DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Hedžet

Jaka Hedžet

Institute of Mathematics, Physics and Mechanics

University of Ljubljana, Slovenia

email: jaka.hedzet@imfm.com

M.A. Henning

Michael A. Henning

University of Johannesburg

email: mahenning@uj.ac.za

0000-0001-8185-067X

Title:

3-Neighbor bootstrap percolation on grids

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-06-10 , Revised: 2023-11-04 , Accepted: 2023-11-06 , Available online: 2023-11-29 , https://doi.org/10.7151/dmgt.2531

Abstract:

Given a graph $G$ and assuming that some vertices of $G$ are infected, the $r$-neighbor bootstrap percolation rule makes an uninfected vertex $v$ infected if $v$ has at least $r$ infected neighbors. The $r$-percolation number, $m(G, r)$, of $G$ is the minimum cardinality of a set of initially infected vertices in $G$ such that after continuously performing the $r$-neighbor bootstrap percolation rule each vertex of $G$ eventually becomes infected. In this paper, we consider the $3$-bootstrap percolation number of grids with fixed widths. If $G$ is the Cartesian product $P_3 \mathbin{\Box} P_m$ of two paths of orders $3$ and $m$, we prove that $m(G,3)=\frac{3}{2}(m+1)-1$, when $m$ is odd, and $m(G,3)=\frac{3}{2}m +1$, when $m$ is even. Moreover, if $G$ is the Cartesian product $P_5 \mathbin{\Box} P_m$, we prove that $m(G,3)=2m+2$, when $m$ is odd, and $m(G,3)=2m+3$, when $m$ is even. If $G$ is the Cartesian product $P_4 \mathbin{\Box} P_m$, we prove that $m(G,3)$ takes on one of two possible values, namely $m(G,3) = \left\lfloor \frac{5(m+1)}{3} \right\rfloor + 1$ or $m(G,3) = \left \lfloor\frac{5(m+1)}{3} \right\rfloor + 2$.

Keywords:

bootstrap percolation, $3$-percolation number, grids

References:

  1. J. Balogh and B. Bollobás, Bootstrap percolation on the hypercube, Probab. Theory Related Fields 134 (2006) 624–648.
    https://doi.org/10.1007/s00440-005-0451-6
  2. J. Balogh, B. Bollobás, H. Duminil-Copin and R. Morris, The sharp threshold for bootstrap percolation in all dimensions, Trans. Amer. Math. Soc. 364 (2012) 2667–2701.
    https://doi.org/10.1090/S0002-9947-2011-05552-2
  3. J. Balogh and G. Pete, Random disease on the square grid, Random Structures Algorithms 13 (1998) 409–422.
    https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4<409::AID-RSA11>3.3.CO;2-5
  4. F. Benevides, J.C. Bermond, H. Lesfari and N. Nisse, Minimum Lethal Sets in Grids and Tori under $3$-Neighbour Bootstrap Percolation, PhD Thesis (Université Côte d'Azur, 2021).
  5. F. Benevides and M. Przykucki, Maximum percolation time in two-dimensional bootstrap percolation, SIAM J. Discrete Math. 29 (2015) 224–251.
    https://doi.org/10.1137/130941584
  6. M. Bidgoli, A. Mohammadianm and B. Tayfeh-Rezaie, Percolating sets in bootstrap percolation on the Hamming graphs and triangular graphs, European J. Combin. 92 (2021) 103256.
    https://doi.org/10.1016/j.ejc.2020.103256
  7. B. Bollobás, The Art of Mathematics: Coffee Time in Memphis (Cambridge University Press, 2006).
    https://doi.org/10.1017/CBO9780511816574
  8. B. Brešar and M. Valencia-Pabon, On the $P_3$-hull number of Hamming graphs, Discrete Appl. Math. 282 (2020) 48–52.
    https://doi.org/10.1016/j.dam.2019.11.011
  9. C.C. Centeno, S. Dantas, M.C. Dourado, D. Rautenbach and J.L. Szwarcfiter, Convex partitions of graphs induced by paths of order three, Discrete Math. Theor. Comput. Sci. 12 (2010) 175–184.
    https://doi.org/10.46298/dmtcs.502
  10. C.C. Centeno, L.D. Penso, D. Rautenbach and V.G. Pereira de Sá, Geodetic number versus hull number in $P_3$-convexity, SIAM J. Discrete Math. 27 (2013) 717–731.
    https://doi.org/10.1137/110859014
  11. J. Chalupa, P.L. Leath and G.R. Reich, Bootstrap percolation on a Bethe lattice, J. Phys. C 12 (1979) 31–35.
    https://doi.org/10.1088/0022-3719/12/1/008
  12. E.M.M. Coelho, H. Coelho, J.R. Nascimento and J.L. Szwarcfiter, On the $P_3$-hull number of some products of graphs, Discrete Appl. Math. 253 (2019) 2–13.
    https://doi.org/10.1016/j.dam.2018.04.024
  13. E.M.M. Coelho, M.C. Dourado and R.M. Sampaio, Inapproximability results for graph convexity parameters, Theoret. Comput. Sci. 600 (2015) 49–58.
    https://doi.org/10.1016/j.tcs.2015.06.059
  14. M. Dairyko, M. Ferrara, B. Lidický, R.R. Martin, F. Pfender and A.J. Uzzell, Ore and Chvátal-type degree conditions for bootstrap percolation from small sets, J. Graph Theory 94 (2020) 252–266.
    https://doi.org/10.1002/jgt.22517
  15. P. Dukes, J. Noel and A. Romer, Extremal bounds for $3$-neighbor bootstrap percolation in dimensions two and three, SIAM J. Discrete Math. 37 (2023) 2088–2125.
    https://doi.org/10.1137/22M1534195
  16. L.N. Grippo, A. Pastine, P. Torres, M. Valencia-Pabon and J.C. Vera, On the $P_3$-hull number of Kneser graphs, Electron. J. Combin. 28(3) (2021) #P3.32.
    https://doi.org/10.37236/9903
  17. K. Gunderson, Minimum degree conditions for small percolating sets in bootstrap percolation, Electron. J. Combin. 27(2) (2020) #P2.37.
    https://doi.org/10.37236/6937
  18. R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press, Boca Raton, FL, 2011).
  19. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in Domination in Graphs, Dev. Math. 64 (Springer, Cham, 2020).
    https://doi.org/10.1007/978-3-030-51117-3
  20. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Structures of Domination in Graphs, Dev. Math. 66 (Springer, Cham, 2021).
    https://doi.org/10.1007/978-3-030-58892-2
  21. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in Graphs: Core Concepts, Springer Monogr. Math. (Springer, Cham, 2023).
    https://doi.org/10.1007/978-3-031-09496-5
  22. M.A. Henning and A. Yeo, Total Domination in Graphs, Springer Monogr. Math. (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4614-6525-6
  23. T. Marcilon and R. Sampaio, The maximum time of $2$-neighbor bootstrap percolation: Complexity results, Theoret. Comput. Sci. 708 (2018) 1–17.
    https://doi.org/10.1016/j.tcs.2017.10.014
  24. R. Morris, Minimal percolating sets in bootstrap percolation, Electron.\ J.\ Combin. 16(1) (2009) #R2.
    https://doi.org/10.37236/91
  25. M. Przykucki and T. Shelton, Smallest percolating sets in bootstrap percolation on grids, Electron. J. Combin. 27(4) (2020) #P4.34.
    https://doi.org/10.37236/9582
  26. M. Przykucki, Maximal percolation time in hypercubes under $2$-bootstrap percolation, Electron. J. Combin. 19(2) (2012) #P41.
    https://doi.org/10.37236/2412
  27. A.E. Romer, Tight Bounds on $3$-Neighbor Bootstrap Percolation, Master's Thesis (University of Victoria, Victoria, Canada, 2022).

Close