 1) = ∂r(S2) ≤ ∂r(G).

Therefore, ∂r(G) = ∂r(S2) = n− 2ρ(G) = ρ(G)(δ − 1) = n(δ−1)
δ+1 .
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As an example of application of the result above, we consider the 3-cube
graph, where n = 8, δ = 3, ρ(G) = 2 and ∂r(G) = 4.

Proposition 19. If G is a claw-free graph of minimum degree δ ≥ 2, then

∂r(G) ≥ ρ(G)(δ − 2).

Proof. If δ = 2, then the result follows. Hence, we assume that δ ≥ 3. Let D
be a ρ(G)-set. Notice that every vertex v ∈ D has at most one vertex u ∈ N(v)
such that N(u) ∩ (N(v) \ {u}) = ∅, as G is claw-free. From this fact, we deduce
that |Dr| ≥

∑
x∈D(deg(x)− 1) ≥ ρ(G)(δ − 1). Hence,

∂r(G) ≥ ∂r(D) = |Dr| − |D| ≥ ρ(G)(δ − 1)− ρ(G) = ρ(G)(δ − 2),

which completes the proof.

The bound above is tight. For instance, it is achieved for the graphs C4

and C5.

By Proposition 8, n− 2γr(G) ≤ ∂r(G) ≤ n− γr(G) for any nontrivial graph
G of order n. The following result provides some new upper bounds for the
restrained differential of G.

Proposition 20. Let G be a graph of order n ≥ 2 and maximum degree ∆. For
any integer k such that 0 ≤ k ≤ γr(G),

∂r(G) ≤ max

{
n− 2γr(G) + k,

(∆− 1)(n− k − 1)

∆ + 1

}
.

Proof. Let k be an integer such that 0 ≤ k ≤ γr(G) and let D be a ∂r(G)-set.
By definition, V (G) \Dr is a restrained dominating set of G, which implies that
|Dr| ≤ n − γr(G). Now, we first suppose that |V (G) \ (D ∪ Dr)| ≤ k, that is
|D| ≥ n− |Dr| − k. Hence,

∂r(G) = ∂r(D) = |Dr| − |D| ≤ |Dr| − (n− |Dr| − k) ≤ 2(n− γr(G))− n+ k

= n− 2γr(G) + k.

From now on, we assume that |V (G)\ (D∪Dr)| ≥ k+ 1. In addition, notice that
|Dr| ≤ ∆|D| and that 2|D| = n− ∂r(G)− |V (G) \ (D∪Dr)| ≤ n− ∂r(G)− k− 1.
Hence, from the previous inequalities we deduce the following.

∂r(G) = |Dr| − |D| ≤ (∆− 1)|D| ≤ (∆− 1)(n− ∂r(G)− k − 1)

2
.

Hence, (∆+1)∂r(G) ≤ (∆−1)(n−k−1), which implies that ∂r(G) ≤ (∆−1)(n−k−1)
∆+1 .

Therefore, in any case, we have that ∂r(G) ≤ max
{
n−2γr(G)+k, (∆−1)(n−k−1)

∆+1

}
,

which completes the proof.
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By Propositions 8 and 20 we deduce the following result.

Proposition 21. Let G be a graph of order n ≥ 2 and maximum degree ∆. If
γr(G) ≤ n

∆+1 + ∆−1
2(∆+1) , then ∂r(G) = n− 2γr(G).

It is known [4] that ∂r(G) ≤ ∂(G) ≤ n(∆−1)
∆+1 for any graph G of order n. We

next provide an interesting equivalence.

Proposition 22. Given a graph G of order n and maximum degree ∆, the fol-
lowing statements are equivalent.

• ∂r(G) = n(∆−1)
∆+1 .

• γr(G) = n
∆+1 .

Proof. If γr(G) = n
∆+1 , then by Proposition 21 we have ∂r(G) = n− 2γr(G) =

n(∆−1)
∆+1 .

Conversely, assume ∂r(G) = n(∆−1)
∆+1 . For any ∂r(G)-set D,

n ≥ (|Dr| − |D|) + 2|D| = n(∆− 1)

∆ + 1
+ 2|D| = n− 2

(
n

∆ + 1

)
+ 2|D|,

which implies that |D| ≤ n
∆+1 . In addition, by using the fact that |Dr| ≤ ∆|D|,

we obtain that

n(∆− 1)

∆ + 1
= ∂r(G) = |Dr| − |D| ≤ (∆− 1)|D| ≤ n(∆− 1)

∆ + 1
.

Thus, |D| = n
∆+1 and |Dr| = n∆

∆+1 = n − n
∆+1 = n − |D|, which implies that D

is a restrained dominating set of G. Hence, n
∆+1 ≤ γ(G) ≤ γr(G) ≤ |D| = n

∆+1 .
Therefore, γr(G) = n

∆+1 , which completes the proof.

5. Restrained Differential of Trees

It was shown in [1,11] that the restrained Roman domination number of any tree
of diameter at least three, order n with l leaves and s support vertices is bounded
by γrR(T ) ≥ 2n+l−s+4

3 . From this bound and Theorem 1 we deduce the following
result.

Proposition 23. If T is a tree of diameter at least three and order n, with l
leaves and s support vertices, then ∂r(T ) ≤ n−l+s−4

3 .

A description for the trees achieving the equality was given in [11], but this
description was not correct, since they use induction and the equality γrR(T ) =
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(2n+ l− s+ 4)/3 does not hold for the base graphs P5 and P6 used in the proof.
Here we describe the family of extremal trees for which the equality holds. To
this end, we need to introduce some additional notation and terminology. Given
a tree T , let S(T ) = S1(T )∪ S2(T ) be the set of supports of T , where S1(T ) and
S2(T ) are the sets of weak and strong support of T , respectively. Let Ω(T ) be
the set of leaves of T .

We introduce the family R of trees T = Ti which can be obtained in the
following way: Let T1 = P4. If i is a positive integer, then Ti+1 can be obtained
recursively from Ti by one of two operations.

Operation O1. If v ∈ S(Ti), then we add a new vertex x and the edge xv.

Operation O2. If v ∈ V (Ti) is such that d(v,Ω(Ti)) ≡ 0 (mod 3) and NTi(v) ∩
S2(Ti) = ∅, then we add a path P3 = (x, y, z) and the edge xv.

An example of the tree belonging to the family R we can see in Figure 5.

Figure 5. A tree T ∈ R.

If T is a tree, then we define T ∗ as a tree obtained from T by removing all
but one leaves for every strong support vertex of T . Obviously, if S2(T ) = ∅,
then T = T ∗.

Observation 24. If T ∈ R, then

(a) |V (T ∗)| ≡ 1 (mod 3);

(b) dT ∗(u, v) ≡ 0 (mod 3) for any two vertices u, v ∈ Ω(T ∗);

(c) the set {x : dT ∗(x,Ω(T ∗)) ≡ 0 (mod 3)} is a maximum 2-packing of T ∗ and
also a ∂r(T

∗)-set;

(d) |V (T )| − |Ω(T )| = |V (T ∗)| − |Ω(T ∗)| and |S(T )| = |S(T ∗)|.

Lemma 25. If x, y ∈ V (G) are two vertices of degree one which are at distance
two, then ∂r(G) = ∂r(G− x).

Proof. Let x, y, z ∈ V (G) be three vertices of G such that x and y have degree
one and both are neighbours of z.

Let D be a ∂r(G)-set. It is readily seen that |{x, y, z} ∩ D| ≤ 1. Thus, if
{x, y} ∩ D = ∅, then {x, y} ∩ Dr = ∅, and so ∂r(G) = ∂r(D) = ∂r(D \ {x}) ≤
∂r(G − x). Now, if |{x, y} ∩ D| = 1, say y ∈ D, then z ∈ Dr and x 6∈ D ∪ Dr,
which implies that ∂r(G) = ∂r(D) = ∂r(D \ {x}) ≤ ∂r(G− x).



Restrained Differential of a Graph 15

On the other side, let S be a ∂r(G− x)-set. If y ∈ S, then z ∈ Sr, and so in
G we have that x /∈ S∪Sr, which implies that ∂r(G−x) = ∂r(S) = ∂r(S \{x}) ≤
∂r(G). Now, if y 6∈ S, then y /∈ Sr, and in G we have that {x, y} ∩ (S ∪ Sr) = ∅,
which leads to ∂r(G− x) = ∂r(S) = ∂r(S \ {x}) ≤ ∂r(G).

Therefore, ∂r(G) = ∂r(G− x).

Lemma 26. If T ∈ R, then ∂r(T ) = (n− l + s− 4)/3.

Proof. Let T ∈ R. By Lemma 25 and Observation 24(d) it is enough to prove
that ∂r(T

∗) = (n(T ∗)−l(T ∗)+s(T ∗)−4)/3. From Observation 24(b), dT ∗(u, v) =
0 (mod 3) for any u, v ∈ Ω(T ∗). Let D1 = {x ∈ V (T ∗) \ Ω(T ∗) : d(x,Ω(T ∗) = 0
(mod 3)} and D2 = Ω(T ∗). Hence D3 = V (T ∗) \ (D1 ∪ D2) and T ∗[D3] =
(|D1 ∪ D2| − 1)K2. Notice that D1 ∪ D2 is a maximum 2-packing of T ∗, hence
by Observation 24(c), we obtain that ∂r(T

∗) = |D3| − (|D1| + |D2|) = 2(|D1| +
|D2| − 1) − (|D1| + |D2|) = |D1| + |D2| − 2. Hence, n(T ∗) = |D1| + |D2| + |D3|,
l(T ∗) = |D2|, s(T ∗) = |D2|. Therefore, (n(T ∗)− l(T ∗) + s(T ∗)− 4)/3 = (|D1|+
|D2|+2(|D1|+|D2|−1)−|D2|+|D2|−4)/3 = (3|D1|+3|D2|−6)/3 = |D1|+|D2|−2
= ∂r(T

∗) and the result holds.

Lemma 27. If ∂r(T ) = (n− l + s− 4)/3, then T ∈ R.

Proof. If diam(T ) = 3, then T ∈ R; so assume diam(T ) ≥ 4; thus n ≥ 5. We
use an induction on n, the order of a tree. Assume the result holds for any tree
T ′ of order n′ < n with s′ supports and l′ leaves. Let T be a tree such that
∂r(T ) = (n − l + s − 4)/3. Assume first that S2(T ) 6= ∅ and let x ∈ S2(T ) and
let y, z be two leaves adjacent to x. Let D be a ∂r(T )-set. Since D is maximum,
|D∩{y, z}| ≤ 1 and, without loss of generality, let z /∈ D. Consider T ′ = T \ {z};
then obviously D \ {z} is a restrained differential set of T.′ Combining this fact
with n′ = n− 1, l′ = l − 1 and s′ = s we obtain

∂r(T
′) ≥ ∂r(D \ {z}) = ∂r(T ) =

n− l + s− 4

3
=
n′ − l′ + s′ − 4

3
.

By Proposition 23, ∂r(T
′) = (n′ − l′ + s′ − 4)/3. Thus, by induction hypothesis

T ′ ∈ R and it is easy to observe that T can be obtained from T ′ by Operation
O1. Hence T ∈ R. From now we can assume that T has no strong support vertex.

Claim*. If D is a ∂r(T )-set, then Ω(T ) ⊆ D.

Now we proceed to prove the claim. To the contrary suppose that D∗ is
a ∂r(T )-set such that x ∈ Ω(T ) \ D∗. Consider T ′ = T − {x} and notice that
∂r(T

′) ≥ ∂r(D∗) = ∂r(T ), n′ = n− 1, l′ = l and s′ ∈ {s, s− 1}, so s ≥ s′. Thus

∂r(T
′) ≥ ∂r(T ) =

n− l + s− 4

3
≥ n′ + 1− l′ + s′ − 4

3
=
n′ − l′ + s′ − 4

3
+

1

3
,
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a contradiction with Proposition 23. Therefore, the claim follows. �

Let P = (v0, . . . , vk) be a longest path of T ; k ≥ 4. Let D be a ∂r(T )-set;
from Claim*, v0 ∈ D and since S2(T ) = ∅, dT (v1) = 2.

Suppose dT (v2) > 2. First consider the case when a path P2 different from
(v0, v1) is attached to v2. Then, since D is ∂r(T )-set and Ω(T ) ⊆ D, v2 /∈ D
and v3 ∈ D. Thus D \ {v0} is a restrained differential set of T of cardinality
∂r(T ), a contradiction with the claim above. Thus the only path attached to
v2 is (v0, v1) and v2 is a support vertex. Let us denote by x a leaf adjacent to
v2. Notice that v3 /∈ D (otherwise, D \ {v0, x} would be a restrained differential
set of T of cardinality ∂r(T ), a contradiction with Claim*). Moreover, v3 has a
neighbour in D (if not, (D \ {x}) ∪ {v3} would be a restrained differential set of
T of cardinality ∂r(T ), again a contradiction with Claim*). These two fact imply
that (D \ {v0, x})∪ {v1} would be a restrained differential set of T of cardinality
∂r(T ). This final contradiction with Claim* shows that dT (v2) = 2. Since D is
a ∂r(T )-set, v3 ∈ D and using similar arguments like before we can prove that
v3 is neither a support vertex nor a neighbour of a support vertex of T. Thus
dT (v3,Ω(T )) ≡ 0 (mod 3). Now let T ′ = T \ {v0, v1, v2}. Notice that v3 is not a
neighbour of a strong support of T ′ and d′T (v3,Ω(T ′)) ≡ 0 (mod 3). Finally, T
can be obtained from T ′ by Operation O2, what completes the proof.

Corollary 28. For a tree T is ∂r(T ) = (n− l + s− 4)/3 if and only if T ∈ R.

The following result shows that ∂r(T ) ≤ n−α(T )− 1 for any tree T of order
n ≥ 2. Notice that this bound does not hold for arbitrary graphs. For instance, if
we take the join graph G = K1 +C4, then ∂r(G) = 3 > 2 = n−α(G)−1. In order
to prove the result we need to introduce the following terminology. A rooted tree
T is a tree with a distinguished special vertex r, called the root. For each vertex
v 6= r of T , the parent of v is the neighbour of v on the unique r − v path. A
descendant of v is a vertex u 6= v such that the unique r−u path contains v. The
set of descendants of v is denoted by D(v). The maximal subtree at v, denoted
by Tv, is the subtree of T induced by D(v) ∪ {v}. Obviously if v is a leaf, then
Tv = T .

Proposition 29. If T 6∼= K1,k is a tree of order n ≥ 4, then

∂r(T ) ≤ n− α(T )− 2.

Proof. In order to avoid confusion, in this proof the order of a tree T will be
denoted by n(T ). We proceed by induction on the order of T . If n(T ) ∈ {4, 5},
then it is easy to check that ∂r(T ) ≤ n(T ) − α(T ) − 2, as T 6∼= K1,k. These
particular cases establish the base cases.

From now on, we consider that T 6∼= K1,k has order at least six and that
every tree T ∗, different from a star graph, with 5 ≤ n(T ∗) < n(T ) satisfies that
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∂r(T
∗) ≤ n(T ∗)−α(T ∗)−2. It is readily seen that if T has a support vertex which

is adjacent to two leaves x and x′, then the subtree T ′ of T , obtained by removing
the leaf x, satisfies α(T ) = α(T ′)+1. Now, by Lemma 25, ∂r(T ) = ∂r(T

′). Hence,

∂r(T ) = ∂r(T
′) ≤ n(T ′)−α(T ′)−2 = (n(T )−1)−(α(T )−1)−2 = n(T )−α(T )−2.

Therefore, we can assume that every support vertex of T is adjacent to exactly
one leaf.

Now, let z, h ∈ V (T ) be two antipodal vertices, i.e., there exists a diametral
path z − h of T . So, z and h are leaves of T . Also, let s be the parent of h
in the rooted tree Tz. Given a subtree T ′ of T and a set D ⊆ V (T ′), we use
the notation Dr(T

′) = Dr, just to emphasize that Dr(T
′) is defined on T ′, while

Dr(T ) is the analogous one, but defined on T . We next analyse the following
three cases, considering that D is a ∂r(T )-set.

Case 1. |N(s)| ≥ 3. Since h is an antipodal vertex, |N(s)∩Ω(T )| ≥ 2, which
is a contradiction, as we are assuming that every support vertex of T is adjacent
to exactly one leaf. Hence, this case does not occur.

Case 2. N(s) = {h, v} and |N(v)| ≥ 3. Let u be the parent of v in the rooted
tree Tz. Now, and without loss of generality, we assume that |D ∩ {h, s, v, u}| is
maximum. We consider the next subcases.

Subcasee 2.1. v /∈ Dr(T ). In this subcase, we have that h, s /∈ D∪Dr(T ). Let
T ′ = T−{h, s}. Hence, ∂r(T ) = |Dr(T )|−|D| = |Dr(T

′)|−|D| = ∂r(D) ≤ ∂r(T ′).
Moreover, we have that α(T ) ≤ α(T ′) + 1. Hence, by inequalities above and the
induction hypothesis we obtain that

∂r(T ) ≤ ∂r(T ′) ≤ n(T ′)−α(T ′)−2 ≤ (n(T )−2)−(α(T )−1)−2 < n(T )−α(T )−2,

as required.

Subcase 2.2. v ∈ Dr(T ) and h, s /∈ D∪Dr(T ). In this subcase, the procedure
is analogous to Subcase 2.1, obtaining that ∂r(T ) ≤ n(T )−α(T )−2, as required.

Subcase 2.3. v ∈ Dr(T ) and s ∈ D. In this subcase, we have that h /∈
D ∪ Dr(T ). Let T ′′ = T − {h}. Hence, ∂r(T ) = |Dr(T )| − |D| = |Dr(T

′′)| −
|D| = ∂r(D) ≤ ∂r(T

′′). Moreover, we have that α(T ) ≤ α(T ′′) + 1. Hence, by
inequalities above and the induction hypothesis we obtain that

∂r(T ) ≤ ∂r(T ′′) ≤ n(T ′′)−α(T ′′)−2 ≤ (n(T )−1)−(α(T )−1)−2 = n(T )−α(T )−2,

as required.

Subcase 2.4. v ∈ Dr(T ) and s ∈ Dr(T ). In this subcase, we have that h ∈ D.
We first assume that u ∈ Dr(T ). Let T ′ = T − {h, s} and D′ = D \ {h}. Hence,
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∂r(T ) = |Dr(T )| − |D| = |D′r(T ′)| − |D′| = ∂r(D
′) ≤ ∂r(T

′). Moreover, we have
that α(T ) ≤ α(T ′)+1. Hence, by inequalities above and the induction hypothesis
we obtain that

∂r(T ) ≤ ∂r(T ′) ≤ n(T ′)−α(T ′)−2 ≤ (n(T )−2)−(α(T )−1)−2 < n(T )−α(T )−2,

as required. Finally, we assume that u /∈ Dr(T ). Let s′ ∈ N(v) \ {s, u}.
Notice that Ts′ ∈ {P1, P2}, which implies that u ∈ D by the maximality of
|D ∩ {h, s, v, u}|. Now, if Ts′ = P1, then we consider the subtree T ′′ = T − {s′}
and proceed in a manner analogous to Subcase 2.3, obtaining that ∂r(T ) ≤
n(T ) − α(T ) − 2, as required. Otherwise Ts′ = P2, and without loss of gen-
erality we can assume that (D ∪ Dr(T )) ∩ V (Ts′) = ∅. So, proceeding in a
manner analogous to Subcase 2.1 (assuming that T ′ = T − V (Ts′)), we obtain
that ∂r(T ) ≤ n(T )− α(T )− 2, as required.

Case 3. |N(s)| = |N(v)| = 2. Let u be the parent of v in the rooted tree Tz.
Notice that u 6= z since n(T ) ≥ 6. If v /∈ Dr(T ), then the procedure is analogous
to Subcase 2.1. Now, if v ∈ Dr(T ) and s ∈ D, then the procedure is analogous
to Subcase 2.3. In both cases we have ∂r(T ) ≤ n(T )− α(T )− 2, as required.

Finally, we consider the case v ∈ Dr(T ) and s ∈ Dr(T ). In this case, we
have that h, u ∈ D. Let T ′ = T − {h, s, v} and D′ = D \ {h}. Hence, ∂r(T ) =
|Dr(T )|− |D| = |D′r(T ′)|− |D′|+ 1 = ∂r(D

′) + 1 ≤ ∂r(T ′) + 1. Moreover, we have
that α(T ) ≤ α(T ′) + 2. Notice that if n(T ) = 6, then T ∼= P6, and we are done.
Now, if n(T ) ≥ 7, by inequalities above and the induction hypothesis we obtain
that

∂r(T ) ≤ ∂r(T ′)+1 ≤ n(T ′)−α(T ′)−1 ≤ (n(T )−3)−(α(T )−2)−1=n(T )−α(T )−2,

as required.

Therefore, the proof is complete.

To see that the bound above is achieved we can consider the tree T obtained
from any star graph K1,k by subdividing twice all edges. In such a case, ∂r(T ) =
k − 1, n(T ) = 3k + 1 and α(T ) = 2k.
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