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Abstract

The degree d(x) of a vertex or face x in a graph G is the number of
incident edges. A face f = v1---vg() in a graph G on the plane or other
orientable surface is of type (ki,ka,...) if d(v;) < k; for each i. By ¢ we
denote the minimum vertex-degree of G.

It follows from the classical theorem by Lebesgue (1940) that every plane
triangulation with § > 4 has a 3-face of types (4,4, 00), (4,5,19), (4,6,11),
(4,7,9), (5,5,9), or (5,6,7). In 1999, Jendrol’ gave a similar description:
“(4,4,00), (4,5,13), (4,6,17), (4,7,8), (5,5,7), (5,6,6)” and conjectured
that “(4,4, ), (4,5,10), (4,6,15), (4,7,7), (5,5,7), (5,6,6)” holds. In 2002,
Lebesgue’s description was strengthened by Borodin to “(4,4, o0), (4,5,17),
(4,6,11), (4,7,8), (5,5,8), (5,6,6)”. In 2014, we obtained the following tight
description, which, in particular, disproves the above mentioned conjecture
by Jendrol’: “(4,4,00), (4,5,11), (4,6,10), (4,7,7), (5,5,7), (5,6,6)", and
recently proved another tight description of faces in plane triangulations
with § > 4: “(4,4,00), (4,6,10), (4,7,7), (5,5,8), (5,6,7)”.

It follows from Lebesgue’s theorem of 1940 that every plane 3-connected
quadrangulation has a face of one of the types (3,3, 3,00), (3,3,4,11), (3,3,
5,7), (3,4,4,5). Recently, we improved this description to “(3,3,3,00),
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(3,3,4,9), (3,3,5,6), (3,4,4,5)”, where all parameters except possibly 9
are best possible and 9 cannot go down below 8.

In 1995, Avgustinovich and Borodin proved the following tight descrip-
tion of the faces of torus quadrangulations with § > 3: “(3,3,3,00), (3,3,
4,10), (3,3,5,7), (3,3,6,6), (3,4,4,6), (4,4,4,4)".

Recently, we proved that every triangulation with § > 4 of the torus has
a face of one of the types (4,4,00), (4,6,12), (4,8,8), (5,5,8), (5,6,7), or
(6,6,6), which description is tight.

The purpose of this paper is to prove that every graph with § > 4 that
admits a closed 2-cell embedding on the torus has a face of one of the types
(4,4,4,4), (4,4,), (4,5,16), (4,6,12), (4,8,8), (5,5,8), (5,6,7), or (6,6,6),
where all parameters are best possible.
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1. INTRODUCTION

The degree d(x) of a vertex or face x in a a plane or torus graph G is the number of
incident edges. A k-vertexr and k-face is one of degree k, a k™ -vertex has degree
at least k, and so on. A face f in a graph G on the plane or torus is of type
(k1,ka,...), or a (ki, ka,...)-face if d(v;) < k; for each i. By 0 and w denote the
minimum vertex degree and smallest degree-sum of faces in G, respectively.

We now recall some results on the structure of faces in plane graph with
d > 3, beginning with the fundamental theorem of Lebesgue [19] from 1940.

Theorem 1 (Lebesgue [19]). Every plane graph with § > 3 has a face of one of
the following types:

(3,6,00), (3,7,41), (3,8,23), (3,9,17), (3,10,14), (3,11,13),
(4,4,00), (4,5,19), (4,6,11), (4,7,9), (5,5,9), (5,6,7),
(3,3,3,0), (3,3,4,11), (3,3,5,7), (3,4,4,5), (3,3,3,3,5).

The classical Theorem 1, along with other ideas in Lebesgue [19], has a
lot of applications to plane graph coloring problems (the first example of such
applications and recent surveys can be found in [4,13,17,21]).

Some parameters of Lebesgue’s theorem were improved for several narrow
classes of plane graphs. Back in 1963, Kotzig [18] proved that every plane tri-
angulation with § = 5 satisfies w < 18 and conjectured that w < 17 holds. In
1989, Kotzig’s conjecture was confirmed by Borodin [2] in a more general form
by proving that every such a graph has a (5, 5, 7)-face or a (5, 6, 6)-face, where all
parameters are tight. This result also confirmed a conjecture of Griinbaum [14]
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from 1975 on the cyclic 11-connectivity of 5-connected planar graphs, and it has
been extended to several classes of plane graphs over the last decades; see, for
example, recent surveys [7,13,17] and also [3-5,15, 16, 20].

It follows from the classical theorem by Lebesgue [19] that every plane tri-
angulation with § > 4 has a 3-face of types (4,4, o), (4,5,19), (4,6,11), (4,7,9),
(5,5,9), or (5,6,7). In 1999, Jendrol’ [16] gave a similar description: “(4,4, c0),
(4,5,13), (4,6,17), (4,7,8), (5,5,7), (5,6,6)” and conjectured that “(4,4,c0),
(4,5,10), (4,6,15), (4,7,7), (5,5,7), (5,6,6)” holds. In 2002, Lebesgue’s descrip-
tion was strengthened by Borodin [3] to “(4,4,00), (4,5,17), (4,6,11), (4,7,8),
(5,5,8), (5,6,6)”. In 2014, we obtained [6] the following tight description, which,
in particular, disproves the above mentioned conjecture by Jendrol: “(4,4, o),
(4,5,11), (4,6,10), (4,7,7), (5,5,7), (5,6,6)”, and recently proved [11] another
tight description of faces in plane triangulations with § > 4: “(4,4, 00), (4,6, 10),
(4,7,7), (5,5,8), (5,6,7)".

In particular, precise descriptions of the structure of faces were obtained
for plane graphs with § > 4 (Borodin, Ivanova [5]) and for plane triangulations
(Borodin, Ivanova, Kostochka [12]). It follows from Theorem 1 that every plane
quadrangulation with § > 3 has a face of one of the types (3,3, 3,0), (3,3,4,11),
(3,3,5,7), (3,4,4,5). Recently, we improved [8] this result to the following de-
scription:  “(3,3,3,00), (3,3,4,9), (3,3,5,6), (3,4,4,5)”, where all parameters
except possibly 9 are best possible, while 9 cannot go down below 8.

In 1995, Avgustinovich and Borodin gave the following tight description of
faces in quadrangulations of the torus.

Theorem 2 (Avgustinovich, Borodin [1]). Every torus quadrangulation with § >
3 has a face of one of the following types: (3,3,3,00), (3,3,4,10), (3,3,5,7),
(3,3,6,6), (3,4,4,6), (4,4,4,4), where all parameters are best possible.

Recently, we proved [9] that every toroidal triangulation with 6 > 5 has a face
of one of the types (5,5, 8), (5,6,7), or (6,6,6), and later on we extended [10] this
description to § > 4 as follows: “(4,4,00), (4,6,12), (4,8,8), (5,5,8), (5,6,7),
(6,6,6)”, which is also tight.

The purpose of our paper is to prove the following further extension of the
result in [10].

Theorem 3. FEvery graph with § > 4 that admits a closed 2-cell embedding on
the torus has a face of one of the types:

(Ta) (4,4,4,4),

(Tb) (4,4, 00),

(Tc) (4,5,16),

(Td) (4,6,12),

(Te) (4,8,8),
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(Tf) (5,5,8),
(Tg) (5,6,7), or
(Th) (6,6,6),

where all parameters are best possible.

2. THE TIGHTNESS OF THEOREM 3

It is easy to construct a 4-regular quadrangulation of the torus; for example,
by deleting all 4-vertices from a graph on Figure 4, so the item (Ta) in our
description is necessary. Now to justify (Tc), it suffices to replace each face of
such a quadrangulation by a construction in Figure 1.

4 4 16 16

Figure 1. All 3-faces are of type (4,5,16), and there are no (4, 4,4, 4)-faces.

The tightness of (Tb) is confirmed by the double n-pyramid augmented by
an edge joining its n-vertices. Figure 2 represents a bipartite torus graph with
four 6-faces. Putting a vertex inside each its face and joining it with the six
boundary vertices produces a 6-regular triangulation 7'(6,6,6), which confirms
the necessity and sharpness of (Th).

Next we put a vertex on every edge of T'(6, 6, 6), followed by putting a vertex
v(f) inside each 6-face f obtained and joining v(f) with the six vertices of f; this
results in a triangulation 7'(4, 6,12) confirming the tightness of (Td).
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Figure 2. A bipartite torus graph with four 6-faces ([10]).

6 6 12 4 12

Figure 3. Producing a torus graph with all faces of type (4,6, 12) ([10]).

The next two constructions confirm the tightness of (Te) and (Tf), respec-
tively.
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Figure 4. All faces are of type (4,8,8) ([10]).

0 1 2 0

Figure 5. A torus graph with all (5,5, 8)-faces (]9]).
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Finally, replacing each 6-face in Figure 2 by the construction shown in Fig-
ure 6 produces a torus triangulation which confirms that the term (Th) in The-
orem 3 is also best possible.

N

Figure 6. A replacement for each 6-face in Figure 1 which results in all faces of type
(57,67, 77) ([9]).

3. PROVING THE EXISTENCE OF FACE-TYPES IN THEOREM 3

Suppose G is a counterexample to Theorem 3. Euler’s formula |V|—|E|+|F| =0
for GG, where V and F' are the sets of its vertices and faces, respectively, can be
rewritten as follows.
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(1) > (d(v) =6)+ Y (2d(f) —

veV fer

We assign a charge p(v) = d(v) — 6 to every vertex v and p(f) = 2d(f) —
to every face f of GG, so that only 5~ -vertices have a negative charge. Using the
properties of G as a counterexample, we define a local redistribution of charges,
preserving their sum, such that the new charge 1/ (x) satisfies p/(x) > 0 whenever
x € VUF and there is at least one z in VUF with p/(z) > 0. This will contradict
the fact that the sum of the new charges is by (1) equal to 0.

In what follows, by “non-(k, 1, m)!” we mean a short-hand for “since T" has no

(k,l, m)-faces”. The neighbors of a vertex or face = in a cyclic order are denoted
by v1,v2, ..., Vg(z)-

We use the following rules R1-R3 of discharging (see Figure 7).
R1. Every 4"-face gives % to each incident vertex of degree 4 or 5.

R2. Each 4-vertex v in a face fi; = vivve with d(vy) < d(vg) (where d(vy) > 5
due to non-(4, 4, 00)!) receives the following charges from vy, vy through fi.

(R2a) If d(v1) = 5 or d(v1) = 6, then d(v2) > 17 due to non-(4,5,16)! or
d(vg) > 13 due to non-(4, 6, 12)!, respectively, and vy gives % to v.

(R2b) Suppose 7 < d(v1) < 8; then d(vy) > 9 by non-(4, 8,8)!, and now ve gives
% to v, while v; gives %.

(R2c¢) If d(vy) > 9, then each of v; and ve gives % to v.

R3. Each 5-vertex v in a face fi = wivvy receives the following charges from
v1, U9 through f.

(R3a) If d(v1) = 7, then vy gives L.
(R3b) If d(v1) = 8 (and hence d(v2) > 6 due to non-(5,5,8)!), then vy gives 2.
(R3c) If 9 < d(v1) < 12 and d(vg) > 6, then vy gives % to v.

(R3d) Suppose d(vy) > 6; then vy gives to v:

(R3d1) 1 if 13 < d(v;) < 16, or

(R3d2) % if d(v1) > 17.

(

R3e) If d(v2) = 5 (and hence d(v1) > 9 by non-(5,5,8)!), then v gives % to v
and, by symmetry, also to vs.

(R3f) If d(v2) = 4 (and hence d(v1) > 17 by non-(4,5,16)!), then vy gives & to v.

We now check that p/(z) > 0 whenever z € VU F' and at least one vertex or
face has a strictly positive new charge 1’
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R1

V\

V8
(17+ v 13%) (9%)
5 (6*

\5

24
\!' / (b)
8 9+12
6+ 5 5
l (d2) (e)
13+ 16 17t (97)

(177%)

Figure 7. Rules of discharging.

First consider f € F. If d(f)

w > 0 in view of R1. In particular, ¢/(f) > 0 when d(f) > 5.

From now on suppose v € V. Here, our proof splits.

= 3, then p/(f) = pu(f) = 0 as f does not
participate in discharging. If d(f) > 4, then p/(f) > 2d(f) — 6 — d(f) x

1

5 =

Case 1. d(v) = 4. Note that v receives the total of at least & = 1+ & through
each incident face by R1, R2 due to non-(4, 4, c0)!, non-(4, 5, 16)!, non-(4, 6, 12)!,
and non-(4, 8, 8)!. Thus we already have u/(v) >4 —6+4 x % = (. Furthermore,
it is not difficult to see that in fact x/(v) > 0 if v participates at least once in

R2c.
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Case 2. d(v) = 5. We know that v receives 3 from each 4*-face by RI.
Through each 3-face, v receives é by R3f and at least % by R3a—R3e. It is
easy to see that p/(v) > 5—6+2x 3+ 3 x é > 0 if v is incident with at
least two 4T-faces. If v belongs to the boundary of precisely one 4-face, then

1

W) > -1+ % +4 x g > 0, with the equality only when each of its incident
3-faces participates in R3f. In particular, p/(v) > 0 unless v has at least two
17" -neighbors due to non-(4,5, 16)!.

From now on suppose v is completely surrounded by 3-faces. Note that v
has at most two 6 -neighbors by non-(5,6,6)!, so we can assume that d(vy) > 7,
d(vz) > 7 and d(vg) > 7.

To ensure p'(v) > 0, it suffices, due to symmetry, to check that v receives the
total of at least % from v1, vo and v3 through the faces fi = vivve, fo = vovus
and f3 = vzvvy.

If d(vy) = 4, then d(vy) > 17 and d(v3) > 17 by non-(4,5,16)!, so we are
done already due to the contribution of % from v3 by R3d2.

For d(vy) = 5, we have d(v1) > 9 and d(v3) > 9 by non-(5, 5, 8)!, so v receives
% + % from v3 by R3c or R3d1 combined with R3e. Furthermore, v receives %
from v; by R3e. Thus v receives % + 2 x % > % from v; and v3 through the faces
fi, f2 and fs.

Next suppose d(v2) = 6; now d(v1) > 8 and d(v3) > 8 by non-(5,6,7)!. This
means that v receives from v3 either 2 x % by R3b if d(v3) = 8, or 2 x % by R3c
combined with R3d1 when d(vs) > 9. From v;, our v receives through f; either
2 by R3b if d(v1) = 8, or 3 by R3c when 9 < d(v1) < 12. Now if d(v) > 13,
then vy sends to v through f; either % by R3d1 or % by R3d2. In total, v receives
at least 3 x % > % through the faces fi, fo and fs.

Finally, suppose d(vy) > 7. Here, v receives from vy through the faces f; and
f2 either at least 2 x % by R3a-R3c when d(vy) < 12, or 2 x % by R3d1 otherwise.
By symmetry, the same donation occurs from vs through fo and f3, and so v
receives at least % > % from v9 and vs through the faces f1, fo and fs, as desired.

In particular, we have proved that a 5-vertex v not only satisfies p/(v) > 0,
but in fact 4/(v) > 0 holds unless v is incident with precisely one 47-face and has
two or three 17*-neighbors along with three or two 4-neighbors, respectively.

Case 3. d(v) = 6. Since v does not participate in discharging, we have
w(v)=6—-6=0.

Case 4. d(v) = 7. Such a vertex v sends at most % through each incident 3-
face which is incident with a 5~ -vertex; namely, by R2b and R3a. If v is incident
with at least one 4*-face, then p/(v) > 7 —6 — 6 x % = 0. Otherwise, due to
non-(5,5,8)!, our v has at most three 5~ -neighbors, and hence again we have
W) >1-2x3x % = 0, as desired.
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Case 5. d(v) = 8. Now v can only send at most % through each incident
3-face by R2b or R3b, in view of non-(5, 5, 8)!, which means that u/(v) > 8 — 6 —
8 x 7 > 0.

Case 6. 9 < d(v) < 12. Note that v sends  through each incident 3-face to
a unique 5~ -vertex in the boundary of that face by R2b, R2c and R3c or 2 x %
through a face incident with two 5-vertices by R3e due to non-(4,5,16)!. This
implies 4/ (v) > d(v) — 6 — %U) = %)_9) > 0. In particular, 4/(v) > 0 whenever
10 < d(v) < 12.

Now suppose d(v) = 9. If v is incident with a 4*-face or has two consecutive
6*-neighbors in an incident 3-face, then y/(v) > 9 — 6 — 8 x £ > 0. Otherwise, v
is completely surrounded by 3-faces and, by parity reasons, has two consecutive
5-neighbors, which implies p/(v) > 3 — 8 x % — % > 0.

Case 7. 13 < d(v) < 16. Such a v sends through each incident 3-face at most
% to a unique 5~ -vertex by R2, R3d1 or 2 x % by R3e, since R3f is not applicable
in view of non-(4, 5,16)!. This implies that p'(v) > d(v) — 6 — @ > w > 0.

Case 8. d(v) > 17. Here, v sends through each incident 3-face vvive either
1+ £ by R2a combined with R3f if d(v1) = 4 and d(v2) = 5, or at most 3 by R2,
R3 otherwise, which yields p/(v) > d(v) — 6 — 5dév) = 3(d(v§716) > 0.

Remark 4. Thus we have proved p/(v) > 0 for every v € V. Furthermore, as
shown in Cases 5-8, a vertex v satisfies p/(v) > 0 if d(v) > 8.

To arrive at a final contradiction with (1), it suffices to show, assuming
§(G) < 7, that in fact there is an x € V U F with g/(z) > 0, since this will imply

0=> (d(v)=6)+) (2d(f)=6)= > u'(x)>0.

veV feF zEVUF

To this aim, first consider a vertex v. If d(v) = 5, then, as shown in Case
2, 1/(v) > 0 unless v has a 17"-neighbor, which possibility is already excluded.
Thus it remains to assume that G has no 5-vertices.

Next suppose d(v) = 7. It now follows from non-(4, 8, 8)! that v cannot send
a positive charge through a 3-face by R2b due to the absence of 9™ -vertices in G
and since R3a is not applicable because of the absence of 5-vertices, which means
that #/(v) = p(v) = 1. Thus it remains to assume, moreover, that G has no
7T-vertices either.

Furthermore, now each 3-face of G must be incident with three 6~ -vertices,
contrary to non-(6,6,6)!. This implies that G has no 3-faces.

Finally, as follows from an inequality two lines above Case 1, G cannot have
5T-faces since they have p/ > 0. Hence all faces of G are 4-faces. However, each
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4-face f must be incident with at least one 6-vertex by non-(4,4,4,4)!, which 6-
vertex does not receive charge from f by R1, and so p/(f) > 2x4—-6—3x % > 0.

1]

[10]

[11]

This contradiction completes the proof of Theorem 3.
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