Article in volume
Authors:
Title:
On the distribution of distance signless Laplacian eigenvalues with given independence and chromatic number
PDFSource:
Discussiones Mathematicae Graph Theory 45(1) (2025) 111-128
Received: 2022-11-12 , Revised: 2023-09-09 , Accepted: 2023-09-14 , Available online: 2023-10-19 , https://doi.org/10.7151/dmgt.2524
Abstract:
For a connected graph $G$ of order $n$, let $\mathcal {D}(G)$ be the distance
matrix and $Tr(G)$ be the diagonal matrix of vertex transmissions of $G$. The
distance signless Laplacian (dsL, for short) matrix of $G$ is defined as
$\mathcal {D}^Q(G)=Tr(G)+\mathcal{D}(G)$, and the corresponding eigenvalues are
the dsL eigenvalues of $G$. For an interval $I$, let $m_{\mathcal{D}^{Q}(G) } I$
denote the number of dsL eigenvalues of $G$ lying in the interval $I$. In this
paper, for some prescribed interval $I$, we obtain bounds for
$m_{\mathcal{D}^{Q}(G)}I$ in terms of the independence number $\alpha$ and the
chromatic number $\chi$ of $G$. Furthermore, we provide lower bounds of
$\partial_{1}^{Q}(G)$, the dsL spectral radius, for certain families of graphs
in terms of the order $n$ and the independence number $\alpha$, or the chromatic
number $\chi$.
Keywords:
distance matrix, distance signless Laplacian matrix, spectral radius, independence number, chromatic number
References:
- A. Alhevaz, M. Baghipur and E. Hashemi, On distance signless Laplacian spectrum and energy of graphs, Electron. J. Graph Theory Appl. (EJGTA) 6 (2018) 326–340.
https://doi.org/10.5614/ejgta.2018.6.2.12 - M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013) 21–33.
https://doi.org/10.1016/j.laa.2013.02.030 - M. Aouchiche and P. Hansen, On the distance signless Laplacian of a graph, Linear Multilinear Algebra 64 (2016) 1113–1123.
https://doi.org/10.1080/03081087.2015.1073215 - D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge Univ. Press, New York, 2009).
https://doi.org/10.1017/CBO9780511801518 - K.C. Das, M. Aouchiche and P. Hansen, On distance Laplacian and distance signless Laplacian eigenvalues of graphs, Linear Multilinear Algebra 67 (2019) 2307–2324.
https://doi.org/10.1080/03081087.2018.1491522 - K.C. Das, H. Lin and J. Guo, Distance signless Laplacian eigenvalues of graphs, Front. Math. China 14 (2019) 693–713.
https://doi.org/10.1007/s11464-019-0779-3 - R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, R.E. Miller, J.W. Thatcher and J.D. Bohlinger (Ed(s)), (Springer, Boston MA 1972) 85–103.
https://doi.org/10.1007/978-1-4684-2001-2_9 - H. Lin and B. Zhou, The effect of graft transformations on distance signless Laplacian spectral radius, Linear Algebra Appl. 504 (2016) 433–461.
https://doi.org/10.1016/j.laa.2016.04.020 - M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Reprint of the 1969 Edition (Dover Publications, New York, 1992).
- S. Pirzada, An Introduction to Graph Theory (Universities Press, Hyderabad, India, 2012).
- B.R. Rakshith, K.C. Das and M.A. Sriraj, On $($distance$)$ signless Laplacian spectra of graphs, J. Appl. Math. Comput. 67 (2021) 23–40.
https://doi.org/10.1007/s12190-020-01468-8 - J. Xue, S. Liu and J. Shu, The complements of path and cycle are determined by their distance $($signless$)$ Laplacian spectra, Appl. Math. Comput. 328 (2018) 137–143.
https://doi.org/10.1016/j.amc.2018.01.034 - L. You, L. Ren and G. Yu, Distance and distance signless Laplacian spread of connected graphs, Discrete Appl. Math. 223 (2017) 140–147.
https://doi.org/10.1016/j.dam.2016.12.030 - L. You, M. Yang, W. So and W. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577 (2019) 21–40.
https://doi.org/10.1016/j.laa.2019.04.013
Close