DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

O.V. Borodin

Oleg V. Borodin

IM SO RANNovosibirsk, 630090Russia

email: brdnoleg@math.nsc.ru

A.O. Ivanova

Anna O. Ivanova

Ammosov North-Eastern Federal University

email: shmgnanna@mail.ru

0000-0002-6179-3740

Title:

Tight description of faces in toroidal graphs with minimum degree at least 4

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-06-07 , Revised: 2023-10-26 , Accepted: 2023-10-27 , Available online: 2023-11-17 , https://doi.org/10.7151/dmgt.2529

Abstract:

The degree $d(x)$ of a vertex or face $x$ in a graph $G$ is the number of incident edges. A face $f=v_1\cdots v_{d(f)}$ in a graph $G$ on the plane or other orientable surface is of type $(k_1,k_2,\ldots)$ if $d(v_i)\le k_i$ for each $i$. By $\delta$ we denote the minimum vertex-degree of $G$. It follows from the classical theorem by Lebesgue (1940) that every plane triangulation with $\delta\ge4$ has a 3-face of types $(4,4,\infty)$, $(4,5,19)$, $(4,6,11)$, $(4,7,9)$, $(5,5,9)$, or $(5,6,7)$. In 1999, Jendrol' gave a similar description: ``$(4,4,\infty)$, $(4,5,13)$, $(4,6,17)$, $(4,7,8)$, $(5,5,7)$, $(5,6,6)$'' and conjectured that ``$(4,4,\infty)$, $(4,5,10)$, $(4,6,15)$, $(4,7,7)$, $(5,5,7)$, $(5,6,6)$'' holds. In 2002, Lebesgue's description was strengthened by Borodin to ``$(4,4,\infty)$, $(4,5,17)$, $(4,6,11)$, $(4,7,8)$, $(5,5,8)$, $(5,6,6)$''. In 2014, we obtained the following tight description, which, in particular, disproves the above mentioned conjecture by Jendrol': ``$(4,4,\infty)$, $(4,5,11)$, $(4,6,10)$, $(4,7,7)$, $(5,5,7)$, $(5,6,6)$'', and recently proved another tight description of faces in plane triangulations with $\delta\ge4$: ``$(4,4,\infty)$, $(4,6,10)$, $(4,7,7)$, $(5,5,8)$, $(5,6,7)$''. It follows from Lebesgue's theorem of 1940 that every plane 3-connected quadrangulation has a face of one of the types $(3,3,3,\infty)$, $(3,3,4,11)$, $(3,3,$ $5,7)$, $(3,4,4,5)$. Recently, we improved this description to ``$(3,3,3,\infty)$, $(3,3,4,9)$, $(3,3,5,6)$, $(3,4,4,5)$'', where all parameters except possibly $9$ are best possible and 9 cannot go down below 8. In 1995, Avgustinovich and Borodin proved the following tight description of the faces of torus quadrangulations with $\delta\ge3$: ``$(3,3,3,\infty)$, $(3, 3,$ $4, 10)$, $(3, 3, 5, 7)$, $(3, 3, 6, 6)$, $(3, 4, 4, 6)$, $(4, 4, 4, 4)$''. Recently, we proved that every triangulation with $\delta\ge4$ of the torus has a face of one of the types $(4,4,\infty)$, $(4,6,12)$, $(4,8,8)$, $(5,5,8)$, $(5,6,7)$, or $(6,6,6)$, which description is tight. The purpose of this paper is to prove that every graph with $\delta\ge4$ that admits a closed $2$-cell embedding on the torus has a face of one of the types $(4,4,4,4)$, $(4,4,\infty)$, $(4,5,16)$, $(4,6,12)$, $(4,8,8)$, $(5,5,8)$, $(5,6,7)$, or $(6,6,6)$, where all parameters are best possible.

Keywords:

plane graph, toroidal graph, degree, face, structure

References:

  1. S.V. Avgustinovich and O.V. Borodin, Edge neighborhoods in normal maps, Diskretn. Anal. Issled. Oper. 2(3) (1989) 9–12, in Russian.
    Translation in: Operations Research and Discrete Analysis, A.D. Korshunov (Eds), Math. Appl. (N.Y.) 391 (Springer Netherlands, 1997) 17–22.
    https://doi.org/10.1007/978-94-011-5678-3_3
  2. O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Mat. Zametki 46(5) (1989) 9–12, in Russian.
    Translation in: Math. Notes 46(5) (1989) 835–837.
    https://doi.org/10.1007/BF01139613
  3. O.V. Borodin, An improvement of Lebesgues theorem on the structure of minor faces of $3$-polytopes, Diskretn. Anal. Issled. Oper. 9(3) (2002) 29–39, in Russian.
  4. O.V. Borodin, Colorings of plane graphs: A survey, Discrete Math. 313 (2013) 517–539.
    https://doi.org/10.1016/j.disc.2012.11.011
  5. O.V. Borodin and A.O. Ivanova, Describing $3$-faces in normal plane maps with minimum degree $4$, Discrete Math. 313 (2013) 2841–2847.
    https://doi.org/10.1016/j.disc.2013.08.028
  6. O.V. Borodin and A.O. Ivanova, Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$, Sib. Math. J. 55 (2014) 12–18.
    https://doi.org/10.1134/S0037446614010030
  7. O.V. Borodin, A.O. Ivanova, New results about the structure of plane graphs: A survey, AIP Conference Proceedings 1907 (2017) 030051, 10.1063/1.5012673.
  8. O.V. Borodin and A.O. Ivanova, An improvement of Lebesgue's description of edges in $3$-polytopes and faces in plane quadrangulations, Discrete Math. 342 (2019) 1820–1827.
    https://doi.org/10.1016/j.disc.2019.02.019
  9. O.V. Borodin and A.O. Ivanova, Tight description of faces in torus triangulations with minimum degree $5$, Sib. Èlektron. Mat. Izv. 18 (2021) 1475–1481.
    https://doi.org/10.33048/semi.2021.18.110
  10. O.V. Borodin and A.O. Ivanova, Combinatorial structure of faces in triangulations on surfaces, Sib. Math. J. 63 (2022) 662–669.
    https://doi.org/10.1134/S0037446622040061
  11. O.V. Borodin and A.O. Ivanova, Another tight description of faces in plane triangulations with minimum degree $4$, Discrete Math. 345(9) (2022) 112964.
    https://doi.org/10.1016/j.disc.2022.112964
  12. O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014) 47–61.
    https://doi.org/10.1016/j.disc.2013.11.021
  13. D.W. Cranston and D.B. West, An introduction to the discharging method via graph coloring, Discrete Math. 340 (2017) 766–793.
    https://doi.org/10.1016/j.disc.2016.11.022
  14. B. Grünbaum, Polytopal graphs, in: Studies in Graph Theory, Part II, D.R. Fulkerson (Ed(s)), (MMA Studies in Mathematics 12 1975) 201–224.
  15. M. Horňák and S. Jendrol', Unavoidable sets of face types for planar maps, Discuss. Math. Graph Theory 16 (1996) 123–141.
    https://doi.org/10.7151/dmgt.1028
  16. S. Jendrol', Triangles with restricted degrees of their boundary vertices in plane triangulations, Discrete Math. 196 (1999) 177–196.
    https://doi.org/10.1016/S0012-365X(98)00172-1
  17. S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane – A survey, Discrete Math. 313 (2013) 406–421.
    https://doi.org/10.1016/j.disc.2012.11.007
  18. A. Kotzig, From the theory of Euler's polyhedrons, Mat.-Fyz. Čas. 13 (1963) 20–34, in Russian.
  19. H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27–43.
  20. B. Mohar, R. Škrekovski and H.-J. Voss, Light subgraphs in planar graphs of minimum degree $4$ and edge-degree $9$, J. Graph Theory 44 (2003) 261–295.
    https://doi.org/10.1002/jgt.10144
  21. O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics, W.T. Tutte (Ed(s)), (Academic Press, New York 1969) 287–293.

Close