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Abstract

The degree d(x) of a vertex or face x in a graph G is the number of
incident edges. A face f = v1 · · · vd(f) in a graph G on the plane or other
orientable surface is of type (k1, k2, . . .) if d(vi) ≤ ki for each i. By δ we
denote the minimum vertex-degree of G.

It follows from the classical theorem by Lebesgue (1940) that every plane
triangulation with δ ≥ 4 has a 3-face of types (4, 4,∞), (4, 5, 19), (4, 6, 11),
(4, 7, 9), (5, 5, 9), or (5, 6, 7). In 1999, Jendrol’ gave a similar description:
“(4, 4,∞), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6)” and conjectured
that “(4, 4,∞), (4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6)” holds. In 2002,
Lebesgue’s description was strengthened by Borodin to “(4, 4,∞), (4, 5, 17),
(4, 6, 11), (4, 7, 8), (5, 5, 8), (5, 6, 6)”. In 2014, we obtained the following tight
description, which, in particular, disproves the above mentioned conjecture
by Jendrol’: “(4, 4,∞), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6)”, and
recently proved another tight description of faces in plane triangulations
with δ ≥ 4: “(4, 4,∞), (4, 6, 10), (4, 7, 7), (5, 5, 8), (5, 6, 7)”.

It follows from Lebesgue’s theorem of 1940 that every plane 3-connected
quadrangulation has a face of one of the types (3, 3, 3,∞), (3, 3, 4, 11), (3, 3,
5, 7), (3, 4, 4, 5). Recently, we improved this description to “(3, 3, 3,∞),
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(3, 3, 4, 9), (3, 3, 5, 6), (3, 4, 4, 5)”, where all parameters except possibly 9
are best possible and 9 cannot go down below 8.

In 1995, Avgustinovich and Borodin proved the following tight descrip-
tion of the faces of torus quadrangulations with δ ≥ 3: “(3, 3, 3,∞), (3, 3,
4, 10), (3, 3, 5, 7), (3, 3, 6, 6), (3, 4, 4, 6), (4, 4, 4, 4)”.

Recently, we proved that every triangulation with δ ≥ 4 of the torus has
a face of one of the types (4, 4,∞), (4, 6, 12), (4, 8, 8), (5, 5, 8), (5, 6, 7), or
(6, 6, 6), which description is tight.

The purpose of this paper is to prove that every graph with δ ≥ 4 that
admits a closed 2-cell embedding on the torus has a face of one of the types
(4, 4, 4, 4), (4, 4,∞), (4, 5, 16), (4, 6, 12), (4, 8, 8), (5, 5, 8), (5, 6, 7), or (6, 6, 6),
where all parameters are best possible.

Keywords: plane graph, toroidal graph, degree, face, structure.
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1. Introduction

The degree d(x) of a vertex or face x in a a plane or torus graph G is the number of
incident edges. A k-vertex and k-face is one of degree k, a k+-vertex has degree
at least k, and so on. A face f in a graph G on the plane or torus is of type
(k1, k2, . . .), or a (k1, k2, . . .)-face if d(vi) ≤ ki for each i. By δ and w denote the
minimum vertex degree and smallest degree-sum of faces in G, respectively.

We now recall some results on the structure of faces in plane graph with
δ ≥ 3, beginning with the fundamental theorem of Lebesgue [19] from 1940.

Theorem 1 (Lebesgue [19]). Every plane graph with δ ≥ 3 has a face of one of
the following types:

(3, 6,∞), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),
(4, 4,∞), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7),

(3, 3, 3,∞), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5), (3, 3, 3, 3, 5).

The classical Theorem 1, along with other ideas in Lebesgue [19], has a
lot of applications to plane graph coloring problems (the first example of such
applications and recent surveys can be found in [4, 13,17,21]).

Some parameters of Lebesgue’s theorem were improved for several narrow
classes of plane graphs. Back in 1963, Kotzig [18] proved that every plane tri-
angulation with δ = 5 satisfies w ≤ 18 and conjectured that w ≤ 17 holds. In
1989, Kotzig’s conjecture was confirmed by Borodin [2] in a more general form
by proving that every such a graph has a (5, 5, 7)-face or a (5, 6, 6)-face, where all
parameters are tight. This result also confirmed a conjecture of Grünbaum [14]
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from 1975 on the cyclic 11-connectivity of 5-connected planar graphs, and it has
been extended to several classes of plane graphs over the last decades; see, for
example, recent surveys [7, 13,17] and also [3–5,15,16,20].

It follows from the classical theorem by Lebesgue [19] that every plane tri-
angulation with δ ≥ 4 has a 3-face of types (4, 4,∞), (4, 5, 19), (4, 6, 11), (4, 7, 9),
(5, 5, 9), or (5, 6, 7). In 1999, Jendrol’ [16] gave a similar description: “(4, 4,∞),
(4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6)” and conjectured that “(4, 4,∞),
(4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6)” holds. In 2002, Lebesgue’s descrip-
tion was strengthened by Borodin [3] to “(4, 4,∞), (4, 5, 17), (4, 6, 11), (4, 7, 8),
(5, 5, 8), (5, 6, 6)”. In 2014, we obtained [6] the following tight description, which,
in particular, disproves the above mentioned conjecture by Jendrol’: “(4, 4,∞),
(4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6)”, and recently proved [11] another
tight description of faces in plane triangulations with δ ≥ 4: “(4, 4,∞), (4, 6, 10),
(4, 7, 7), (5, 5, 8), (5, 6, 7)”.

In particular, precise descriptions of the structure of faces were obtained
for plane graphs with δ ≥ 4 (Borodin, Ivanova [5]) and for plane triangulations
(Borodin, Ivanova, Kostochka [12]). It follows from Theorem 1 that every plane
quadrangulation with δ ≥ 3 has a face of one of the types (3, 3, 3,∞), (3, 3, 4, 11),
(3, 3, 5, 7), (3, 4, 4, 5). Recently, we improved [8] this result to the following de-
scription: “(3, 3, 3,∞), (3, 3, 4, 9), (3, 3, 5, 6), (3, 4, 4, 5)”, where all parameters
except possibly 9 are best possible, while 9 cannot go down below 8.

In 1995, Avgustinovich and Borodin gave the following tight description of
faces in quadrangulations of the torus.

Theorem 2 (Avgustinovich, Borodin [1]). Every torus quadrangulation with δ ≥
3 has a face of one of the following types: (3, 3, 3,∞), (3, 3, 4, 10), (3, 3, 5, 7),
(3, 3, 6, 6), (3, 4, 4, 6), (4, 4, 4, 4), where all parameters are best possible.

Recently, we proved [9] that every toroidal triangulation with δ ≥ 5 has a face
of one of the types (5, 5, 8), (5, 6, 7), or (6, 6, 6), and later on we extended [10] this
description to δ ≥ 4 as follows: “(4, 4,∞), (4, 6, 12), (4, 8, 8), (5, 5, 8), (5, 6, 7),
(6, 6, 6)”, which is also tight.

The purpose of our paper is to prove the following further extension of the
result in [10].

Theorem 3. Every graph with δ ≥ 4 that admits a closed 2-cell embedding on
the torus has a face of one of the types:

(Ta) (4, 4, 4, 4),

(Tb) (4, 4,∞),

(Tc) (4, 5, 16),

(Td) (4, 6, 12),

(Te) (4, 8, 8),
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(Tf) (5, 5, 8),

(Tg) (5, 6, 7), or

(Th) (6, 6, 6),

where all parameters are best possible.

2. The Tightness of Theorem 3

It is easy to construct a 4-regular quadrangulation of the torus; for example,
by deleting all 4-vertices from a graph on Figure 4, so the item (Ta) in our
description is necessary. Now to justify (Tc), it suffices to replace each face of
such a quadrangulation by a construction in Figure 1.

4 4

4 4

16 16

16 16

Figure 1. All 3-faces are of type (4, 5, 16), and there are no (4, 4, 4, 4)-faces.

The tightness of (Tb) is confirmed by the double n-pyramid augmented by
an edge joining its n-vertices. Figure 2 represents a bipartite torus graph with
four 6-faces. Putting a vertex inside each its face and joining it with the six
boundary vertices produces a 6-regular triangulation T (6, 6, 6), which confirms
the necessity and sharpness of (Th).

Next we put a vertex on every edge of T (6, 6, 6), followed by putting a vertex
v(f) inside each 6-face f obtained and joining v(f) with the six vertices of f ; this
results in a triangulation T (4, 6, 12) confirming the tightness of (Td).
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Figure 2. A bipartite torus graph with four 6-faces ([10]).

6 12

6 6 12 12

44

4

Figure 3. Producing a torus graph with all faces of type (4, 6, 12) ([10]).

The next two constructions confirm the tightness of (Te) and (Tf), respec-
tively.
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Figure 4. All faces are of type (4, 8, 8) ([10]).
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Figure 5. A torus graph with all (5, 5, 8)-faces ([9]).
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Finally, replacing each 6-face in Figure 2 by the construction shown in Fig-
ure 6 produces a torus triangulation which confirms that the term (Th) in The-
orem 3 is also best possible.

Figure 6. A replacement for each 6-face in Figure 1 which results in all faces of type
(5+, 6+, 7+) ([9]).

3. Proving the Existence of Face-Types in Theorem 3

Suppose G is a counterexample to Theorem 3. Euler’s formula |V |−|E|+ |F | = 0
for G, where V and F are the sets of its vertices and faces, respectively, can be
rewritten as follows.
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∑
v∈V

(d(v)− 6) +
∑
f∈F

(2d(f)− 6) = 0.(1)

We assign a charge µ(v) = d(v) − 6 to every vertex v and µ(f) = 2d(f) − 6
to every face f of G, so that only 5−-vertices have a negative charge. Using the
properties of G as a counterexample, we define a local redistribution of charges,
preserving their sum, such that the new charge µ′(x) satisfies µ′(x) ≥ 0 whenever
x ∈ V ∪F and there is at least one x in V ∪F with µ′(x) > 0. This will contradict
the fact that the sum of the new charges is by (1) equal to 0.

In what follows, by “non-(k, l,m)!” we mean a short-hand for “since T has no
(k, l,m)-faces”. The neighbors of a vertex or face x in a cyclic order are denoted
by v1, v2, . . . , vd(x).

We use the following rules R1–R3 of discharging (see Figure 7).

R1. Every 4+-face gives 1
2 to each incident vertex of degree 4 or 5.

R2. Each 4-vertex v in a face f1 = v1vv2 with d(v1) ≤ d(v2) (where d(v1) ≥ 5
due to non-(4, 4,∞)!) receives the following charges from v1, v2 through f1.

(R2a) If d(v1) = 5 or d(v1) = 6, then d(v2) ≥ 17 due to non-(4, 5, 16)! or
d(v2) ≥ 13 due to non-(4, 6, 12)!, respectively, and v2 gives 1

2 to v.

(R2b) Suppose 7 ≤ d(v1) ≤ 8; then d(v2) ≥ 9 by non-(4, 8, 8)!, and now v2 gives
1
3 to v, while v1 gives 1

6 .

(R2c) If d(v1) ≥ 9, then each of v1 and v2 gives 1
3 to v.

R3. Each 5-vertex v in a face f1 = v1vv2 receives the following charges from
v1, v2 through f .

(R3a) If d(v1) = 7, then v1 gives 1
7 .

(R3b) If d(v1) = 8 (and hence d(v2) ≥ 6 due to non-(5, 5, 8)!), then v1 gives 5
24 .

(R3c) If 9 ≤ d(v1) ≤ 12 and d(v2) ≥ 6, then v1 gives 1
3 to v.

(R3d) Suppose d(v2) ≥ 6; then v1 gives to v:

(R3d1) 1
3 if 13 ≤ d(v1) ≤ 16, or

(R3d2) 1
2 if d(v1) ≥ 17.

(R3e) If d(v2) = 5 (and hence d(v1) ≥ 9 by non-(5, 5, 8)!), then v1 gives 1
7 to v

and, by symmetry, also to v2.

(R3f) If d(v2) = 4 (and hence d(v1) ≥ 17 by non-(4, 5, 16)!), then v1 gives 1
8 to v.

We now check that µ′(x) ≥ 0 whenever x ∈ V ∪F and at least one vertex or
face has a strictly positive new charge µ′.
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R1

R2
4 5 ∨ 6 4 7 ∨ 8 4 9+
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Figure 7. Rules of discharging.

First consider f ∈ F . If d(f) = 3, then µ′(f) = µ(f) = 0 as f does not
participate in discharging. If d(f) ≥ 4, then µ′(f) ≥ 2d(f) − 6 − d(f) × 1

2 =
3(d(v)−4)

2 ≥ 0 in view of R1. In particular, µ′(f) > 0 when d(f) ≥ 5.

From now on suppose v ∈ V . Here, our proof splits.

Case 1. d(v) = 4. Note that v receives the total of at least 1
2 = 1

3 +
1
6 through

each incident face by R1, R2 due to non-(4, 4,∞)!, non-(4, 5, 16)!, non-(4, 6, 12)!,
and non-(4, 8, 8)!. Thus we already have µ′(v) ≥ 4− 6+ 4× 1

2 = 0. Furthermore,
it is not difficult to see that in fact µ′(v) > 0 if v participates at least once in
R2c.
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Case 2. d(v) = 5. We know that v receives 1
2 from each 4+-face by R1.

Through each 3-face, v receives 1
8 by R3f and at least 1

7 by R3a–R3e. It is
easy to see that µ′(v) ≥ 5 − 6 + 2 × 1

2 + 3 × 1
8 > 0 if v is incident with at

least two 4+-faces. If v belongs to the boundary of precisely one 4+-face, then
µ′(v) ≥ −1 + 1

2 + 4 × 1
8 ≥ 0, with the equality only when each of its incident

3-faces participates in R3f. In particular, µ′(v) > 0 unless v has at least two
17+-neighbors due to non-(4, 5, 16)!.

From now on suppose v is completely surrounded by 3-faces. Note that v
has at most two 6−-neighbors by non-(5, 6, 6)!, so we can assume that d(v1) ≥ 7,
d(v3) ≥ 7 and d(v4) ≥ 7.

To ensure µ′(v) ≥ 0, it suffices, due to symmetry, to check that v receives the
total of at least 1

2 from v1, v2 and v3 through the faces f1 = v1vv2, f2 = v2vv3
and f3 = v3vv4.

If d(v2) = 4, then d(v1) ≥ 17 and d(v3) ≥ 17 by non-(4, 5, 16)!, so we are
done already due to the contribution of 1

2 from v3 by R3d2.

For d(v2) = 5, we have d(v1) ≥ 9 and d(v3) ≥ 9 by non-(5, 5, 8)!, so v receives
1
3 + 1

7 from v3 by R3c or R3d1 combined with R3e. Furthermore, v receives 1
7

from v1 by R3e. Thus v receives 1
3 + 2× 1

7 > 1
2 from v1 and v3 through the faces

f1, f2 and f3.

Next suppose d(v2) = 6; now d(v1) ≥ 8 and d(v3) ≥ 8 by non-(5, 6, 7)!. This
means that v receives from v3 either 2× 5

24 by R3b if d(v3) = 8, or 2× 1
3 by R3c

combined with R3d1 when d(v3) ≥ 9. From v1, our v receives through f1 either
5
24 by R3b if d(v1) = 8, or 1

3 by R3c when 9 ≤ d(v1) ≤ 12. Now if d(v1) ≥ 13,
then v1 sends to v through f1 either 1

3 by R3d1 or 1
2 by R3d2. In total, v receives

at least 3× 5
24 > 1

2 through the faces f1, f2 and f3.

Finally, suppose d(v2) ≥ 7. Here, v receives from v2 through the faces f1 and
f2 either at least 2× 1

7 by R3a–R3c when d(v2) ≤ 12, or 2× 1
3 by R3d1 otherwise.

By symmetry, the same donation occurs from v3 through f2 and f3, and so v
receives at least 4

7 > 1
2 from v2 and v3 through the faces f1, f2 and f3, as desired.

In particular, we have proved that a 5-vertex v not only satisfies µ′(v) ≥ 0,
but in fact µ′(v) > 0 holds unless v is incident with precisely one 4+-face and has
two or three 17+-neighbors along with three or two 4-neighbors, respectively.

Case 3. d(v) = 6. Since v does not participate in discharging, we have
µ′(v) = 6− 6 = 0.

Case 4. d(v) = 7. Such a vertex v sends at most 1
6 through each incident 3-

face which is incident with a 5−-vertex; namely, by R2b and R3a. If v is incident
with at least one 4+-face, then µ′(v) ≥ 7 − 6 − 6 × 1

6 = 0. Otherwise, due to
non-(5, 5, 8)!, our v has at most three 5−-neighbors, and hence again we have
µ′(v) ≥ 1− 2× 3× 1

6 = 0, as desired.
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Case 5. d(v) = 8. Now v can only send at most 5
24 through each incident

3-face by R2b or R3b, in view of non-(5, 5, 8)!, which means that µ′(v) ≥ 8− 6−
8× 5

24 > 0.

Case 6. 9 ≤ d(v) ≤ 12. Note that v sends 1
3 through each incident 3-face to

a unique 5−-vertex in the boundary of that face by R2b, R2c and R3c or 2 × 1
7

through a face incident with two 5-vertices by R3e due to non-(4, 5, 16)!. This

implies µ′(v) ≥ d(v)− 6− d(v)
3 = 2(d(v)−9)

3 ≥ 0. In particular, µ′(v) > 0 whenever
10 ≤ d(v) ≤ 12.

Now suppose d(v) = 9. If v is incident with a 4+-face or has two consecutive
6+-neighbors in an incident 3-face, then µ′(v) ≥ 9− 6− 8× 1

3 > 0. Otherwise, v
is completely surrounded by 3-faces and, by parity reasons, has two consecutive
5-neighbors, which implies µ′(v) ≥ 3− 8× 1

3 − 2
7 > 0.

Case 7. 13 ≤ d(v) ≤ 16. Such a v sends through each incident 3-face at most
1
2 to a unique 5−-vertex by R2, R3d1 or 2× 1

7 by R3e, since R3f is not applicable

in view of non-(4, 5, 16)!. This implies that µ′(v) ≥ d(v)− 6− d(v)
2 > d(v)−12

2 > 0.

Case 8. d(v) ≥ 17. Here, v sends through each incident 3-face vv1v2 either
1
2 +

1
8 by R2a combined with R3f if d(v1) = 4 and d(v2) = 5, or at most 1

2 by R2,

R3 otherwise, which yields µ′(v) ≥ d(v)− 6− 5d(v)
8 = 3(d(v)−16)

8 > 0.

Remark 4. Thus we have proved µ′(v) ≥ 0 for every v ∈ V . Furthermore, as
shown in Cases 5–8, a vertex v satisfies µ′(v) > 0 if d(v) ≥ 8.

To arrive at a final contradiction with (1), it suffices to show, assuming
δ(G) ≤ 7, that in fact there is an x ∈ V ∪ F with µ′(x) > 0, since this will imply

0 =
∑
v∈V

(d(v)− 6) +
∑
f∈F

(2d(f)− 6) =
∑

x∈V ∪F
µ′(x) > 0.

To this aim, first consider a vertex v. If d(v) = 5, then, as shown in Case 2,
µ′(v) > 0 unless v has a 17+-neighbor, which possibility is already excluded.
Thus it remains to assume that G has no 5-vertices.

Next suppose d(v) = 7. It now follows from non-(4, 8, 8)! that v cannot send
a positive charge through a 3-face by R2b due to the absence of 9+-vertices in G
and since R3a is not applicable because of the absence of 5-vertices, which means
that µ′(v) = µ(v) = 1. Thus it remains to assume, moreover, that G has no
7-vertices either.

Furthermore, now each 3-face of G must be incident with three 6−-vertices,
contrary to non-(6, 6, 6)!. This implies that G has no 3-faces.

Finally, as follows from an inequality two lines above Case 1, G cannot have
5+-faces since they have µ′ > 0. Hence all faces of G are 4-faces. However, each
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4-face f must be incident with at least one 6-vertex by non-(4, 4, 4, 4)!, which 6-
vertex does not receive charge from f by R1, and so µ′(f) ≥ 2×4−6−3× 1

2 > 0.

This contradiction completes the proof of Theorem 3.
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