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Abstract

Given a graph G and assuming that some vertices of G are infected, the
r-neighbor bootstrap percolation rule makes an uninfected vertex v infected
if v has at least r infected neighbors. The r-percolation number, m(G,r),
of G is the minimum cardinality of a set of initially infected vertices in G
such that after continuously performing the r-neighbor bootstrap percolation
rule each vertex of G eventually becomes infected. In this paper, we consider
the 3-bootstrap percolation number of grids with fixed widths. If G is the
Cartesian product P3O0 P, of two paths of orders 3 and m, we prove that
m(G,3) = %(m + 1) — 1, when m is odd, and m(G,3) = %m + 1, when
m is even. Moreover, if G is the Cartesian product Ps (0 P,,, we prove
that m(G,3) = 2m + 2, when m is odd, and m(G,3) = 2m + 3, when m
is even. If G is the Cartesian product Py O P,,, we prove that m(G,3)

takes on one of two possible values, namely m(G,3) = {MJ +1 or

3
_ | 5(m+1)
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1. INTRODUCTION

For notation and graph theory terminology, we in general follow [21,22]. Specif-
ically, let G be a graph with vertex set V(G) and edge set E(G), and of or-
der n(G) = |V(G)| and size m(G) = |E(G)|. A neighbor of a vertex v in G is a
vertex u that is adjacent to v, that is, wv € E(G). The open neighborhood Ng(v)
of a vertex v in G is the set of neighbors of v, while the closed neighborhood of v is
the set Ng[v] = {v}UNg(v). For aset S C V(QG), its open neighborhood is the set
Ng(S) = Uyeg Na(v), and its closed neighborhood is the set Ng[S] = Ng(S)US.

We denote the degree of a vertex v in G by degq(v), or simply by deg(v) if
the graph G is clear from the context, and so deg(v) = |[Ng(v)|. If X C V(G)
and v € V(G), then degy (v) is the number of neighbors of the vertex v in G that
belong to the set X, that is, degy(v) = |[Ng(v) N X|. In particular, if X = V(G),
then degy (v) = degq(v).

We denote a cycle and a path on n vertices by C,, and P,,, respectively. For
a nonempty set of vertices S C V(G), the subgraph induced by S is denoted by
G[S]. Thus, G[S] is the graph having vertex set S and whose edge set consists
of all those edges of G incident with two vertices in S. Moreover, we denote the
graph obtained from G by deleting all vertices in the set S by G — S, that is,
G—-S =G[V(G)\S]. A subgraph H of G is an induced subgraph of G if H = G|[S]
for some subset S of V(G).

For any integer r > 2, the r-neighbor bootstrap percolation process is an
update rule for the states of vertices in a given graph G. At any given time
a vertex can either be infected or uninfected. From an initial set of infected
vertices, the following updates occur simultaneously and in discrete intervals:
any uninfected vertex with at least r infected neighbors becomes infected, while
infected vertices never change their state.

More formally, let Ay C V(G) be an initial set of infected vertices and for
every t > 1 define

A=A 1 U {’U € V(G) |Ng(v) N Atfl‘ > 7"}.

The set A; \ A;—1 is referred to as the set of vertices infected at time t. A
vertex v is infected before vertex u if v € A; and u ¢ A; for some ¢t > 0. We say
that the set Ag is an r-percolating set, or simply r-percolates, in the graph G if

G A = V(Q).
t=0

A natural extremal problem is finding a smallest r-percolating set Ag in a
given graph G. For a given graph G and integer r > 2, the r-percolation number
of G, denoted m(G,r), is the minimum cardinality of an r-percolating set in G,
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that is,
m(G,r) = min {|Ap|: Ao C V(G), Ay is an r-percolating set in G} .

A minimum r-percolating set in G is an r-percolating set S of G satisfying
m(G,r) = |S|. Bootstrap percolation is very well studied in graphs, see, for
example, [1-17,23-27].

The Cartesian product G H of two graphs G and H is the graph whose ver-
tex set is V(G) x V(H), and where two vertices (g1, k1) and (g2, h2) are adjacent
in GOH if either g1 = g2 and h1he € E(H), or hy = hy and ¢192 € E(G). For a
vertex g € V(G), the subgraph of GO H induced by the set {(g,h) : h € V(H)}
is called a H-fiber and is denoted by 9 H. Similarly, for h € V(H), the G-fiber,
G", is the subgraph induced by {(g,h) : g € V(G)}. We note that all G-fibers
are isomorphic to G and all H-fibers are isomorphic to H. A fiber in GO H is a
G-fiber or an H -fiber.

If G = P, 0 P, is the Cartesian product of two paths P, and F,, for some
n,m > 2 (such a graph is called a grid), then a vertex v € V(G) is called a
boundary vertex or a vertex on the boundary of G if degq(v) < 3.

In 2006, Bollobés [7] presented a problem of disease spreading on an n X n
grid where the infection spreads if an uninfected vertex has at least two infected
neighbors, also providing an elegant proof of the problem. While grids are in fact
Cartesian products of paths, not much was established for the product of arbitrary
graphs. Coelho et al. [12] determined the 2-bootstrap percolation numbers of the
strong and lexicographic products of two graphs, while the Cartesian product of
two graphs proved to be more complex.

Special cases of the Cartesian product were studied by Balogh in [1] with
3-bootstrap percolation in the hypercube, and Bresar and Valencia-Pabon [8] in
the case of 2-bootstrap percolation in Hamming graphs. Grid-like graphs arise in
applications from computer networks and integrated circuit designs to city street
layouts, and the study of domination related parameters in grids (the Cartesian
product of two paths) are very well studied (see, for example, [19-21]).

Further research on 2-dimensional grids was done by Benevides et al. in [4]
where they studied n x n grids under r-bootstrap percolation for » = 3 and
r = 4. For grids in higher dimensions, Przykucki and Shelton [25] established
the r-bootstrap percolation number of an r-dimensional square grid. Most of the
research to date focused on r-bootstrap percolation in square n x n grids, while
in 2023 Dukes, Noel, and Romer [15] studied the so-called perfect lethal sets (sets
which attain the well known general upper bound for r-bootstrap percolation in
grids) under 3-bootstrap percolation in rectangular grids of dimensions 2 or 3.
However the cases where the upper bound is attained proved to be sparse. The
problem to determine closed formulas for the 3-bootstrap percolation number of
an n x m grid for general n and m was therefore left open.
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2. MAIN REsSuULTS

Our aim in this paper is to study 3-neighbor bootstrap percolation on grids. We
determine closed formulas for the 3-percolation number of a 3 x m grid for all
m > 3 and the 3-percolation number of a 5 x m grid for all m > 5. Moreover, we
show that the 3-percolation number of a 4 x m grid for all m > 4 takes on one of
two possible values. We shall prove the following results.

Theorem 1. For m > 3, if G = P31 P, then

S(m+1)—1; m odd;

m(G,3) = {

%m + 1 m even.

Theorem 2. For m > 5, if G = Ps 1 P, then

(G.3) 2m +2; m odd,
m(G,3) =
2m 4+ 3; m even.

Theorem 3. Form >4, if G = P,0O P, then
5 1
m(6.3)= |2 40,6,

where ®,,(G) € {1,2}. Moreover, ®,,(G) =1 if m € {5,7,11}.

3. PRELIMINARY RESULTS

In this section, we present some preliminary lemmas that we will need when
proving our main results in Section 2. We remark that Lemma 4 is already known
in the literature, but for completeness we provide short proofs of the elementary
results we present in this section since we use them frequently when proving our
main results.

Lemma 4. Forr > 2 if H is a subgraph of a graph G such that every vertex in
H has strictly less than r neighbors in G that belong to V(G)\ V(H), then every
r-percolating set of G contains at least one vertex of H.

Proof. For r > 2 let H be an induced subgraph of a graph G and let X =
V(G)\ V(H). Suppose that every vertex in H has strictly less than r neighbors
in the graph G that belong to the set X, that is, degy(v) < r for every vertex
v € V(H). In this case, even if every vertex in X is infected, no vertex in
H becomes infected since every vertex in H has strictly less than r infected
neighbors. Therefore, every r-percolating set of G contains at least one vertex
of H. ]
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We call the subgraph H in the statement of Lemma 4 an r-forbidden subgraph
of G. We describe next some structural properties of 3-forbidden subgraphs
in grids. As an immediate consequence of Lemma 4, we infer the following 3-
forbidden subgraphs in grids.

Corollary 5. Let G = P, O P, for some m,n € N and let S be a minimum
3-percolating set of G. If H is a subgraph of G satisfying (a) or (b), then H is a
3-forbidden subgraph of G.

(a) H is a path joining two boundary vertices in G;

(b) H is a cycle in G.

We note that if G = P,,[JPF,,, then two adjacent boundary vertices in G form
a path joining two boundary vertices in G. Moreover, every P,-fiber and P,,-fiber
in G is a path joining two boundary vertices in G. We also note that every 4-cycle
in G is a 3-forbidden subgraph. Hence as special cases of Corollary 5, we have
the following 3-forbidden subgraphs in a grid.

Corollary 6. Let G = P, O P, for some m,n € N and let S be a minimum
3-percolating set of G. If H is an induced subgraph of G satisfying (a), (b) or
(c), then H is a 3-forbidden subgraph of G.

(a) H = Py, where the two vertices in H are adjacent boundary vertices in G;
(b) H is a fiber in G;

(C) H = 04.

Lemma 7. If G = P, O P,, for some m,n € N, then there exists a minimum
3-percolating set of G that does not contain three consecutive boundary vertices

of G.

Proof. Let G = P, O P,,, and let u, v, z be three consecutive boundary vertices
of G where v is adjacent to both u and z. Let S be a minimum 3-percolating
set of G that contains as few vertices from the set {u, v, z} as possible. Suppose,
to the contrary, that {u,v,z} C S. Let z be the third neighbor of v different
from w and z. If z € S, then S\ {v} is also a percolating set, since v is adjacent
to three infected vertices. However this contradicts the minimality of the set
S. Therefore, z ¢ S. We now consider the set S" = (S \ {v}) U{z}. We note
that |S’| = |S|. The vertex v becomes immediately infected in the 3-neighbor
bootstrap percolation process since it has three infected neighbors in the set S’.
Since the resulting set of infected vertices contains the 3-percolating set S of G
as a subset, we infer that the set S’ is a 3-percolating set of G, implying that
S’ is a minimum 3-percolating set of G. However since the set S’ contains fewer
vertices that belong to the set {u,v, z} than does the set S, this contradicts our
choice of the set S. Hence, [{u,v,z} NS| < 2, that is, there exists a minimum
3-percolating set of G that does not contain three consecutive boundary vertices
of G. [
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3.1. 3-Bootstrap percolation in 3 X m grids

In this section we present a proof of Theorem 1. Recall its statement.
Theorem 1. Form > 3, if G = P3O Py, then

3(m+1)—1; m odd;

%m + 1; m even.

Proof. For m > 3, let G be the grid P; [0 P, with
V(G) = | Hai,bi, i},
i=1

where the path a;byc; is a Ps-fiber in G for ¢ € [m], and where the paths
1G9 -+ * Ay, b1bo -+ by, and cicg - - - ¢y, are P,-fibers in G. For example, when
m = 5 the grid G = P31 P, is illustrated in Figure 1.

C1 (6] C3 Cq4 Cs

bs

by bQI bSI b

o—O0—0

a1 a2 as a4 as

Figure 1. The graph G = P; 0 Ps.
For i € [m], let V; = {a;, b;, ¢;} and let
% m
Ve, =JVi and V=V
j=1 j=i

Thus, V(G) = Ve = Vo1, Let A = {al,ag,...,am}, B = {bl,bg,.. . ,bm},
and C' = {¢1,ca,...,¢p}. Further let

I3

(31 2 (51

L]
Aodd = U{a%—l}, Beven = U{bm‘}, and  Coqq = U{CQi—l}-

i=1 =1 =1

By Lemma 7, there exists a minimum 3-percolating set of G that does not con-
tain three consecutive boundary vertices of G. Among all minimum 3-percolating
set of GG, let .S be chosen so that
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(1) S does not contain three consecutive boundary vertices of G,
(2) subject to (1), |S N Bevyen| is a maximum, and

(3) subject to (2), |S N (Aodd U Coaq)| is a maximum.

Since each vertex in the set X = {a1,c1, am, ¢} has degree 2 in G, the set
X is necessarily a subset of the 3-percolating set S. Thus since the set S does
not contain three consecutive boundary vertices of G, we note that b ¢ S and
b ¢ S.

Suppose that m = 3. In this case, X = {a1,c1,as,c3}. However the set X
is not a 3-percolating set of G, implying that S contains at least one additional
vertex that does not belong to the set X. Since SN{b1, as, c2,b3} = by Lemma 7,
we infer that S = X U{bs}, and so m(G,3) = |S| =5 = 3(m+1) — 1. Hence, we
may assume that m > 4, for otherwise the desired value of m (G, 3) holds.

Claim 8. by € S.

Proof. Suppose, to the contrary, that by ¢ S. Since vertex b; only gets infected
after vertex bo is infected, the three neighbors as, co and bs of by must all be
infected in order to infect bo. Thus, vertex by only gets infected after the vertices
az, co and bg are all infected. However if as ¢ S, then vertex ag only gets infected
after vertex by is infected, a contradiction. Hence, as € S. Analogously, ¢ € S.
By Lemma 7, we infer that ag ¢ S and c3 ¢ S. If bg ¢ S, then it would not
be possible to infect b3 since at most one of its neighbors gets infected. Hence,
b3 € S, and so S N V<3 = {a1,c1, a2, c2, b3}, as illustrated in Figure 2(a). In this
case, we note that the set

S = (S \ {GQ,CQ,bg}) U {bg,&g,Cg}

is also a minimum 3-percolating set of G, as illustrated in Figure 2(b). Thus,
SN V§3 = {al, c1,be, as, Cg} and SN V24 =95nN V24.

Cc1 C2 C3 C1 C2 C3

bl bQI bg bl b2 b3I

al CLIQ dJ3 ai 672 CLIS
(a) S b) S’

Figure 2. The sets S and S’ in the proof of Claim 8.

By construction, |S" N Beyen| > |S N Beven|- Hence if S’ satisfies (1), then we
contradict our choice of the set S. Therefore, S’ does not satisfy (1), and so S’
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contains three consecutive boundary vertices. Since the set S does not contain
three consecutive boundary vertices, we infer that {as,as} C S or {cs,c5} C S.
If {a4,a5} C S and {c4,c5} C S, then the set S” = (5" \ {a4,ca}) U {bs} is
a 3-percolating set of G, contradicting the minimality of S’. Hence, exactly
one of {as,a5} C S or {c4,c5} C S holds. By symmetry, we may assume that
{a4,a5} C S, and so as, a4, as are three consecutive boundary vertices that belong
to S’. The set S” = (S"\ {a4}) U {bs} is a minimum 3-percolating set of G that
satisfies (1). However, |S” N Beyen| > |S N Beven|, contradicting our choice of the
set S. Therefore, by € S. O

By Claim 8, we have by € S.
Claim 9. SN {ag,c2} # 0.

Proof. Suppose that at least one of ag and c2 belongs to the set S. By symmetry,
we may assume that ag € S. In this case, we consider the set " = (S\{az})U{as}.
Necessarily, S’ is a minimum 3-percolating set of G. We note that [S’ N Beyen| =
| SN Beven| and [S"N(AoadUCodd)| > [SN(AoaaUCodd)|. If S’ satisfies (1), then we
contradict our choice of the set S. Hence, S’ does not satisfy (1), implying that
as, ay,as are three consecutive boundary vertices that belong to S’. If by € 5,
then S”\ {a4} is a 3-percolating set of G, contradicting the minimality of S’.
Hence, by ¢ S’ and the set S” = (5" \ {as}) U {bs} is a minimum 3-percolating
set of G that satisfies (1) and |S” N Beven| > |S N Beven|, contradicting our choice
of the set S. 0O

By Claim 9, neither as nor ¢y belongs to the set S. Hence, as and co only get
infected after az and cs, respectively, are infected. Since ag and c3 are boundary
vertices, this implies that a3 € S and ¢35 € S. If bg € S, then S\ {b3} is a
3-percolating set of G, contradicting the minimality of S. Hence, bs ¢ S. Thus,
SNVes ={ai,c1,b2,a3,c3}, as illustrated in Figure 3.

C1 (6] C3

bl b bgl

a a2 as

Figure 3. The set S N V<s.

The set S infects vertices by, as,co and bs. If m = 4, then by our earlier
observations, {a4,c4} C S and by ¢ S, implying that S = {a1, c1,be, as, c3, a4, ¢4},
and so m(G,3) = |S| = 7 = 3m + 1. Hence, we may assume that m > 5, for
otherwise the desired value of m(G, 3) holds.
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Suppose that m = 5. By our earlier observations, {as,c5} C S and bs ¢ S.
In order for b5 to be infected, the vertex by must be infected first. If by ¢ S,
then in order for b4 to be infected before b5, both boundary vertices a4 and
¢4 must belong to the set S. But then (S \ {a4,cq}) U {bs} is a 3-percolating
set of G, contradicting the minimality of S. Therefore, by € S, implying that
S ={ay,c1,b2,a3,c3,by,a5,c5}, and so m(G,3) = |S| =8 = %(m+ 1) — 1. Hence,
we may assume that m > 6.

Claim 10. b4 € S.

Proof. Suppose, to the contrary, that by ¢ S. For by to be infected, it needs
two more infected neighbors in addition to the vertex bz, implying that at least
one of a4 or ¢4 must be infected before by. By symmetry, we may assume that ay
is infected before b4, implying that the boundary vertex a4 belongs to the set S
(and to the set S). Since S satisfies (1) and {as,as} C S, we note that as ¢ S.

Suppose that ¢4 ¢ S. By Corollary 6(a), the adjacent boundary vertex cs
of ¢4 therefore belongs to S. In order for ¢4 to be infected, the vertex by must
be infected first. However in order for by to be infected before c4, the vertex
bs must be infected before by. If b5 ¢ S, then both vertices as and bg must be
infected before b5, implying that the boundary vertex as belongs to the set S, a
contradiction. Hence, b5 € S. We now consider the set

S/ = (S \ {(14, b5}) U {b4, a5}.

Since S is a 3-percolating set of G, so too is the set S’. Thus since |S’| = |5,
the set S’ is a minimum 3-percolating set of G. We note that |S" N Beyen| >
|S N Beven|, and so if S’ satisfies (1), then we contradict our choice of the set
S. Hence, S’ does not satisfy (1), implying that as, ag, a7 are three consecutive
boundary vertices that belong to S’. If bg € S’, then S\ {ag} is a 3-percolating
set of G, contradicting the minimality of S’. Hence, bg ¢ S’ and the set S” =
(S"\ {ag}) U {bg} is a minimum 3-percolating set of G that satisfies (1) and
|S” N Beven| > |S N Beyen|, contradicting our choice of the set S. Hence, ¢4 € S.
Since {c3,c4} C S and S satisfies (1), we note that c5 ¢ S.

If b5 ¢ S, then bs must be infected before the boundary vertices as and
c5. However, this would not be possible since then b5 would have at most two
infected neighbors at any stage of the percolation process. Thus, b5 € S, and so
SN Ves ={ai,c1,b2,a3,c3,a4,c4,bs5}, as illustrated in Figure 4(a). In this case,
we note that the set

S" = (S\ {a4,ca,b5}) U{bs,as,c5}

is also a minimum 3-percolating set of G, as illustrated in Figure 4(b). Thus,
S'N V§5 = {al, c1,be,as,c3,by,as, 65} and SN VZG =5nN VZG-
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C1 2 C3 C4 Cs C1 2 C3 Cq C5

bi| b 531 b4I bs bi| b bgl b b5I

Figure 4. The sets S and S” in the proof of Claim 10.

By construction, |S” N Beyen| > |S N Beven|- Hence if S satisfies (1), then we
contradict our choice of the set S. Therefore, S” does not satisfy (1), and so S”
contains three consecutive boundary vertices. Since the set S does not contain
three consecutive boundary vertices, we infer that {ag,a7} C S or {cg,c7} C S.
If {ag,a7} C S and {cg,c7} C S, then the set (S” \ {ag,c6}) U {bg} is a 3-
percolating set of G, contradicting the minimality of S”. Hence, exactly one
of {ag,a7} C S or {cg,c7} C S holds. By symmetry, we may assume that
{ag,a7} C S, and so a3, ag, a7 are three consecutive boundary vertices that belong
to S”. The set S* = (5" \ {as}) U{bs} is a minimum 3-percolating set of G that
satisfies (1). However, |S* N Beyen| > |S N Beven|, contradicting our choice of the
set S. Therefore, by € S. 0

By Claim 10, we have by € S.
Claim 11. SN {a4,04} #* @.

Proof. Suppose that at least one of ay and ¢4 belongs to the set S. By symmetry,
we may assume that ag € S. In this case, we consider the set S" = (S\{as})U{as}.
Necessarily, S’ is a minimum 3-percolating set of G. We note that |S’ N Beyen| =
| SN Beven| and |Slﬂ(AoddUCOdd)| > |SN(AoqaUCodq)|- I S’ satisfies (1), then we
contradict our choice of the set S. Hence, S” does not satisfy (1), implying that
as, ag, ay are three consecutive boundary vertices that belong to S’. If bg € S,
then S”\ {ag} is a 3-percolating set of G, contradicting the minimality of S’.
Hence, bg ¢ S’ and the set S” = (5" \ {as}) U {bs} is a minimum 3-percolating
set of G that satisfies (1) and |S” N Beven| > |'S N Beven|, contradicting our choice
of the set S. O

By Claim 11, neither a4 nor ¢4 belongs to the set S. Hence, a4 and ¢4 only get
infected after as and cs, respectively, are infected. Since a5 and c¢5 are boundary
vertices, this implies that a5 € S and ¢5 € S. If b5 € S, then S\ {b5} is a
3-percolating set of G, contradicting the minimality of S. Hence, b5 ¢ S. Thus,
SNVes ={ai,c1,b2,as3,¢3,b4,0a5,c5}, as illustrated in Figure 5.
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a a2 as a4

Figure 5. The set S N V<s.

By our earlier assumption, m > 6. Continuing the above process, this pattern
concludes naturally if m is odd and yields the set

S = Aodd U Beven U Codda

implying that in this case when m is odd, we have
m(Ga 3) = ’S’ = ‘Aodd| + |Beven| + |C0dd|
=sm+1)+3(m—1)+3(m+1)=3(m+1)—1.
If m is even, then recalling that {a,, ¢} C S and by, ¢ S, this yields the set

S = (Aoad U {am}) U (Beven \ {bm}) U (Coda U{Cm}),
implying that in this case when m is even, we have
m(G,3) = |S| = (|Aoad| +1) + (|Beven| — 1) + (|Coaa| + 1)
= Gm+1)+(Gm-1)+(Em+1)=3m+1.
This completes the proof of Theorem 1. [

3.2. 3-Bootstrap percolation in 5 X m grids

We present in this section a proof of Theorem 2. Recall its statement.
Theorem 2 For m > 5, if G = Ps 0 P, then

2m +2; m odd,

2m +3; m even.

m(G,3) = {

Proof. For m > 5, let G be the grid P5 [ P, with

m

V(G) = U{ai7 bi, c;, di, 62}7

i=1
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\
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V
e
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U
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C
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C

O—O0—O0—0—0—0—0

ai a2 as aq as ag ar
Figure 6. The graph G = P; J P;.

where the path a;bjc;d;e; is a Ps-fiber in G for i € [m], and where ajas - - - ap,
bibg - - - by, c1C2 -+ - C, dido - - - diy, and eqes - - - €, are Pp,-fibers in GG. For exam-
ple, when m = 7 the grid G = P5 O P, is illustrated in Figure 6.

For i € [m], let V; = {a;, b, ¢, d;, e;} and let

Vgi: LZJVl and VZi: GVZ
j=1 j=t

ThUS, V(G) = ng = VZI- Let A = {al,ag, .. .,am}, B = {bl,bQ, e ,bm},
C ={c,ca,...,cm}, D = {d1,da,...,dy}, and E = {e1,e2,...,en}. In what
follows, let S be a minimum 3-percolating set of G that does not contain three
consecutive boundary vertices of G. We note that such a set S exists by Lemma 7.

Claim 12. The following properties hold.
(a) [SNVi| >3 and |SN (V1 UVL)| > 5;
(b) 1SN V| >3 and |SN (Vi1 U Viy)| > 5.

Proof. Since the vertices a; and e; both have degree 2 in (G, we note that
{a1,e1} C S. Suppose that ¢; ¢ S. By Corollary 6(a), this implies that {by,d;} C
S. By Corollary 6(b), [S N V2| > 1. Hence in this case when ¢; ¢ S, we have
|ISN Vi > 4 and |SN (V3 UVy)| > 5. Hence we may assume that ¢; € S,
for otherwise the desired lower bounds hold. Since S does not contain three
consecutive boundary vertices of G, we infer that S NV = {aj,c1,e1}. Let
H, = G{ag,b1,b2}] and let Hy = G[{d1,d2,e2}]. Each of H; and Hj is a path
joining two boundary vertices of GG, and is therefore a 3-forbidden subgraph of
G by Corollary 5(a). Thus, S contains at least one vertex from each of H; and
Hj, implying that |S N {ag,b2}| > 1 and |S N {d2,e2}| > 1. Thus, [SNVi| =3
and |S N V3| > 2, and so SN (V3 UV3)| > 5. This proves part (a). By symmetry,
part (b) holds. 0
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Claim 13. |SN (V;UViy1)| >4 for all i where 2 <i<m — 1.

Proof. Consider the set V; UV, 11 for some ¢ where 2 < i < m —1. We show that
|SN(V;UVig1)| > 4. By Corollary 6(a), [SN{a;,a;i+1}| > 1 and |SN{e;, e;41} > 1.
By Corollary 6(b), [SNV;| > 1 and |S N V1| > 1.

Suppose firstly that {a;,e;} € S. Let Hy = G[{b;, bi+1,¢i,ciy1}] and let
Hy = G[{¢i, ¢it1,d;,diy1}]. Since Hy = Cy and Hy = Cy, by Corollary 6(c) both
Hy and Hy are 3-forbidden subgraph of G. Let H3 = G[V;+1]. Since Hj is a
fibre in G, by Corollary 6(b), the fibre Hs is a 3-forbidden subgraph of G. Let
Hy = G[{ai+1,bi+1,bi, ¢, diy dit1, €41}]. Since Hy is a path joining two boundary
vertices, Hy is a 3-forbidden subgraph of G. Hence, the set S must contain at
least one vertex from each of the 3-forbidden subgraphs Hy, Ho, H3 and Hy. This
is only possible if S contains at least two vertices in V; U V; 1 different from a;
and e;, implying that |[S N (V; U Viy1)| > 4.

Hence we may assume that at most one of a; and e; belong to the set S, for
otherwise the desired result holds. By analogous arguments, we may assume that
at most one of a;11 and e;+1 belong to the set S. As observed earlier, at least
one a; and a;4+1 belongs to the set S and at least one e; and e;41 belongs to the
set S. By symmetry, we may therefore assume that a;+1 € S and e; € 5, and so
a; ¢ S and €i4+1 ¢ S.

Let Iy = G[{a;, b;,bit1, Civ1,dip1,€i1}], Fo = G[{ai, bi, ¢i, cip1, dig1, €i41}]
and Fy = G[{ai, bi,ci,d;, dit1,ei+1}]. Each of Fy, F» and F3 is a path joining two
boundary vertices of GG, and is therefore a 3-forbidden subgraph of G by Corol-
lary 5(&). Moreover if F4 = G[{bl, Ci, bi+1, Ci+1}] and F5 = G[{Ci, di, Ci+1, di+1}],
then Fy = Cy and F5 = C4, and so by Corollary 6 both £y and F5 are 3-forbidden
subgraph of G. Hence, the set S must contain at least one vertex from each of
the subgraphs Fi, Fy, F3, Fy and F5. This implies that S contains at least
two vertices in V; U V41 different from a;41 and e;, implying once again that
1SN (ViU Vi) > 4 O

Claim 14. m(G,3) > 2m + 2.

Proof. Suppose firstly that m is even. By Claim 12(a) and Claim 13, we have

m m—1
m(G,3) =S| = YISV = [SN Vi + SN Vil + > SNV
=1 %_1 1=2
= 1SNV +|5SN V| + Z 1S N (Va; U Vaig)]
i=1

> 3+3+4(%—1) > 2m + 2.
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Suppose secondly that m is odd. By Claim 12(a) and Claim 13, we have

m m—1
m(G,3) =15 = Y ISNVi| = |SN(ViUWV)|[+[SN V| + D SNV
=1 i=3

m—3

2
= |SN(VLUWR)[+[SN Vil + > 190 (Vaip1 U Vaiya)]
=1

> 5+3+4(mT_3) > 9m + 2.

In both cases, we have m(G,3) > 2m + 2. 0

In order to establish upper bounds on the 3-percolation number m(G, 3) of
G, let

3

)

(31 LZ] LF] (51
Aodd = U {a2i71}7 Beven = U {b2i}7 Deven = {in}a and Eodd = U {€2i71}~

i=1 i=1 i=1 i=1
Claim 15. If m is odd, then m(G,3) = 2m + 2.
Proof. Suppose that m is odd. Let
Sodd = Aodd U Beven U {c1, ¢m} U Deyen U Eoda-
For example, when m = 7 the set Syqq is illustrated in Figure 7.
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Figure 7. The set Syqq in the graph G = P; O P;.

We show that S,qq is a 3-percolating set of G. The vertices b1, d1, by, and d,,
all have three infected neighbors, and so become infected during the percolation
process starting with the initial set Syqq. Hence, all vertices in the first column
V1 and in the last column V,,, are infected. The vertices ag; and es; for i where
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1< < %(m—l) all have three infected neighbors, and the vertices bo;1+1 and do;11
for 7 where 1 <7 < %(m — 3) all have three infected neighbors. Therefore, these
vertices all become infected during the percolation process. Hence, all vertices
in AUBUDUE are infected. Thereafter, all vertices in C' become infected by
considering the vertices co,c3, ..., cn—1 sequentially and noting that the vertex
¢; becomes infected from its three infected neighbors ¢;_1, b; and d; for ¢ where
2 <i <m — 1. Hence, all vertices in V(G) become infected, implying that

m(G,S) S ’Sodd‘ - ’Aodd‘ + ’Beven‘ + ’{Clacm}‘ + ‘Deven‘ + ‘Eodd’

1 -1 -1 1
= ML 4 Ml 424 Il M = 9m 42,

Hence, m(G,3) < 2m + 2. By Claim 14, m(G,3) > 2m + 2. Consequently,

Claim 16. If m is even, then m(G,3) > 2m + 3.

Proof. Suppose that m is even. By Claim 14, we know that m(G,3) > 2m + 2.
Suppose, to the contrary, that m(G,3) = 2m + 2. Hence we must have equality
throughout the inequality chain the first paragraph of the proof of Claim 14,
implying that |[SNVi| =[SNV,| =3 and |SN (Va; U Vaiy1)| = 4 for all 4 where
1 <i <% —1. As shown in the proofs of Claim 12 and 14, since [SN V1| = 3 we
infer that SNVy = {a1,c1,e1} and |SNVa| > 2. Analogously, since [SNV,,| =3
we infer that S NV, = {am, cm,em} and |[S N V1| > 2.

Claim 16.1. |SNV;| =2 for all i where 2 <i<m — 1.
Proof. 1f |S N V3| > 3, then by our earlier observations we have

m(G,3) =S| = |SNWV|+|SNVa|+[SN V1| + 1SN Vi
m_g
+ D190 (Vaigr U Vaiga)| + 1S O Voo |+ [S N V|
=1
> 3+3+2+3+4(%—2) —2m +3,

a contradiction. Hence, |S N V3| = 2. By symmetry, |S N V,,—1| = 2. We show
next that |[S N V;| =2 for all ¢ where 3 < i < m — 3. Let ¢ be the smallest such
integer such that |S NV;| # 2. By Claim 13, |SN (V;—1 UV;)| > 4. By our choice
of the integer i, we have |S N V;_1| = 2, implying that |S N V;| > 3.

If i is odd, then [SN(Vi-1UV;)| = [SNVi—1|+|SNV;| > 243 = 5, contradicting
our earlier observation that [S N (Va; U Va;41)| = 4 for all ¢ where 1 <4 < 3 — 1.
Hence, i is even. Thus, 4 = [SN(V;UViy1)| = [SNVi|+[SNVig1] > 3+ [SNVig],
implying that [S N V41| = 1. By Claim 13, |S N (Vi41 U Viye)| > 4, implying
that |S N Viye| = 3, which in turn implies that |S N V43| = 1. Continuing in this
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manner, we have |[SNV;| = 3 for all j even where i < j <m—1and |SNV;| =1
for all j odd where i+1 < j < m—2. In particular, |[SNV,,_1| = 1, contradicting
our earlier observation that |[S N Vy,—1| = 2. 0

By Claim 16.1, |S N V;| = 2 for all i where 2 < ¢ < m — 1. By our earlier
observation, S NVy = {a1,c1,e1} and SNV, = {am, cm,em}. As shown in the
proof of Claim 12 we infer that |S N {agz,b2}| = 1 and |S N {d2,e2}| = 1. Since
G[{b1, b2, c2,d2,d;1}] is a path joining two boundary vertices of G, this subgraph
is a 3-forbidden subgraph of GG, implying that S must contain at least one vertex
from the set {b2,d2}. By symmetry, we may assume that be € S, and so as ¢ S.
Now either dy € S or eg € S. We show firstly that the case e; € S cannot occur.

Claim 16.2. If ey € S, then we obtain a contradiction.

Proof. Suppose that ey € S. Thus, SNV, = {be, ea}. Since ay ¢ S, the boundary
vertex agz € S. Let Ql = G[{Cg,dg, cs3, dg}] and let QQ = G[{dl, dg,dg, 63}]. Since
@1 = Cy and since )9 is a path joining two boundary vertices of G, both @1 and
Q2 are 3-forbidden subgraphs of G, implying that S must contain at least one
vertex from each of @1 and Q2. Since |S N V3| = 2 and a3 € S, we infer that
ds3 € S. Thus, SNV3 = {ag,dg}.

Since e3 ¢ S, the vertex e4 € S by Corollary 6. Let Q3 = G[{bs, c3, b4, c4}]
and let Q2 = G[{d1,d2,ca,c3,b2,b4,a4}]. Since Q3 = Cy and since Q4 is a path
joining two boundary vertices of GG, both Q3 and Q4 are 3-forbidden subgraphs
of GG, implying that .S must contain at least one vertex from each of Q3 and Q4.
Since |SNVy| =2 and e4 € S, we infer that by € S. Thus, SN Vy = {by, e4}.

Since a4 ¢ S, the boundary vertex as € S. Let Q5 = G[{c4,d4, c5,d5}] and
let Q¢ = G[{d1,da,c2,c3,c4,dg,ds5,e5}]. Since Q5 = Cy and since Qg is a path
joining two boundary vertices of G, both @5 and Qg are 3-forbidden subgraphs
of G, implying that S must contain at least one vertex from each of @5 and Q.
Since |SN V5| =2 and a5 € S, we infer that d5 € S. Thus, SN V5 = {as,ds}.

Continuing in this way, the above pattern repeats itself, that is, SN V; =
{bi,e;} for i even and 2 <i <m —2and SNV, = {a;,d;} for i odd and 3 <i <
m — 1. The set S is now fully determined. For example, when m = 8 the set S is
illustrated in Figure 8. However, the subgraph G[{{d1,d,}U(V(C)\{c1,cm}}] is
a path joining two boundary vertices of G and is therefore a 3-forbidden subgraph
of GG. However, this subgraph contains no vertex of S, a contradiction. 0

By Claim 16.2, ea ¢ S. By our earlier observations, |S N {dz,e2}| = 1,
implying that do € S. Thus, SNV, = {by,d2}. Since ay ¢ S, this forces az € 5,
and since es ¢ S, this forces e3 € S. Thus, SN V3 = {as,e3}.

Let R; = G[{bg,b4,03,64}] and let Ry = G[{63,04,d3,d4}]. Since Ry = Cy
and R; = Cy, both Ry and Ry are 3-forbidden subgraphs of G, implying that S
must contain at least one vertex from each of Ry and Ry. This implies that at most
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Figure 8. The set S in the graph G = P5 [J Py in the proof of Claim 16.2.

one of ay and e4 belong to the set S. By symmetry, we may assume that e4 ¢ S,
implying that es € S. If aq € 5, then this forces ¢4 € S in order for the set S to
contain a vertex from each of Ry and Ro. We note that the case SNVy = {byg, ¢4}
is symmetric to the case SN Vy = {c4,ds}. Hence by symmetry, there are three
possibilities for the set S N Vy, namely S N Vy = {bg,cqa}, SNVy = {bg,dy}, or
SNV, = {a4, 04}.

We show next that the cases SN Vy = {a4,c4} and SN Vy = {by, cs4} cannot
occur.

Claim 16.3. If SNV, = {a4,c4}, then we obtain a contradiction.

Proof. Suppose that SNV, = {a4, cs}. Since {ag,as} C S, we know that a5 ¢ S.
Let Ly = G[{e4,dy,ds, c3,b3,by, b5, a5}]. Since L; is a path joining two boundary
vertices of GG, the subgraph L; is a 3-forbidden subgraph of G, and so S must
contain at least one vertex from Lj, implying that b5 € S. Thus, SNV5 = {bs, e5}.

Since as ¢ S, this forces ag € S. Let Lo = G[{e4,ds,ds,ds,e6}] and let
Ls = G[{cs,c6,ds5,dg}]. Since Lo is a path joining two boundary vertices of G
and since L3 = C4, the subgraphs Lo and L3 are 3-forbidden subgraphs of G,
and so S must contain at least one vertex from each of Ly and L3, implying that
dg € S. Thus, SNV = {CLG,dG}.

Since eg ¢ S, this forces e7 € S. Let Ly = G[{eq4,dy, ds, cs, cs, bg, b7, azr}] and
let Ly = G[{bs,b7,cs,c7}]. Since Ly is a path joining two boundary vertices of
G and since Ls = Cy, the subgraphs L4 and Lj are 3-forbidden subgraphs of G,
and so S must contain at least one vertex from each of Ly and Ly, implying that
b7 € S. Thus, SNV; = {b7,€7}.

Continuing in this way, the above pattern repeats itself, that is, SNV; =
{bi,e;} for i odd and 5 < i < m —1 and SNV; = {a;,d;} for i even and
6 <7< m—2 The set S is now fully determined. However, the subgraph
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G{es,ds,ds,dm—1,dmn} U(V(C)\{c1,c2,c3,ca,cm})] is a path joining two bound-
ary vertices of G and is therefore a 3-forbidden subgraph of G. However, this
subgraph contains no vertex of S, a contradiction. 0O

Claim 16.4. If SN Vy = {by,c4}, then we obtain a contradiction.

Proof. Suppose that SN Vy = {by,ca}. Since ay ¢ S, this forces a5 € S. Recall
that e5 € S, and so SN V5 = {as,e5}. Let Z = {bpm, by—1, Cm-1,dm—1,dm }.

If m = 6, then the set S is fully determined. In this case, the subgraph
G|Z] is a path joining two boundary vertices of G and is therefore a 3-forbidden
subgraph of GG. However, this subgraph contains no vertex of S, a contradiction.
Hence, m > 8. Let T} = G[{64,d4,d5,d6,€6}], T = G[{C5,Cﬁ,d5,d6}], T; =
G[{es,dys,ds, c5,b5,b6,a6}], and Ty = G[{bs, bs, c5, cs}]. Since T and T3 are paths
joining two boundary vertices of G and since To = Cy and Ty = C}y, the subgraphs
11,715,735 and T, are 3-forbidden subgraphs of G, and so S must contain at
least one vertex from each of T4, 7%, T3 and T}, implying that S N Vs = {bs, ds}.
Since ag ¢ S, this forces ay € S, and since eg ¢ S, this forces ey € S, and so
SNVy = {ag,eg}.

Continuing in this way, the above pattern repeats itself, that is, SNV; =
{a;,e;} for i odd and 5 < i < m —1 and SNV; = {b;,d;} for i even and
6 < i< m—2. The set S is now fully determined. However, as before the
subgraph G[Z] is a path joining two boundary vertices of G and is therefore a
3-forbidden subgraph of G. However, this subgraph contains no vertex of S, a
contradiction. O

By Claim 16.3, the case S NV, = {a4,c4} cannot occur. By Claim 16.4,
the case S N Vy = {by,c4} cannot occur. Hence by our earlier assumptions,
SNVy={bs,dy}. Since ag ¢ S, this forces a5 € S, and since e4 ¢ S, this forces
es €5, and so SNVs = {as,e5}. Let Z = {bm,bm-1,¢m-1,dm—-1,dm}-

If m = 6, then the set S is fully determined. In this case, the subgraph
G[Z] is a path joining two boundary vertices of G and is therefore a 3-forbidden
subgraph of G. However, this subgraph contains no vertex of S, a contradiction.
Hence, m > 8.

If SNV = {ag, c6}, then proceeding analogously as in the proof of Claim 16.3
we obtain a contradiction. If S N Vg = {bg,cs}, then proceeding analogously as
in the proof of Claim 16.4 we obtain a contradiction. Hence, S N Vs = {bg, dg}.

Continuing in this way, the above pattern repeats itself, that is, SNV; =
{b;,d;} for i even and 2 < i < m —2 and SNV; = {a;,¢;} for i odd and
3 <i<m-—1. The set S is now fully determined. For example, when m = 8
the set S is illustrated in Figure 9. However, as before the subgraph G[Z] is a
path joining two boundary vertices of G and is therefore a 3-forbidden subgraph
of G. However, this subgraph contains no vertex of S, a contradiction. We
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deduce, therefore, that our supposition that m(G, 3) = 2m+2 is incorrect. Hence,
m(G,3) > 2m + 3. This completes the proof of Claim 16. O
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Figure 9. The set S in the graph G = P; [0 Py in the proof of Claim 16.

Claim 17. If m is even, then m(G,3) = 2m + 3.
Proof. Suppose that m is even. Let

Seven = (Aodd ) {am}) U (Beven \ {bm}) U {Cla Cm—1, Cm}
U (Deven \ {dm}) U (Eodd U {am})
For example, when m = 8 the set Seyen is illustrated in Figure 10.
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Figure 10. The set Seyen in the graph G = Ps O Ps.

We show that Seven is a 3-percolating set of G. The vertices b; and d; both
have three infected neighbors, and so become infected during the percolation pro-
cess starting with the initial set Seven. Hence, all vertices in the first column Vj
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are infected. Every vertex in AU F is in the set Seven or has three infected neigh-
bors, and so become infected during the percolation process. Hence, all vertices
in AU E are infected. Thereafter, all vertices in B become infected by consid-
ering the vertices sequentially (that is, the vertex by is first infected, followed
by bs,bs,...,bm—1, and finally b, is infected). Identical argument show that all
vertices in D become infected. Hence all vertices in B U D are infected. There-
after, all vertices in C become infected by considering the vertices sequentially
€2,C2,...,Cm—2. Thus, all vertices in V(G) become infected, implying that

m(G,3) < [Seven| = (|Aoad| + 1) + (| Beven| — 1) + {e1, em—1, cm}
+ ([Deven| — 1) + (| Eoaal + 1)
= |Aoda| + |Beven| + 3 + | Deven| + |Eodd]
—mymygym m gy

Hence, m(G,3) < 2m + 3. By Claim 16, m(G,3) > 2m + 3. Consequently,
m(G,3) = 2m + 3. O

The proof of Theorem 2 now follows from Claim 15 and 17. [

3.3. 3-Bootstrap percolation in 4 X m grids

In this section, we show that the 3-percolation number of a 4 x m grid for all
m > 4 takes on one of two possible values. We first prove a lower bound on the
3-percolation number of a 4 x m grid.

Theorem 18. For m > 4, if G = P,0 P,,, then m(G,3) > {5("?1@ +1.

Proof. For m > 4, let G be the grid P, O P, with
V(G) = U{aiv bi7 Ci, dl}a
i=1

where the path a;bjc;d; is a Ps-fiber in G for i € [m], and where ajas-- - am,
bibs -+ - by, c1co -+ Cm, and dyds - - - dy, are P,,-fibers in G. For example, when
m = 6 the grid G = P, U P, is illustrated in Figure 11.

For i € [m], let V; = {a;, b;, ¢;,d;} and let

Vgi: OVl and VZZ': OVZ
j=1 j=t

ThUS, V(G) = ng = VZI- Let A = {al,ag, .. .,am}, B = {bl,bQ, e ,bm},
C = {c1,c2,...,cn}, and D = {dy,ds,...,dn}. In what follows, let S be a
minimum 3-percolating set of G that does not contain three consecutive boundary
vertices of G. We note that such a set S exists by Lemma 7.
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Figure 11. The graph G = P, 0O F.

Claim 19. The following properties hold.

(a) [SNVi| >3 and |SNV,,| > 3.

(b) |SNV;| > 2 for all i where2 <i<m—1.

(c) 1SN (V;UVig1)| > 3 for all i where2 <i<m—1.

(d) SN (V;UVip1 UViga)| > 5 for all i where 2 <i<m — 2.

Proof. Since the vertices a; and d; both have degree 2 in G, we note that
{a1,d1} C S. Since the set S contains at least one of every two adjacent boundary
vertices, we note that |[SN{by,c1}| > 1, implying that [SNV;| > 3. By symmetry,
|SNV,,| > 3. Thus, property (a) holds. Property (b) follows from Corollary 6(b).

To prove property (c), consider the set S N (V; U V;y1) for some ¢ where
2 <i<m—1. By Corollary 6(a), |S N{ai,ai+1}| > 1 and |SN{d;,dis1}| > 1.
If Q1 = G[{bi,bit1,c¢i,cit1}], then @1 = Cy, and so the subgraph Q; is a 3-
forbidden subgraph of GG, and so S must contain at least one vertex from of Q).
These observations imply that |S N (V; U V;4+1)| > 3, and so property (c) holds.

To prove property (d), consider the set SN (V;UV;+1UV49) for some i where
2 < i <m — 2. For notation convenience, we may assume that ¢ = 2, that is, we
consider the set SN (Vo UV3UVy). If S contains at least three boundary vertices
in Vo U V3 UVy, then the desired result is immediate. Hence, we may assume that
|SN{ag,as,aq,ds,ds,ds}| < 4, for otherwise the desired lower bound holds. Since
S contains no three consecutive boundaries, we note that [S N {az, a3z, as}| < 2
and ‘S N {dg,dg,d4}| < 2.

Suppose that S contains four boundary vertices in Vo UV3 UV}, implying that
{ag,a4,da,ds} C S. By property (b) we have |S N V3| > 1, and we infer in this
case that |SN(VoUVaUVy)| > 5. Hence, we may assume that S contains at most
three boundary vertices in Vo U V3 UV}, for otherwise the desired lower bound
holds.

Suppose that S contains exactly three boundary vertices in Vo U V3 U Vj.
By symmetry, we may assume that {ag,a4,d2} C S or {ag,a4,ds} C S. Sup-
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pose that {az,a4,d2} C S. Let Q3 = G[{bg,bg,CQ,Cg}], Q3 = G[{03764,d3,d4}],
and Q4 = G[{as,bs,bs,ca,ds}]. Since Q2 = @3 = C4 and since @3 is a path
joining two boundary vertices of G, the subgraphs @2, Q3 and Q4 are all 3-
forbidden subgraphs of G, and so S must contain at least one vertex from
each of @3, Q3 and Q4. At least two vertices in S are needed for this pur-
pose, implying that [S N (Vo U V3 U Vy)| > 5, as desired. Suppose next that
{ag, a4, dg} C S. Let Q5 = G[{dg, C2,C3,C4, d4}], QG = G[{dQ,CQ, bQ, bg, ag}], and
Q7 = G[{bs, by, c3,cq}]. Since Q5 and Qg are paths joining two boundary vertices
of G and since Q7 = C4, the subgraphs @5, Qg and Q7 are all 3-forbidden sub-
graphs of GG, and so S must contain at least one vertex from each of @5, Qg and
Q7. At least two vertices in S are needed for this purpose, implying once again
that |S N (Vo U V3 UVy)| > 5, as desired.

Hence, we may assume that S contains at most two boundary vertices in
Vo UV3UVy, for otherwise the desired lower bound holds. Since S contains at least
one vertex among every two adjacent boundary vertices, this implies that ag and
d3 are the two boundary vertices in S. We note that [SNV2| > 1 and |[SNVy| > 1.
Suppose that |[SN V2| =1 and |S N V,| = 1, implying by our earlier assumptions
that |S N {be,co}| =1 and |S N {by, cs}| = 1. By symmetry, we may assume that
{ba,cs4} C Sor{bg,bs} CS. If {ba,ca} C S, then G[{da, ca, 3, b3, by, as}]is a path
joining two boundary vertices that contains no vertex of S, and if {bs,bs} C S,
then G[{ds,ca,c3,cq,d4}] is a path joining two boundary vertices that contains
no vertex of S. Both cases produce a contradiction. We deduce, therefore, that
SN Va| > 2or [SNVy > 2, implying that [S N (Vo U V3 U Vy)| > 5, as desired.
This completes the proof of property (d). 0

We now return to the proof of Theorem 18 and calculate the lower bound on

m(G,3).
Claim 20. If m = 0 (mod 3), then m(G,3) > [MJ +1.

Proof. Suppose that m = 0 (mod 3). By Claim 19 we have

m—1
m(G,3) = || = [SOVA|+ SN Val +1SN Vil + D [SOV
m=3 =3
3
> 3+1+3+Z|5ﬂ(V3iUV},z‘+1UV3i+2)|
i=1

> 34143+ 28 x5 =3(m+1) + = | 2| 4,

noting that in this case m = 0 (mod 3). 0

Claim 21. If m =1 (mod 3), then m(G,3) > [5(7713+1)J +1.
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Proof. Suppose that m =1 (mod 3). By Claim 19 we have

m—1
m(G,3) =8| = |SNVA|+ SN (VU V) + SNVl + > SNV
=4

m—4

3
>3+3+3+ Z 1S N (V3341 U V340 U Vaiga)|
=1

>34+3+3+2 A x5=3(m+1)+2= L—S(";“)J +1,
noting that in this case m = 1 (mod 3). 0
Claim 22. If m =2 (mod 3), then m(G,3) > [WJ +1.

Proof. Suppose that m = 2 (mod 3). By Claim 19 we have
m—1

m(G,3) =S| = |SNVA|+ SN V| + > [SN V]
=2

m—2

o=
>3+3+ Z IS N (Vai—1 U V3 U Vi)
i—1

noting that in this case m = 2 (mod 3). 0

By Claims 20, 21, and 22, we have m(G,3) > F(WQH)J -+ 1. This completes

the proof of Theorem 18. [

We establish next upper bounds on the 3-percolation number of 4 x m grids
for all m > 4.

Theorem 23. For m > 4, if G = P, 0 P,,, then

[%J +1; me{5 7,11}
m(G,3) <
{NWTH)J +2;  otherwise.

Proof. For m > 4, let G,, be the grid P, O P,, where we follow the notation in
the proof of Theorem 18. The sets shown in Figure 12(a), 12(b), and 12(c) are
3-percolating sets of G5, G7, and (G11, respectively, of cardinalities 11, 14 and 21,
respectively, implying that

G |0
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for m € {5,7,11}. Hence in what follows, we may assume that m ¢ {5,7,11},
for otherwise the desired upper bound holds. For i € {2,...,m — 3}, let

Xi ={ai,ci,biy1,diy1, 0542} and Y = {b;,d;, a;41,cit1,diy2}

[ 4 O L 4 O L ] [ 4 O L 4 O L 4 O ®
(e 4 O L O O L O @ O 4 O
[ 4 O O 4 L ] [ 4 O O 4 O O 9
[ 4 O L 4 O ] [ 4 O L O L 4 O @
(a) (b)
[ 4 O L O L 4 O L O L 4 O L J

Figure 12. 3-percolating sets for Py (0 Ps, P, P;, and Py O Py;.

For i € {2,...,m — 5}, we denote by X;Y;13 the set X; U Y;;3, and we
denote by Y;X;y3 the set Y; U X;13. The sets Xy, Yo and X,Y5, for example,
are illustrated in Figure 13. We note that all vertices in Vi1, Viyo, Vits and
Vit4 are infected by the set X;Y; 3 (respectively, by the set Y;X;13) in the 4 x 6
grid induced by the sets V; U V;1 1 U--- U V;y5. For notational simplicity, if the
subscripts are clear from the context, we simply write X and Y rather than X;
and Y;, respectively, and we write XY and Y X rather than X;Y;;3 and Y; X;3,
respectively. We also extend our notation to include multiple copies of X and
Y. For example, we denote by X;Y;13X;16 the set X; UY;13U X416 and simply
denote this by the sequence XY X. Using the sequence of sets XY XY --- we
obtain grids of size 4 x 3k where every internal column from 2 to 3k — 1 becomes
infected. We now construct a percolating set S as follows.

Claim 24. If m = 2 (mod 3), then m(Gp,,3) < {MJ +9.

Proof. Suppose that m = 2 (mod 3). Thus, m = 3k + 2 for some k > 1. Let S
consist of vertices in (V1\{c1})UV;, and from th