DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Ekstein

Jan Ekstein

DEPARTMENT OF MATHEMATICS
University of West Bohemia
Univerzitní 2732/8
301 00 Pilsen

email: ekstein@kma.zcu.cz

0000-0003-0047-7549

J. Teska

Jakub Teska

email: teska@kma.zcu.cz

Title:

Hamiltonian properties in generalized lexicographic products

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-05-15 , Revised: 2023-10-25 , Accepted: 2023-10-25 , Available online: 2023-11-14 , https://doi.org/10.7151/dmgt.2527

Abstract:

The lexicographic product $G[H]$ of two graphs $G$ and $H$ is obtained from $G$ by replacing each vertex with a copy of $H$ and adding all edges between any pair of copies corresponding to adjacent vertices of $G$. We consider also the generalized lexicographic product such that we replace each vertex of $G$ with arbitrary graph on the same number of vertices. We present sufficient and necessary conditions for traceability, hamiltonicity and hamiltonian connectivity of $G[H]$ if $G$ is a path and hence we improved and extended results in [M. Kriesell, A note on Hamiltonian cycles in lexicographical products, J. Autom. Lang. Comb. 2 (1997) 135–138].

Keywords:

lexicographic products, hamiltonian cycles and paths

References:

  1. Z. Baranyai and Gy.R. Szász, Hamiltonian decomposition of lexicographic product, J. Combin. Theory Ser. B 31 (1981) 253–261.
    https://doi.org/10.1016/0095-8956(81)90028-9
  2. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer, New York, 2008).
  3. R. Gu and H. Hou, End-regular and End-orthodox generalized lexicographic products of bipartite graphs, Open Math. 14 (2016) 229–236.
    https://doi.org/10.1515/math-2016-0021
  4. S.A. Choudum and T. Karthick, Maximal cliques in $\{P_2\cup P_3,C_4\}$-free graphs, Discrete Math. 310 (2010) 3398–3403.
    https://doi.org/10.1016/j.disc.2010.08.005
  5. T. Kaiser and M. Kriesell, On the pancyclicity of lexicographic products, Graphs Combin. 22 (2006) 51–58.
    https://doi.org/10.1007/s00373-005-0639-7
  6. M. Kriesell, A note on Hamiltonian cycles in lexicographical products, J. Autom. Lang. Comb. 2 (1997) 135–138.
  7. L.L. Ng, Hamiltonian decomposition of lexicographic products of digraphs, J. Combin. Theory Ser. B 73 (1998) 119–129.
    https://doi.org/10.1006/jctb.1998.1816
  8. V. Samodivkin, Domination related parameters in the generalized lexicographic product of graphs, Discrete Appl. Math. 300 (2021) 77–84.
    https://doi.org/10.1016/j.dam.2021.03.015
  9. H.-M. Teichert, Hamiltonian properties of the lexicographic product of undirected graphs, Elektronische Informationsverarbeitung Kybernetik 19 (1983) 67–77.

Close