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Abstract

The lexicographic product G[H] of two graphs G and H is obtained from
G by replacing each vertex with a copy of H and adding all edges between
any pair of copies corresponding to adjacent vertices of G. We consider also
the generalized lexicographic product such that we replace each vertex of G
with arbitrary graph on the same number of vertices. We present sufficient
and necessary conditions for traceability, hamiltonicity and hamiltonian con-
nectivity of G[H] if G is a path and hence we improved and extended results
in [M. Kriesell, A note on Hamiltonian cycles in lexicographical products, J.
Autom. Lang. Comb. 2 (1997) 135–138].
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1. Introduction

A product of graphs is well known graph operation (e.g. Cartesian, direct, lexico-
graphic) and study hamiltonian properties in some product of graphs is standard
problem in graph theory. In this paper we denote to a lexicographic product of
graphs.

The lexicographic product G[H] of two graphs G and H is defined by a vertex
set V (G[H]) = V (G) × V (H) and an edge set E(G[H]) = {(g, h)(g′, h′) : gg′ ∈
E(G) or g = g′ ∧ hh′ ∈ E(H)}. In other words, the lexicographic product G[H]
of two graphs G and H is obtained from G by replacing each vertex with a copy
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of H and adding all edges between any pair of copies corresponding to adjacent
vertices of G. A typical sufficient condition for the existence of a hamiltonian
cycle or a hamiltonian path in a lexicographic product G[H] forces G to contain
a hamiltonian cycle or a hamiltonian path and H to have some additional prop-
erties. Hamiltonian cycles and paths in lexicographic products have been studied
in [1, 5, 6, 7] and [9].

Clearly, G[H] contains a cycle of length 3 if both of G and H contain at
least one edge. Kaiser and Kriesell proved in [5] that concepts of pancyclicity
and hamiltonicity coincide in the case of lexicographic products of graphs with
at least one edge. Recall that the graph G is weakly pancyclic or pancyclic, if it
contains cycles of every length between the length of a shortest cycle and that of
a longest one, hamiltonian, respectively.

Theorem 1 [5]. If G, H are graphs with at least one edge each, then G[H] is
weakly pancyclic.

In this paper we consider also the concept of the generalized lexicographic
product mentioned in [3, 4] (defined as an expansion), and [8]. Basically, the
generalized lexicographic product is the graph G[H1, H2, . . . ,Hm], which will be
a graph like a lexicographic product with the difference that every vertex of G
can be replaced by a different graph Hi. Precisely, let G be a graph with V (G) =
{u1, u2, . . . , um} and Hi be an arbitrary graph i = 1, 2, . . . ,m. Then generalized
lexicographic product G[H1, H2, . . . ,Hm] of a graph G and H1, H2, . . . ,Hm is
obtained from G by replacing each vertex ui with the graph Hi and adding all
edges between graphs Hi and Hj if the corresponding vertices ui, uj are adjacent
in G. We say that G[H1, H2, . . . ,Hm] is lex-regular if the number of vertices of
Hi is the same for i = 1, 2, . . . ,m.

For a given graph G, we define π(G) to be the maximum number of edges of
a spanning linear forest of G (a forest is linear if its components are paths).

Main results of this paper are the following theorems which generalize and
improve some results from [6].

Theorem 2. Let P2k+1 be a path with odd number of vertices, k ≥ 1. Let
H1, H2, . . . ,H2k+1 be graphs with n vertices. The graph P2k+1[H1, H2, . . . ,H2k+1]
is

(i) hamiltonian if and only if π(H1) ≥ 1, π(H2k+1) ≥ 1, and∑k
i=0 π(H2i+1) ≥ n;

(ii) traceable if and only if
∑k

i=0 π(H2i+1) ≥ n− 1;

(iii) hamiltonian connected if and only if π(H1) ≥ 2; π(H2k+1) ≥ 2, and∑k
i=0 π(H2i+1) ≥ n+ 1.
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Theorem 3. Let P2k be a path with even number of vertices, k ≥ 1. Let H1, H2,
. . . , H2k be graphs with n vertices. Then the graph P2k[H1, H2, . . . ,H2k] is

(i) hamiltonian if and only if k = 1 or π(H1) ≥ 1 and π(H2k) ≥ 1;

(ii) traceable;

(iii) hamiltonian connected if and only if

• π(H1) ≥ 1 and π(H2k) ≥ 1 for k = 1;

• π(H1) ≥ 2 and π(H2) ≥ 2 for k > 1.

Observe that Theorems 2 and 3 give a complete characterization of hamiltoni-
city of Pn[H], traceability of Pn[H], and hamiltonian connectivity of Pn[H].

2. Preliminaries

As for standard terminology, we refer to the book by Bondy and Murty [2].
However, before proving Theorem 2 and Theorem 3 we mention several concepts
and results which we need to make use of.

For a multigraph G and x, y ∈ V (G) let [x, y]G be the set of edges between
x and y and let mG(xy) = |[x, y]G| be the multiplicity of the edge xy in G.
In particular, `G(x) = |[x, x]G| denotes the number of loops at x and `(G) =
max{`G(x) : x ∈ V (G)}. Note that the degree of a vertex x denoted by dG(x) =∑

y∈V (G)mG(xy) + 2`G(x). A multigraph G is k regular if dG(x) = k for every
vertex x in V (G). Moreover, let |G| = |V (G)| and ||G|| = |E(G)|. For any
X ⊆ V (G), let G(X) be the submultigraph induced by X.

A multigraph G′ is said to be a multiple of a graph G if V (G′) = V (G)
and for all x 6= y ∈ V (G), mG′(xy) > 0 holds only if xy ∈ E(G). This means
that from a given graph G, we can obtain a multiple G′ by adding loops or by
replacing a single edge in G by an arbitrary number of edges.

In [6], Kriesell proved that G[H] is hamiltonian if G has a connected, k-
regular multiple with additional properties.

Theorem 4 [6]. Let G and H be graphs. If G has a connected, 2|H|-regular
multiple G′ satisfying π(H) ≥ `G′(x) for all x ∈ V (G′), then G[H] contains a
hamiltonian cycle that contains exactly mG′(xy) edges between V (G({x})[H]) and
V (G({y})[H]) for all x 6= y in V (G).

By a uv-path we mean a path from u to v in G. If a uv-path is hamiltonian,
we call it a uv-hamiltonian path. The graph G is traceable, if G contains a
hamiltonian path. The graph G is hamiltonian connected, if every two vertices
of G are connected by a hamiltonian path.

Teichert in [9] and also Kriesell as corollary of Theorem 4 in [6] proved the
following.
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Theorem 5 ([6] and [9]). Let G and H be graphs, |G| ≥ 2. Suppose that G
contains a hamiltonian path.

(i) If |G| is even, then G[H] is traceable.

(ii) If |G| is even and ||H|| ≥ 1, then G[H] is hamiltonian.

(iii) If |G| is odd and |H|−12 ≤ π(H), then G[H] is traceable.

(iv) If |G| is odd and |H|2 ≤ π(H), then G[H] is hamiltonian.

Note that the first two statements are in some sense necessary. Let G be
only a path with n vertices, i.e., G = Pn. Clearly, P2[H] is hamiltonian. If n ≥ 4
is even, then Pn[H] is hamiltonian if and only if ||H|| ≥ 1 because if H has no
edge, then Pn[H] cannot have a hamiltonian cycle.

P5

HHHHH

Figure 1. Hamiltonian cycle in P5[P3 + 3K1] (bold edges).

But the last two statements are not necessary. For example, take the graph H
on 6 vertices with π(H) = 2 (e.g. the graph H = P3 + 3K1). Thus this graph
does not satisfy the conditions (iii) and (iv) in the previous theorem. If G = P3,
then G[H] is neither hamiltonian nor traceable (see the proof of Theorem 2). But
if we instead of P3 take P5 as a graph G, then G[H] is hamiltonian (see Figure 1,
edges of P5[P3+3K1] between consecutive copies of H are missing for the clarity).
For longer odd paths G = P2k+1, k ≥ 3, the lexicographic product G[H] is also
hamiltonian.

3. Proofs

Let P2k+1 be a path with odd number of vertices consecutively denoted by
u1, u2, . . . , u2k+1, k ≥ 1, and edges denoted by em where em = umum+1, m =
1, 2, . . . , 2k.

Proof of Theorem 2.
(i) First suppose that π(H1) ≥ 1, π(H2k+1) ≥ 1 and

∑k
i=0 π(H2i+1) ≥ n.

Clearly, we have n ≥ 2 because of π(H1) ≥ 1. Now we find a connected 2n-regular
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multiple of P2k+1. Then we prove the hamiltonicity of P2k+1[H1, H2, . . . ,H2k+1]
similarly as in [6].

We define the number of loops at each vertex ui of multiple G′ of P2k+1.
For even vertices u2, u4, . . . , u2k we define `G′(u2i) = 0, i = 1, 2, . . . , k, and for
odd vertices `G′(u2i+1) = π(H2i+1), i = 0, 1, . . . , k. If

∑k
i=0 π(H2i+1) > n (the

multiple G′ has more than n loops), then we remove arbitrary loops from G′ in
such a way that `G′(u1) ≥ 1, `G′(u2k+1) ≥ 1 and

∑k
i=0 `G′(u2i+1) = n. Note that

`G′(uj) ≤ π(Hj) for j = 1, 2, . . . , 2k + 1.
Now we define the multiplicity of every edge em of P2k+1, m = 1, 2, . . . , 2k,

mG′(e1) = 2n− 2`G′(u1),

mG′(e2) = 2`G′(u1),

mG′(e3) = 2n− 2`G′(u1)− 2`G′(u3),

mG′(e4) = 2`G′(u1) + 2`G′(u3),

mG′(e5) = 2n− 2`G′(u1)− 2`G′(u3)− 2`G′(u5),

mG′(e6) = 2`G′(u1) + 2`G′(u3) + 2`G′(u5),

in general we have, i = 1, 2, . . . , k,

mG′(e2i) =

i∑
j=1

2`G′(u2j−1) and mG′(e2i−1) = 2n−
i∑

j=1

2`G′(u2j−1).

Clearly, by the construction the multiplicity of every edge is at least 2, and
the degree of every vertex u1, u2, . . . , u2k is exactly 2n and for the last vertex of
our path we have

dG′(u2k+1) = 2`G′(u2k+1) +mG′(e2k) = 2`G′(u2k+1) +
k∑
j=1

2`G′(u2j−1)

= 2
k∑
i=0

`G′(u2i+1) = 2n.

Now we prove that the graph P2k+1[H1, H2, . . . ,H2k+1] contains a hamilto-
nian cycle using exactly `G′(ui) edges of Hi and exactly mG′(ej) edges between
V (P2k+1({uj})[Hj ]) and V (P2k+1({uj+1})[Hj+1]) for i = 1, 2, . . . , 2k + 1 and
j = 1, 2, . . . , 2k.

For every vertex ui and every graph Hi, there exists a spanning linear subfor-
est of P2k+1({ui})[Hi] ∼= Hi with components P1(ui), P2(ui), . . . , Pji(ui) satisfying

ji = |Hi| − `G′(ui) and

ji∑
t=1

||Pt(ui)|| = `G′(ui),
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1 0 0 0 0 11 3 0

10 2 8 4 2 10 2 10mG′(ei)

`G′(ui)

12-regular multiple G′

Figure 2. Hamiltonian cycle in P9[H1, H2, . . . ,H9] from a multiple G′.

because `G′(ui) ≤ π(Hi).
Futhermore, after removing all the loops from multiple G′, there exists a

closed eulerian trail C in the graph G′. We obtain the hamiltonian cycle of
P2k+1[H1, H2, . . . ,H2k+1] as required by replacing simultaneously the vertices ui
at their t-th occurence in C by the component Pt(ui) for t = 1, 2, . . . , ji and
i = 1, 2, . . . , 2k + 1 (for illustration see Figure 2).

Now suppose that P2k+1[H1, H2, . . . ,H2k+1] is hamiltonian. If ||H1|| = 0 or
||H2k+1|| = 0, then P2k+1[H1, H2, . . . ,H2k+1] cannot contain a hamiltonian cycle.
Hence assume that π(H1) ≥ 1, π(H2k+1) ≥ 1 and P2k+1[H1, H2, . . . ,H2k+1] has
a hamiltonian cycle C. Note that if Hi has at most π(Hi) edges in linear forest,
then the number of components of a linear forest of Hi is at least n−π(Hi). Now
we count the number of edges between graphs H1, H2, . . . ,H2k+1 in C.

The graph H1 has at least n − π(H1) components. Therefore there are at
least 2(n− π(H1)) edges between H1 and H2 in C.

Since H2 has only n vertices, there are at most 2n edges in C from H2. Thus,
there are at most 2n− 2(n− π(H1)) = 2π(H1) edges between H2 and H3 in C.

Again, H3 has at least n− π(H3) components. Therefore, there are at least
2(n− π(H3))− 2π(H1) = 2n− 2π(H3)− 2π(H1) edges between H3 and H4 in C.

Since H4 has only n vertices, there are at most 2n edges in C from H4. Thus,
there are at most 2n− (2n−2π(H3)−2π(H1)) = 2π(H3)+2π(H1) edges between
H4 and H5 in C.

If we continue step by step, we get that between H2k and H2k+1 there are at
most 2π(H2k−1) + 2π(H2k−3) + · · ·+ 2π(H3) + 2π(H1) edges in C and from the
other side H2k+1 has at least n− π(H2k+1) components. Therefore there should
be at least 2(n−π(H2k+1)) edges between H2k+1 and H2k in C. Now we get that

2(n− π(H2k+1)) ≤ 2π(H2k−1) + 2π(H2k−3) + · · ·+ 2π(H3) + 2π(H1)
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n ≤ π(H2k+1) + π(H2k−1) + π(H2k−3) + · · ·+ π(H3) + π(H1)

n ≤
k∑
i=0

π(H2i+1).

Thus we finish the proof of Theorem 2(i). �

Before the proofs of Theorem 2, statements (ii) and (iii), we define functions
A(t), B(t) and state the following lemmas. Let a, b, t ∈ {1, 2, . . . , 2k + 1}.

A(t) = 0 for t < a; B(t) = 0 for t < b;

A(t) = 1 for t ≥ a; B(t) = 1 for t ≥ b.

Lemma 6. Let P2k+1 be a path with odd number of vertices, k ≥ 1, a, b ∈
{1, 2, . . . , 2k + 1}. Let H1, H2, . . . ,H2k+1 be graphs with n vertices such that one
of the following conditions holds.

(I) a, b are even and π(H1) ≥ 2, π(H2k+1) ≥ 2 and
∑k

i=0 π(H2i+1) = n+ 1;

(II) a is odd, b is even and π(H1) ≥ 1, π(H2k+1) ≥ 1 and
∑k

i=0 π(H2i+1) = n;

(III) a, b are odd and π(H1) ≥ 1, π(H2k+1) ≥ 1 and
∑k

i=0 π(H2i+1) = n− 1;

moreover for a = 1, b = 2k + 1 we have only
∑k

i=0 π(H2i+1) = n− 1.

Then there exists a connected multiple G′ of P2k+1 such that dG′(ul) = 2n for
l ∈ {1, 2, . . . , 2k + 1} \ {a, b} and either dG′(ua) = dG′(ub) = 2n − 1 if a 6= b or
dG′(ua) = 2n− 2 if a = b.

Proof. (I) a, b are even. We have n ≥ 3 because of π(H1) ≥ 2.
Similarly, as in the previous proof we define the number of loops at each vertex

ui of multiple G′ of P2k+1. For even vertices u2, u4, . . . , u2k we define `G′(u2i) = 0,
i = 1, 2, . . . , k, and for odd vertices `G′(u2i+1) = π(H2i+1), i = 0, 1, . . . , k. Note
that we have `G′(u1) ≥ 2, `G′(u2k+1) ≥ 2 and

∑k
i=0 `G′(u2i+1) = n+ 1.

Now we define the multiplicity of every edge em of P2k+1, m = 1, 2, . . . , 2k,

mG′(e1) = 2n− 2`G′(u1) +A(1) +B(1),

mG′(e2) = 2`G′(u1)−A(2)−B(2),

mG′(e3) = 2n− 2`G′(u1)− 2`G′(u3) +A(3) +B(3),

mG′(e4) = 2`G′(u1) + 2`G′(u3)−A(4)−B(4),

in general we have

mG′(e2i) =

i∑
j=1

2`G′(u2j−1)−A(2i)−B(2i) and

mG′(e2i−1) = 2n−
i∑

j=1

2`G′(u2j−1) +A(2i− 1) +B(2i− 1), for i = 1, 2, . . . , k.
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Clearly, by the construction, the multiplicity of every edge is at least 2 and
the degree of every vertex of G′ is the following

dG′(u1) = 2`G′(u1) +mG′(e1) = 2`G′(u1) + 2n− 2`G′(u1) +A(1) +B(1) = 2n.

Clearly, A(1) = B(1) = 0.

dG′(u2i) = mG′(e2i−1) +mG′(e2i)

= 2n−
i∑

j=1

2`G′(u2j−1) +A(2i− 1) +B(2i− 1) +

i∑
j=1

2`G′(u2j−1)−A(2i)−B(2i)

= 2n+A(2i− 1) +B(2i− 1)−A(2i)−B(2i), for i = 1, 2, . . . , k.

Then dG′(u2i) = 2n for 2i /∈ {a, b}, dG′(u2i) = 2n − 1 for 2i ∈ {a, b}, a 6= b, and
dG′(u2i) = 2n− 2 for 2i = a = b.

dG′(u2i+1) = mG′(e2i) +mG′(e2i+1) + 2`G′(u2i+1) =
i∑

j=1

2`G′(u2j−1)

−A(2i)−B(2i) + 2n−
i+1∑
j=1

2`G′(u2j−1) +A(2i+ 1) +B(2i+ 1) + 2`G′(u2i+1)

= 2n−A(2i)−B(2i) +A(2i+ 1) +B(2i+ 1) = 2n, for i = 1, 2, . . . , k − 1.

Note that A(2i) = A(2i+ 1), B(2i) = B(2i+ 1).

dG′(u2k+1) = mG′(e2k) + 2`G′(u2k+1) =
k+1∑
j=1

2`G′(u2j−1)−A(2k)−B(2k)

= 2(n+ 1)−A(2k)−B(2k) = 2n.

Clearly, A(2k) = B(2k) = 1.
Resulting G′ is the connected multiple of P2k+1 as required.

(II) a is odd and b is even. We have n ≥ 2 because of π(H1) ≥ 1.
We define the number of loops at each vertex ui of multiple G′ of P2k+1 as

in (I) such that we have `G′(u1) ≥ 1, `G′(u2k+1) ≥ 1 and
∑k

i=0 `G′(u2i+1) = n.

Now we define the multiplicity of every edge em of P2k+1, m = 1, 2, . . . , 2k,

mG′(e2i) =
i∑

j=1

2`G′(u2j−1) +A(2i)−B(2i) and

mG′(e2i−1) = 2n−
i∑

j=1

2`G′(u2j−1)−A(2i− 1) +B(2i− 1), for i = 1, 2, . . . , k.
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Clearly, by the construction the multiplicity of every edge is at least 1 and
the degree of every vertex of G′ is the following

dG′(u1) = 2`G′(u1)+mG′(e1) = 2`G′(u1)+2n−2`G′(u1)−A(1)+B(1) = 2n−A(1).

Clearly, B(1) = 0, dG′(u1) = 2n for a 6= 1 and dG′(u1) = 2n− 1 for a = 1.

dG′(u2i) = mG′(e2i−1) +mG′(e2i) = 2n−
i∑

j=1

2`G′(u2j−1)−A(2i− 1) +B(2i−1)

+
i∑

j=1

2`G′(u2j−1) +A(2i)−B(2i)

= 2n−A(2i− 1) +B(2i− 1) +A(2i)−B(2i)

= 2n+B(2i− 1)−B(2i), for i = 1, 2, . . . , k.

Then A(2i−1) = A(2i), dG′(u2i) = 2n for 2i 6= b and dG′(u2i) = 2n−1 for 2i = b.

dG′(u2i+1) = mG′(e2i) +mG′(e2i+1) + 2`G′(u2i+1)

=

i∑
j=1

2`G′(u2j−1) +A(2i)−B(2i)

+ 2n−
i+1∑
j=1

2`G′(u2j−1)−A(2i+ 1) +B(2i+ 1) + 2`G′(u2i+1)

= 2n+A(2i)−B(2i)−A(2i+ 1) +B(2i+ 1)

= 2n+A(2i)−A(2i+ 1), for i = 1, 2, . . . , k − 1.

Then B(2i) = B(2i+ 1), dG′(u2i+1) = 2n for 2i+ 1 6= a and dG′(u2i+1) = 2n− 1
for 2i+ 1 = a.

dG′(u2k+1) = mG′(e2k) + 2`G′(u2k+1)

=
k+1∑
j=1

2`G′(u2j−1) +A(2k)−B(2k) = 2n+A(2k)−B(2k).

Clearly, B(2k) = 1, dG′(u2k+1) = 2n for a 6= 2k + 1 and dG′(u2k+1) = 2n− 1 for
a = 2k + 1.

Resulting G′ is the connected multiple of P2k+1 as required.

(III) a, b are odd. From π(H1) ≥ 1, π(H2k+1) ≥ 1 and
∑k

i=0 π(H2i+1) = n− 1 we
have n > 2.
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We define the number of loops at each vertex ui of multiple G′ of P2k+1 as
in (I) such that we have `G′(u1) ≥ 1, `G′(u2k+1) ≥ 1, and

∑k
i=0 `G′(u2i+1) = n−1.

Now we define the multiplicity of every edge em of P2k+1, m = 1, 2, . . . , 2k,

mG′(e2i) =
i∑

j=1

2`G′(u2j−1) +A(2i) +B(2i) and

mG′(e2i−1) = 2n−
i∑

j=1

2`G′(u2j−1)−A(2i− 1)−B(2i− 1), for i = 1, 2, . . . , k.

Clearly, by the construction the multiplicity of every edge is at least 2 and
the degree of every vertex of G′ is the following

dG′(u1) = 2`G′(u1) +mG′(e1) = 2`G′(u1) + 2n− 2`G′(u1)−A(1)−B(1)

= 2n−A(1)−B(1).

Then dG′(u1) = 2n for 1 /∈ {a, b}, dG′(u1) = 2n − 1, for 1 ∈ {a, b}, a 6= b, and
dG′(u1) = 2n− 2 for 1 = a = b.

dG′(u2i) = mG′(e2i−1) +mG′(e2i) = 2n−
i∑

j=1

2`G′(u2j−1)−A(2i− 1)−B(2i−1)

+

i∑
j=1

2`G′(u2j−1) +A(2i) +B(2i) = 2n−A(2i− 1)−B(2i− 1)

+ A(2i) +B(2i) = 2n, for i = 1, 2, . . . , k.

Note that A(2i− 1) = A(2i), B(2i− 1) = B(2i).

dG′(u2i+1) = mG′(e2i) +mG′(e2i+1) + 2`G′(u2i+1)

=
i∑

j=1

2`G′(u2j−1) +A(2i) +B(2i)

+ 2n−
i+1∑
j=1

2`G′(u2j−1)−A(2i+ 1)−B(2i+ 1) + 2`G′(u2i+1)

= 2n+A(2i) +B(2i)−A(2i+ 1)−B(2i+ 1), for i = 1, 2, . . . , k−1.

Then dG′(u2i+1) = 2n for 2i+ 1 /∈ {a, b}, dG′(u2i+1) = 2n− 1 for 2i+ 1 ∈ {a, b},
a 6= b, and dG′(u2i+1) = 2n− 2 for 2i+ 1 = a = b.

dG′(u2k+1) = mG′(e2k) + 2`G′(u2k+1) =
k+1∑
j=1

2`G′(u2j−1) +A(2k) +B(2k)
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= 2(n− 1) +A(2k) +B(2k) = 2n− 2 +A(2k) +B(2k).

Then dG′(u2k+1) = 2n for 2k+1 /∈ {a, b}, dG′(u2k+1) = 2n−1 for 2k+1 ∈ {a, b},
a 6= b, and dG′(u2k+1) = 2n− 2 for 2k + 1 = a = b.

Now let a = 1 and b = 2k+1. From
∑k

i=0 π(H2i+1) = n−1 we have n ≥ 1 and
again we define the number of loops at each vertex ui of multiple G′ of P2k+1 as in
(I) such that

∑k
i=0 `G′(u2i+1) = n− 1. Clearly, A(j) = 1 for j = 1, 2, . . . , 2k + 1,

B(j) = 0 for j = 1, 2, . . . , 2k and B(2k + 1) = 1.
As in general case, we define specifically the multiplicity of every edge em of

P2k+1, m = 1, 2, . . . , 2k,

mG′(e2i) =
i∑

j=1

2`G′(u2j−1) + 1 for i = 1, 2, . . . , k,

mG′(e2i−1) = 2n−
i∑

j=1

2`G′(u2j−1)− 1 for i = 1, 2, . . . , k.

Clearly, by the construction the multiplicity of every edge is at least 1 and
the degree of every vertex of G′ is the following:

dG′(u1) = 2`G′(u1) +mG′(e1) = 2`G′(u1) + 2n− 2`G′(u1)− 1 = 2n− 1.

dG′(u2i) = mG′(e2i−1) +mG′(e2i)

= 2n−
i∑

j=1

2`G′(u2j−1)− 1 +
i∑

j=1

2`G′(u2j−1) + 1 = 2n, for i = 1, 2, . . . , k.

dG′(u2i+1) = mG′(e2i) +mG′(e2i+1) + 2`G′(u2i+1)

=

i∑
j=1

2`G′(u2j−1) + 1 + 2n−
i+1∑
j=1

2`G′(u2j−1)− 1 + 2`G′(u2i+1) = 2n,

for i = 1, 2, . . . , k − 1.

dG′(u2k+1) = mG′(e2k)+2`G′(u2k+1) =

k+1∑
j=1

2`G′(u2j−1)+1 = 2(n−1)+1 = 2n−1.

In both cases the resulting G′ is the connected multiple of P2k+1 as re-
quired. �

Lemma 7. Let P2k+1 be a path with odd number of vertices, k ≥ 1, a, b ∈
{1, 2, . . . , 2k + 1}. Let H1, H2, . . . ,H2k+1 be graphs with n vertices. Assume
that P2k+1[H1, H2, . . . ,H2k+1] contains a hamiltonian path P starting in vertex
x from V (P2k+1({ua})[Ha]) and ending in a vertex y from V (P2k+1({ub})[Hb]),
where ua, ub ∈ V (P2k+1).



12 J. Ekstein and J. Teska

(I) If a, b are even, then
∑k

i=0 π(H2i+1) ≥ n+ 1;

(II) If a is odd and b is even, then
∑k

i=0 π(H2i+1) ≥ n;

(III) If a, b are odd, then
∑k

i=0 π(H2i+1) ≥ n− 1.

Proof. (I) a, b are even. Clearly, A(1) = B(1) = 0 and A(2k) = B(2k) = 1.

The graph H1 has at least n − π(H1) components. Therefore there are at
least 2(n−π(H1)) +A(1) +B(1) = 2(n−π(H1)) edges between H1 and H2 in P .

Since H2 has only n vertices, there are at most 2n edges in P from H2.
Thus, there are at most 2n−2(n−π(H1))−A(2)−B(2) = 2π(H1)−A(2)−B(2)
edges between H2 and H3 in P . Note that A(2) = 0 and B(2) = 0, if x, y /∈
V (P2k+1({u2})[H2]), respectively.

In general we have at most

i∑
j=1

2π(H2j−1)−A(2i)−B(2i), for i = 1, 2, . . . , k,

edges between H2i and H2i+1 in P and we have at least

2n−
i∑

j=1

2π(H2j−1) +A(2i− 1) +B(2i− 1), for i = 1, 2, . . . , k,

edges between H2i−1 and H2i in P .

The last subgraph H2k+1 has n− π(H2k+1) components in its path covering.
Therefore there are at least 2(n−π(H2k+1)) edges between H2k+1 and H2k in P .
Thus we get

2(n− π(H2k+1)) ≤
k∑
j=1

2π(H2j−1)−A(2k)−B(2k) ≤
k∑
j=1

2π(H2j−1)− 2,

2n+A(2k) +B(2k) = 2n+ 2 ≤
k∑
j=0

2π(H2j+1),

n+ 1 ≤
k∑
j=0

π(H2j+1).

(II) a is odd and b is even. Clearly, B(1) = 0 and B(2k) = 1.

Similarly as in (I), we have at most

i∑
j=1

2π(H2j−1) +A(2i)−B(2i), for i = 1, 2, . . . , k,
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edges between H2i and H2i+1 in P and we have at least

2n−
i∑

j=1

2π(H2j−1)−A(2i− 1) +B(2i− 1), for i = 1, 2, . . . , k,

edges between H2i−1 and H2i in P .
The last subgraph H2k+1 has n− π(H2k+1) components in its path covering.

Therefore there are at least 2(n− π(H2k+1))−A(2k+ 1) +A(2k) edges between
H2k+1 and H2k in P . Clearly, A(2k + 1) = 1. Thus we get

2(n− π(H2k+1))−A(2k + 1) +A(2k) ≤
k∑
j=1

2π(H2j−1) +A(2k)−B(2k),

2n−A(2k + 1) +B(2k) = 2n ≤
k∑
j=0

2π(H2j+1),

n ≤
k∑
j=0

π(H2j+1).

(III) a, b are odd.
Again similarly as in (I), we have at most

i∑
j=1

2π(H2j−1) +A(2i) +B(2i), for i = 1, 2, . . . , k,

edges between H2i and H2i+1 in P and we have at least

2n−
i∑

j=1

2π(H2j−1)−A(2i− 1)−B(2i− 1), for i = 1, 2, . . . , k,

edges between H2i−1 and H2i in P .
The last subgraph H2k+1 has n− π(H2k+1) components in its path covering.

Therefore there should be at least 2(n−π(H2k+1))−A(2k+ 1) +A(2k)−B(2k+
1)+B(2k) edges between H2k+1 and H2k in P . Clearly, A(2k+1) = B(2k+1) = 1.
Thus we get

2(n− π(H2k+1))−A(2k + 1) +A(2k)−B(2k + 1) +B(2k)

≤
k∑
j=1

2π(H2j−1) +A(2k) +B(2k),

2n−A(2k + 1)−B(2k + 1) = 2n− 2 ≤
k∑
j=0

2π(H2j+1),

n− 1 ≤
k∑
j=0

π(H2j+1). �
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Now we are ready to prove Theorem 2, statements (ii) and (iii).

(ii) First suppose that
∑k

i=0 π(H2i+1) ≥ n − 1. Let x, y be vertices in
P2k+1({u1})[H1], P2k+1({u2k+1})[H2k+1] such that vertices of H1, H2k+1 corre-
sponding to x, y are not vertices of degree 2 in some component (path) of a
spanning linear forest of H1, H2k+1 with π(H1), π(H2k+1) edges, respectively. We
show that P2k+1[H1, H2, . . . ,H2k+1] contains an xy-hamiltonian path.

We set a = 1 and b = 2k + 1. By Lemma 6(III), we find a connected
multiple G′ of P2k+1 such that dG′(ul) = 2n for l ∈ {2, 3, . . . , 2k} and dG′(u1) =
dG′(u2k+1) = 2n − 1. Note that if

∑k
i=0 π(H2i+1) > n − 1 (the multiple G′ has

more than n − 1 loops), then we remove arbitrary loops from G′ in such a way
that

∑k
i=0 `G′(u2i+1) = n− 1. Clearly, `G′(uj) ≤ π(Hj) for j = 1, 2, . . . , 2k + 1.

As before, we prove that P2k+1[H1, H2, . . . ,H2k+1] contains an xy-hamiltonian
path using exactly `G′(ui) edges of Hi and exactly mG′(ej) edges between
V (P2k+1({uj})[Hj ]) and V (P2k+1({uj+1})[Hj+1]) for i = 1, 2, . . . , 2k + 1 and
j = 1, 2, . . . , 2k.

For every vertex ui and every graph Hi, there exists a spanning linear sub-
forest of P2k+1({ui})[Hi] ∼= Hi with components P1(ui), P2(ui), . . . , Pji(ui) satis-
fying

ji = |Hi| − `G′(ui) and

ji∑
t=1

||Pt(ui)|| = `G′(ui),

because `G′(ui) ≤ π(Hi).

Futhermore, after removing all the loops from multiple G′, there exists an
open eulerian trail C in G′ from u1 to u2k+1 of P2k+1. We obtain the xy-
hamiltonian path P in P2k+1[H1, H2, . . . ,H2k+1] as required by replacing simul-
taneously the vertices ui at their t-th occurence in C by the component Pt(ui),
for t = 1, 2, . . . , ji and i = 1, 2, . . . , 2k + 1, such that x is the first vertex and y
is the last vertex of P . Note that x, y are endvertices of different paths Pt(ui) or
isolated vertices.

Now we suppose that P2k+1[H1, H2, . . . ,H2k+1] contains some hamiltonian
path P . We may assume that the hamiltonian path starts in H1 and ends in
H2k+1. By Lemma 7(III), we get that

∑k
i=0 π(H2i+1) ≥ n− 1. �

(iii) First suppose that π(H1) ≥ 2, π(H2k+1) ≥ 2 and
∑k

i=0 π(H2i+1) ≥ n+1.
Let x, y be vertices in P2k+1({ua})[Ha], P2k+1({ub})[Hb], a, b ∈ {1, 2, . . . , 2k+ 1},
respectively. We show that P2k+1[H1, H2, . . . ,H2k+1] contains an xy-hamiltonian
path for every x, y.

Suppose that a, b are even. By Lemma 6(I), we find a connected multiple
G′ of P2k+1 such that dG′(ul) = 2n for l ∈ {1, 2, . . . , 2k + 1} \ {a, b} and either
dG′(ua) = dG′(ub) = 2n − 1 if a 6= b or dG′(ua) = 2n − 2 if a = b. Note that
if
∑k

i=0 π(H2i+1) > n + 1 (the multiple G′ has more than n + 1 loops), then we
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remove arbitrary loops from G′ in such a way that `G′(u1) ≥ 2, `G′(u2k+1) ≥ 2
and

∑k
i=0 `G′(u2i+1) = n+ 1. Clearly, `G′(uj) ≤ π(Hj) for j = 1, 2, . . . , 2k + 1.

Suppose that a is odd and b is even (the case a is even and b is odd is
symmetrical). If x is a vertex of degree 2 in some component (path) P of a
spanning linear forest of Ha with π(Ha) edges, then we remove one edge of P
incident with x from this spanning linear forest. Hence we have π(H1) ≥ 1,
π(H2k+1) ≥ 1 and

∑k
i=0 π(H2i+1) ≥ n. By Lemma 6(II), we find a connected

multiple G′ of P2k+1 such that dG′(ul) = 2n for l ∈ {1, 2, . . . , 2k+ 1} \ {a, b} and
dG′(ua) = dG′(ub) = 2n−1. Note that if

∑k
i=0 π(H2i+1) > n (the multiple G′ has

more than n loops), then we remove arbitrary loops from G′ in such a way that
`G′(u1) ≥ 1, `G′(u2k+1) ≥ 1 and

∑k
i=0 `G′(u2i+1) = n. Clearly, `G′(uj) ≤ π(Hj)

for j = 1, 2, . . . , 2k + 1.

Suppose that a, b are odd. We remove at most 2 edges from spanning linear
forests of Ha and Hb such that now x and y are not vertices of degree 2 in some
component (path) of a spanning linear forest of Ha or Hb and x, y are not in the
same component (path) of a spaning linear forest of Ha = Hb. Hence we have
π(H1) ≥ 1, π(H2k+1) ≥ 1 and

∑k
i=0 π(H2i+1) ≥ n− 1 even if a, b are in the same

component. By Lemma 6(III), we find a connected multiple G′ of P2k+1 such that
dG′(ul) = 2n for l ∈ {1, 2, . . . , 2k+1}\{a, b} and either dG′(ua) = dG′(ub) = 2n−1
if a 6= b or dG′(ua) = 2n − 2 if a = b. Note that if

∑k
i=0 π(H2i+1) > n − 1 (the

multiple G′ has more than n− 1 loops), then we remove arbitrary loops from G′

in such a way that `G′(u1) ≥ 1, `G′(u2k+1) ≥ 1 and
∑k

i=0 `G′(u2i+1) = n − 1.
Clearly, `G′(uj) ≤ π(Hj) for j = 1, . . . , 2k + 1.

Similarly as in the previous proof, we prove that P2k+1[H1, H2, . . . ,H2k+1]
contains an xy-hamiltonian path using exactly `G′(ui) edges of Hi and exactly
mG′(ej) edges between V (P2k+1({uj})[Hj ]) and V (P2k+1({uj+1})[Hj+1]) for i =
1, 2, . . . , 2k + 1, j = 1, 2, . . . , 2k.

For every vertex ui and every graph Hi, there exists a spanning linear sub-
forest of P2k+1({ui})[Hi] ∼= Hi with components P1(ui), P2(ui), . . . , Pji(ui) satis-
fying

ji = |Hi| − `G′(ui) and

ji∑
t=1

||Pt(ui)|| = `G′(ui),

because `G′(ui) ≤ π(Hi).

Futhermore, after removing all the loops from multiple G′, there exists an
open eulerian trail C in G′ from ua to ub if a 6= b and a closed eulerian trail C
in G′ if a = b. We obtain the xy-hamiltonian path in P2k+1[H1, H2, . . . ,H2k+1]
as required by replacing simultaneously the vertices ui at their t-th occurence in
C by the component Pt(ui) for t = 1, 2, . . . , ji, i = 1, 2, . . . , 2k + 1 such that x is
the first vertex and y is the last vertex of P . Note that x, y are endvertices of
different paths Pt(ui) or isolated vertices.
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Now suppose that P2k+1[H1, H2, . . . ,H2k+1] is hamiltonian connected.
Clearly, if π(H1) ≤ 1, π(H2k+1) ≤ 1, then there is no hamiltonian path starting
and ending in H2, H2k, respectively. Thus π(H1) ≥ 2, π(H2k+1) ≥ 2 and n > 2
(P2k+1[H1, H2, . . . ,H2k+1] has to be 3-connected). Since this graph has a hamilo-
nian path between two arbitrary vertices, by Lemma 7, we immediately get that∑k

i=0 π(H2i+1) ≥ n+ 1.

Proof of Theorem 3.

(i) First assume that the graph P2k[H1, H2, . . . ,H2k] has a hamiltonian cy-
cle C and π(H1) = 0. Since every vertex in C has degree 2 and there is no edge
in E(H1), there are exactly 2n edges between H1 and H2. Thus there is no edge
of C between H2 and H3 and we get that k = 1. Similarly for π(H2k) = 0.

Now assume that k = 1 or π(H1) ≥ 1 and π(H2k) ≥ 1. Then the hamiltoni-
city of P2k[H1, H2, . . . ,H2k] follows immediately from the proof of Theorem 6
from [6]. The author proved in [6] the hamiltonicity of lexicographic product of
G[H] where G is traceable by finding a 2n-regular multiple of P2k which uses
only one loop at the first and last vertex of P2k.

(ii) Again, the proof is an easy consequence of the proof of Theorem 6 from [6].

(iii) Let k = 1. If π(H1) = 0 or π(H2) = 0, then clearly there is no hamil-
tonian path between some vertices of H2 or H1, respectively. If π(H1) ≥ 1 and
π(H2k) ≥ 1, then clearly there exists a hamiltonian path between every two
vertices of P2[H1, H2].

Let k > 1. First suppose that P2k[H1, H2, . . . ,H2k] is hamiltonian connected.
If π(H1) ≤ 1 or π(H2k) ≤ 1, then clearly there is no hamiltonian path between
some two vertices of H2 or H2k−1, respectively.

Now assume that π(H1) ≥ 2 and π(H2k) ≥ 2. Let x be a vertex of
V (P2k({ua})[Ha]) and y be a vertex of V (P2k({ub})[Hb]). We may assume that
a ≤ b. Let F be 1-factor of P2k, S1 a multigraph with only one vertex u1 and one
loop, S2 a multigraph with only vertex u2k and one loop, and let P ′ ⊆ P2k be a
path from ua to ub in P2k and P ′′ ⊆ P2k a path from ub to u2k in P2k if any.

(I) Let b − a be odd. Then P ′ is an even path and let F1 be 1-factor of P ′

and set F2 = P ′ − E(F1). Then we define multiple G′

G′ = 2P2k + (2n− 4)F + S1 + S2 − F1 + F2.

Clearly, the degree of every vertex of G′ except from ua and ub is 2n and dG′(ua) =
dG′(ub) = 2n− 1 and the multiplicity of every edge of G′ is at least 1.

(II) Let b−a be even. We may assume that a is odd (otherwise we relabel all
the vertices: u1 → u2k, u2 → u2k−1, . . . , u2k → u1). Let F1 be 1-factor of P ′ − ub
and F2 be 1-factor of P ′ − ua. Since a is odd, b is odd as well. Thus P ′′ is an
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even path. Let F3 be 1-factor of P ′′ and set F4 = P ′′ − E(F3). Then we define
multiple G′

G′ = 2P2k + (2n− 4)F + S1 + 2S2 − F1 + F2 − 2F3 + 2F4.

Clearly, the degree of every vertex of G′ except from ua and ub is 2n, dG′(ua) =
dG′(ub) = 2n−1 if a 6= b, dG′(ua) = dG′(ub) = 2n−2 if a = b, and the multiplicity
of every edge of G′ is at least 1. Note that n ≥ 3 because of π(H1) ≥ 2.

From such a multiple G′ in both cases we get a hamiltonian path between
two arbitrary vertices of the graph P2k[H1, H2, . . . ,H2k] similarly as in the proof
of Theorem 2.

4. Next Results

Now we easily get results concerning the lexicographic product of P2k+1 and given
graph H.

Theorem 8. Let P2k+1 be a path with 2k+ 1 vertices, k ≥ 1, and H be a graph.
Then the lexicographic product P2k+1[H] is pancyclic if and only if π(H) ≥ 1 and⌈
|H|
π(H)

⌉
≤ k + 1.

Proof. Set H1 = · · · = H2k+1 = H. By Theorem 2(i), P2k+1[H] is hamiltonian

⇔
∑k

i=0 π(H2i+1) ≥ |H| ⇔ (k+ 1)π(H) ≥ |H| ⇔
⌈
|H|
π(H)

⌉
≤ k+ 1 because k+ 1

is an integer. The pancyclicity follows from Theorem 1.

Theorem 9. Let P2k+1 be a path with 2k+ 1 vertices, k ≥ 1, and H be a graph.

Then the lexicographic product P2k+1[H] is traceable if and only if
⌈
|H|−1
π(H)

⌉
≤ k+1.

Proof. Set H1 = · · · = H2k+1 = H. By Theorem 2(ii), P2k+1[H] is traceable if

and only if
∑k

i=0 π(H2i+1) ≥ |H|−1⇔ (k+1)π(H) ≥ |H|−1⇔
⌈
|H|−1
π(H)

⌉
≤ k+1

because k + 1 is an integer.

Corollary 10. Let G and H be graphs, |G| ≥ 2. Suppose that G contains a
hamiltonian path.

• If |G| = 2k + 1 and |H|
k+1 ≤ π(H), then G[H] is hamiltonian.

• If |G| = 2k + 1 and |H|−1k+1 ≤ π(H), then G[H] is traceable.

Thus we improved Theorem 5 and the bounds are the best possible. Moreover
we get a similar result also for hamiltonian connectivity.
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Theorem 11. Let P2k+1 be a path with 2k+1 vertices, k ≥ 1, and H be a graph.
Then the lexicographic product P2k+1[H] is hamiltonian connected if and only if

π(H) ≥ 2 and
⌈
|H|+1
π(H)

⌉
≤ k + 1.

Proof. Set H1 = · · · = H2k+1 = H. By Theorem 2(iii), P2k+1[H] is hamiltonian
connected if and only if

∑k
i=0 π(H2i+1) ≥ |H| + 1 ⇔ (k + 1)π(H) ≥ |H| + 1 ⇔⌈

|H|+1
π(H)

⌉
≤ k + 1 because k + 1 is an integer.

Corollary 12. Let G and H be graphs, |G| ≥ 2. Suppose that G contains a

hamiltonian path. If |G| = 2k + 1 and |H|+1
k+1 ≤ π(H), then G[H] is hamiltonian

connected.

Theorem 13. Let P2k be a path with 2k vertices, k ≥ 1, and H be a graph. Then
the lexicographic product P2k[H] is hamiltonian connected if and only

• π(H) ≥ 1 for k = 1;

• π(H) ≥ 2 for k > 1.

Proof. Easy corollary of Theorem 3(iii).

Corollary 14. Let G and H be graphs, |G| ≥ 2. Suppose that G contains a
hamiltonian path.

If |G| = 2 and ||H|| ≥ 1, then G[H] is hamiltonian connected.

If |G| = 2k, for k > 1, and ||H|| ≥ 2, then G[H] is hamiltonian connected.

5. Conclusion

In this paper we finished a complete characterization of hamiltonicity (Theorem 5
and Theorem 8), traceability (Theorem 5 and Theorem 9) and hamiltonian con-
nectedness (Theorem 11 and Theorem 13) of G[H], where G is a path. Hence
we improved and extended results in [6]. Moreover we proved these results also
for lex-regular generalized lexicographic products. If G has no hamiltonian path,
then for general graphs G it seems to be complicated to characterize when G[H]
is traceable, hamiltonian or hamiltonian connected. Let us mention that Kaiser
and Kriesell proved in [5] that if G is 4-tough and ||H|| ≥ 1, then G[H] is hamil-
tonian. Since G is 4-tough implies that G has a 2-walk, G is not so far from being
hamiltonian. Clearly,

hamiltonicity =⇒ traceability =⇒ 2-walk =⇒ 3-tree =⇒ 3-walk =⇒ · · · .

Hence it could be interesting to study hamiltonian paths and cycles in G[H] if G
is a 3-tree.
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