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Abstract

For a connected graph G of order n, let D(G) be the distance matrix
and Tr(G) be the diagonal matrix of vertex transmissions of G. The dis-
tance signless Laplacian (dsL, for short) matrix of G is defined as DQ(G) =
Tr(G)+D(G), and the corresponding eigenvalues are the dsL eigenvalues of
G. For an interval I, let mDQ(G)I denote the number of dsL eigenvalues of
G lying in the interval I. In this paper, for some prescribed interval I, we
obtain bounds for mDQ(G)I in terms of the independence number α and the

chromatic number χ of G. Furthermore, we provide lower bounds of ∂Q
1 (G),

the dsL spectral radius, for certain families of graphs in terms of the order
n and the independence number α, or the chromatic number χ.
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1. Introduction

Throughout this article, we assume that G is a simple connected graph. Let
G = (V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge
set E(G). The order and size of G are |V (G)| = n and |E(G)| = m, respectively.
The degree of a vertex v, denoted by dG(v), is the number of edges incident to the
vertex v. Further, NG(v) is the set of all vertices which are adjacent to v in G.
Also, G denotes the complement of the graph G. If e ∈ E(G) is an edge between
vertices u and v, then G− e denotes the graph obtained from G by deleting the
edge e in G.

The adjacency matrix A(G) = (aij) of G is a (0, 1)-square matrix of order
n whose ij-th entry equals 1 whenever the corresponding vertices vi and vj are
adjacent, and equals 0 otherwise. Let diag(G) = diag(d1, d2, . . . , dn) be the diag-
onal matrix of vertex degrees di = dG(vi), where i = 1, 2, . . . , n associated to G.
The matrices L(G) = diag(G)−A(G) and Q(G) = diag(G)+A(G) are the Lapla-
cian and the signless Laplacian matrices, respectively, and their spectra are the
Laplacian spectrum and signless Laplacian spectrum of the graph G, respectively.

For vi, vj ∈ V (G), the distance between vi and vj , denoted by dG(vi, vj), is
the length of a shortest path between vi and vj .

The diameter d (or d(G)) of a graph G is the maximum distance between any
two vertices of G. The distance matrix of G defined only for connected graphs,
denoted by D(G), is defined as D(G) = (dG(vi, vj))vi,vj∈V (G). The transmission

TrG(vi) of a vertex vi is defined to be the sum of the distances from vi to all other
vertices in G, that is, TrG(vi) =

∑

vj∈V (G) dG(vi, vj). For the sake of readability,
the subscript or argument G might not be used if the graph is understood.

Let Tr(G) = diag(Tr(v1), T r(v2), . . . , T r(vn)) be the diagonal matrix of ver-
tex transmissions of G. For a connected graph G, Aouchiche and Hansen [2]
defined the distance signless Laplacian matrix (or simply dsL matrix) only for
connected graph G as DQ(G) = Tr(G) + D(G). Clearly, DQ(G) is a nonnega-
tive positive semidefinite real symmetric matrix, therefore its eigenvalues are real
nonnegative numbers. We denote the dsL eigenvalues of G by ∂

Q
1 (G) ≥ ∂

Q
2 (G) ≥

· · · ≥ ∂
Q
n−1(G) ≥ ∂

Q
n (G); in particular, the largest eigenvalue ∂

Q
1 (G) is called the

dsL spectral radius of G. For some literature on the dsL matrix, we refer the
readers to [5, 6, 8, 12, 13].

Let mDQ(G)I be the number of dsL eigenvalues of G that lie in the interval I.

In particular, mDQ(G)(∂
Q
i (G)) denotes the multiplicity of ∂Q

i (G). We denote dsL

spectrum of G by DSLS(G) = {∂Q
1 (G), ∂Q

2 (G), . . . , ∂Q
n−1(G), ∂Q

n (G)}. If we need
to emphasize the k distinct eigenvalues of G, then we write the dsL spectrum of
G in the matrix form as
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DSLS(G) =

(

∂
Q
1 ∂

Q
2 · · · ∂

Q
k

mDQ(G)(∂
Q
1 (G)) mDQ(G)(∂

Q
2 (G)) · · · mDQ(G)(∂

Q
k (G))

)

,

where mDQ(G)(∂
Q
1 (G)),mDQ(G)(∂

Q
2 (G)), . . . ,mDQ(G)(∂

Q
k (G)) are the correspond-

ing multiplicities.

We denote the complete graph of order n by Kn. A graph G is said to be
bipartite if its vertex set can be partitioned into two different (independent) sets
U and W with V = U ∪ W such that uv ∈ E(G) if and only if u ∈ U and
v ∈ W . If |U | = |W |, then G is called a balanced bipartite graph. The complete
multipartite graph with order of parts t1, . . . , tk is denoted by Kt1,...,tk . The star
graph of order n is denoted by K1,n−1. Finally, CS(n, α) denotes the complete
split graph, that is, the join of a clique Kn−α and a coclique αK1 (see Figure 1).

Figure 1. A complete split graph CS(9, 4).

In a graph G, the subset M ⊆ V (G) is called an independent set if no two
vertices of M are adjacent. The cardinality of the largest independent set of G
is the independence number of G and is denoted by α. The chromatic number

of a graph G is the minimum number of colors required to color the vertices of
G such that no two adjacent vertices get the same color, and it is denoted by χ.
The set of all vertices with the same color is a color class. It is well-known that
computing the independence number or the chromatic number is in general an
NP-hard problem (see [7]). Since the eigenvalues of a graph can be computed in
polynomial time, the spectral techniques have been used extensively to provide
sharp bounds for such (and other) invariants. For other standard definitions not
given here, we refer to [4, 10].

In this paper we study the distribution of the distance signless Laplacian
eigenvalues of G in terms of the independence and chromatic numbers. Also,
we derive some lower bounds for the dsL spectral radius in terms of the latter
mentioned invariants. The remainder of the paper is organized as follows. In
Section 2, we study the distribution of dsL eigenvalues of G in relation to the in-
dependence number α. In particular, we prove that mDQ(G)[n−2, n + α − 4)
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≤ n − α, for α ≥ 3. Also, if G has independence number α ≥ n+4
3 , then

∂
Q
1 (G) ≥ 2n + α − 2, and we characterize the corresponding extremal graph.

If G has independence number α ≥ 2, we show that n−2 is a dsL eigenvalue with
multiplicity at most n−α−1. In Section 3, we find the distribution of dsL eigen-
values of G in relation to the chromatic number χ. If G has at least 5 vertices and
has chromatic number χ with n1 ≥ · · · ≥ nχ as the cardinalities of its color classes

satisfying n1 ≥ 3 and 2nχ ≥ n1, thenmDQ(G)

[

n−2, n+
⌈
n
χ

⌉

−4
)

≤ n−χ−
⌈
n
χ

⌉

+1.

We conclude with Section 4, in which we propose some open problems derived
from the research exposed in this paper.

2. Distribution of the dsL Eigenvalues and the Independence

Number

For a graph G with n vertices, let Trmax(G) = max{Tr(vi) : vi ∈ V (G)}. Recall
that we omit the graph argument G if clear from the context. Let us consider
the following important result from matrix theory.

Lemma 1 [9]. Let M = (mij) be an n×n complex matrix having l1, l2, . . . , lk as

its distinct eigenvalues. Then

{l1, l2, . . . , lk} ⊂
n⋃

i=1

{

z : |z −mii| ≤
∑

j 6=i

|mij |
}

.

For the dsL matrix of a graph G with n vertices, by using Lemma 1, we get

(2.1) ∂
Q
1 (G) ≤ 2Trmax(G).

The following lemma will be used in sequel.

Lemma 2 [2]. Let G be a connected graph with n vertices and m edges, where

m ≥ n. Let G∗ be the connected graph obtained from G by deleting an edge.

Let ∂
Q
1 ≥ ∂

Q
2 ≥ · · · ≥ ∂

Q
n and ∂∗

1
Q ≥ ∂∗

2
Q ≥ · · · ≥ ∂∗

n
Q be the distance signless

Laplacian spectrum of G and G∗, respectively. Then ∂∗
i
Q ≥ ∂

Q
i for all i = 1, . . . , n.

An immediate consequence of Lemma 2 is the following.

Lemma 3. Let G be a connected graph on n ≥ 3 vertices. Then, ∂1
Q ≥ 2n − 2

and ∂i
Q ≥ n− 2, for all 2 ≤ i ≤ n.

Proof. As

DSLS(Kn) =

(
n− 2 2n− 2
n− 1 1

)

,

by using Lemma 2, the proof follows immediately.
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The following lemma can be seen in [11].

Lemma 4 [11]. Let n and α be positive integers with n− α ≥ 1. Then

DSLS(CS(n, α))

=

(

n−2 n+ α−4
3n+2α−6−

√
8α2−8α+(n−2α+2)2

2

3n+2α−6+
√

8α2−8α+(n−2α+2)2

2

n−α−1 α−1 1 1

)

.

In the following result we provide the upper bound for the quantity mDQ(G)

[n− 2, n+ α− 4) in terms of order n and independence number α.

Theorem 5. Let G be a connected graph with n vertices having independence

number α ≥ 3. Then mDQ(G)[n − 2, n + α − 4) ≤ n − α. For α = n − 1 equality

holds if and only if G ∼= K1,n−1. If n+4
3 < α ≤ n− 2, then the inequality is sharp

as can be seen in the complete split graph CS(n, α).

Proof. As G is connected, so for α = n, the graph G reduces to an isolated
vertex. Thus we will consider only α ≤ n−1. Since α ≥ 3, the interval [n−2, n+
α−4) is well defined. Without loss of generality, assume that U = {v1, v2, . . . , vα}
be the independent set of G corresponding to the independence number α. Let
R be the graph obtained by adding the edges between all non-adjacent vertices
in V (G) \ U and joining each vertex of U with every vertex of V (G) \ U . With
this construction, it is easily seen that R ∼= CS(n, α). Obviously

(2.2)
3n+ 2α− 6 +

√

8α2 − 8α+ (n− 2α+ 2)2

2
> n+ α− 4.

Therefore, using Lemma 4, we get

mDQ(R)[n− 2, n+ α− 4) ≤ n− α.

By Lemma 2 and Lemma 3, we have

mDQ(G)[n− 2, n+ α− 4) ≤ mDQ(R)[n− 2, n+ α− 4),

which proves the inequality.

We know that K1,n−1 = CS(n, n − 1) is the only connected graph having
independence number α = n − 1. We will show that the equality holds for
K1,n−1. When α = n− 1, we have n+ α− 4 = 2n− 5 and n− α = 1. Thus, we
will show that mDQ(K1,n−1)[n− 2, 2n− 5) = 1. By Lemma 4, we get

DSLS(K1,n−1) =

(

2n− 5
5n−8−

√
9(n−2)2+4(n−1)

2
5n−8+

√
9(n−2)2+4(n−1)

2
n− 2 1 1

)

.
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We have

2n− 5 >
5n− 8−

√

9(n− 2)2 + 4(n− 1)

2

if
√

9(n− 2)2 + 4(n− 1) > n+ 2,

or if (2n− 7)(n− 1) > 0,

or if n > 7
2 ,

which is true as α ≥ 3 and n ≥ α+1. Using the above observations and Inequality
(2.2), we get

mDQ(K1,n−1)[n− 2, 2n− 5) = 1.

Lastly, we will show that the inequality is sharp for the graph CS(n, α) whenever
n+4
3 < α ≤ n − 2. Using the first part of the theorem and Lemma 4, we only

need to show that

n+ α− 4 >
3n+ 2α− 6−

√

8α2 − 8α+ (n− 2α+ 2)2

2
.

We have

n+ α− 4 >
3n+ 2α− 6−

√

8α2 − 8α+ (n− 2α+ 2)2

2

if
√

8α2 − 8α+ (n− 2α+ 2)2 > n+ 2,

or if 12α2 − 16α− 4αn > 0,

or if α > 4+n
3 ,

which is true. This completes the proof.

Now, we have the following consequence of Theorem 5.

Corollary 6. Let G be a connected graph with n vertices and independence num-

ber α ≥ 3. Then mDQ(G)[n + α − 4, 2Trmax] ≥ α. For α = n − 1 equality holds

if and only if G ∼= K1,n−1. If n+4
3 < α ≤ n − 2, then the inequality is sharp as

shown by CS(n, α).

Proof. Using Inequality (2.1) and Lemma 3, we have the following equality

mDQ(G)[n− 2, n+ α− 4) +mDQ(G)[n+ α− 4, 2Trmax] = n.

Now, applying Theorem 5, we get mDQ(G)[n+ α− 4, 2Trmax] ≥ α, which proves
the inequality. The remaining part of the proof follows from Theorem 5.
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The following result shows that Kn is the unique graph having all its dsL
eigenvalues except one lying in the interval [n− 2, n− 1).

Theorem 7. Let G be a connected graph on n ≥ 6 vertices. Then mDQ(G)[n −
2, n− 1) ≤ n− 1 with equality holding if and only if G ∼= Kn.

Proof. Let α be the independence number of G. When α = 1, G ∼= Kn. Also,
we know that

DSLS(Kn) =

(
n− 2 2n− 2
n− 1 1

)

,

which shows that the equality holds for Kn. When α = n, the graph G reduces to
an isolated vertex which is not the case. Thus, we have to consider the following
two cases.

Case 1. Let 3 ≤ α ≤ n− 1. Using the same construction and reasoning as in
Theorem 5, we see that

(2.3) mDQ(G)[n− 2, n− 1) ≤ mDQ(CS(n,α))[n− 2, n− 1)

Since α ≥ 3, so n + α − 4 ≥ n − 1. From Lemma 4, we see that n + α − 4 is a
dsL eigenvalue of CS(n, α) with multiplicity at least two, as α ≥ 3. Using these
observations in Inequality (2.3), we have

mDQ(G)[n− 2, n− 1) ≤ mDQ(CS(n,α))[n− 2, n− 1) ≤ n− 2,

which proves the result in this case.

Case 2. Let α = 2. Clearly, in this case, G can be considered as a spanning
subgraph of CS(n, 2). Using Lemma 2, we have the following inequality

(2.4) mDQ(G)[n− 2, n− 1) ≤ mDQ(CS(n,2))[n− 2, n− 1).

By Lemma 4, we have

DSLS(CS(n, 2)) =

(

n− 2 3n−2−
√
n2−4n+20
2

3n−2+
√
n2−4n+20
2

n− 2 1 1

)

.

Clearly,
3n− 2 +

√
n2 − 4n+ 20

2
> n− 1.

Also,
3n− 2−

√
n2 − 4n+ 20

2
> n− 1

if n >
√
n2 − 4n+ 20,
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or if n > 5,

which is true.

Using the above observations in Inequality (2.4), we have

mDQ(G)[n− 2, n− 1) ≤ n− 2,

which proves the result in this case and also completes the proof.

Theorem 8. Let G be a connected graph with n vertices and independence num-

ber α such that 6 < α <
√

n(α− 3)− 3(α− 4). Then

mDQ(G)[n− 2, n+ 2] ≤ n− α− 1.

The bound is best possible and can be seen holding in the complete split graph

CS(n, α).

Proof. Using the same construction technique as in Theorem 5, we observe that
G can be considered as a spanning subgraph of CS(n, α). By Lemma 2, we have

(2.5) mDQ(G)[n− 2, n+ 2] ≤ mDQ(CS(n,α))[n− 2, n+ 2].

Since α > 6,

(2.6) n+ α− 4 > n+ 2.

Also, it is easy to see that

(2.7)
3n+ 2α− 6 +

√

8α2 − 8α+ (n− 2α+ 2)2

2
> n+ 2.

We claim that

(2.8)
3n+ 2α− 6−

√

8α2 − 8α+ (n− 2α+ 2)2

2
> n+ 2.

Now

3n+ 2α− 6−
√

8α2 − 8α+ (n− 2α+ 2)2

2
> n+ 2

if (n+ 2α− 10) >
√

8α2 − 8α+ (n− 2α+ 2)2,

or if 8αn− 24(n+ α)− 8α2 + 96 > 0,
or if α2 < n(α− 3)− 3(α− 4),

or if α <
√

n(α− 3)− 3(α− 4),
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which is exactly the condition given in the statement of the theorem. This proves
the claim.

Using Inequalities (2.6), (2.7), (2.8) and Lemma 4 in Inequality (2.5), we get

mDQ(G)[n− 2, n+ 2] ≤ n− α− 1,

which proves the required inequality. Also, it is clear from the proof that the
equality holds for CS(n, α).

The following lemma will be useful in proving our next result.

Lemma 9 [3]. Let G be a connected graph with n vertices. If K = {v1, v2, . . . , vp}
is an independent set of G such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p},
then ∂ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and ∂ − 2 is an eigenvalue of

DQ(G) with multiplicity at least p− 1.

In the following result we provide a lower bound for the quantity mDQ(G)[n+
|S| − 3, 2Trmax] in terms of |S| only, where S is an independent set of graph G.

Theorem 10. Let G be a connected graph with n vertices. Let S = {v1, v2, . . . , vp}
be an independent set of G such that |S| ≥ 2 and N(S) = N(vi) = N(vj) for all

i, j ∈ {1, 2, . . . , p}. If |S| + |N(S)| ≤ n − 1, then mDQ(G)[n + |S| − 3, 2Trmax] ≥
|S| − 1.

Proof. Since N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, we have

(2.9) T = Tr(v1) = Tr(v2) = · · · = Tr(vp).

We observe that dG(vi, vj) = 2 for all i 6= j ∈ {1, 2, . . . , p}. Also, dG(vi, vq) = 1,
for all vi ∈ S, vq ∈ N(S). As |S| + |N(S)| ≤ n − 1, there is at least one vertex,
say u, such that u ∈ V (G) \S ∪N(S) and dG(vi, u) ≥ 2 for all i, j ∈ {1, 2, . . . , p}.

Using these observations in Equation (2.9), we get

T ≥ 2(|S| − 1) + 2 + (n− |S| − 1) = n+ |S| − 1.(2.10)

Using Lemma 9, we see that there are at least |S| − 1 distance signless Laplacian
eigenvalues of G which are equal to T −2. From Inequality (2.10), we see that all
those eigenvalues are greater than or equal to n+ |S| − 3. Thus, using Inequality
(2.1), we get

mDQ(G)[n+ |S| − 3, 2Trmax] ≥ |S| − 1.

Now, we have the following observation.

Corollary 11. Let G be a connected graph with n vertices. Let S = {v1, v2, . . . , vp}
be an independent set of G such that |S| ≥ 2 and N(S) = N(vi) = N(vj) for all

i, j ∈ {1, 2, . . . , p}. If |S| + |N(S)| ≤ n − 1, then mDQ(G)[n − 2, n + |S| − 3) ≤
n− |S|+ 1.
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Proof. Using Inequality (2.1) and Proposition 3, we have the following equality

mDQ(G)[n− 2, n+ |S| − 3) +mDQ(G)[n+ |S| − 3, 2Trmax] = n.

Thus, applying Theorem 10, we get

mDQ(G)[n− 2, n+ |S| − 3) ≤ n− |S|+ 1.

When S happens to be a maximum independent set corresponding to inde-
pendence number α in Theorem 10, then we get the following result.

Theorem 12. Let G be a connected graph on n vertices having independence

number α ≥ 2. Let S = {v1, v2, . . . , vα} be an independent set corresponding to in-

dependence number α such that N(S) = N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , α}.
If |N(S)| ≤ n− α− 1, then

mDQ(G)[n+ α− 3, 2Trmax] ≥ α− 1

and

mDQ(G)[n− 2, n+ α− 3) ≤ n− α+ 1.

Proof. Since all the conditions in Theorem 10 are met in the hypothesis, there-
fore, the proof is completed after we replace |S| by α in Theorem 10.

Following lemma will be useful in proving our next result.

Lemma 13 [3]. Let G be a connected graph with n vertices. If ∂Q = n − 2 is a

dsL eigenvalue of G with multiplicity µ, then the complement G of G contains at

least µ components, each of which is bipartite or an isolated vertex.

In the following result, we provide an upper bound for the multiplicity of
n − 2 as a dsL eigenvalue of G in terms of order n and independence number
α. Also, we give some conditions which are sufficient for the upper bound to be
strict.

Theorem 14. Let G be a connected graph with n vertices and m edges having

independence number α ≥ 2. Then

(2.11) mDQ(G)(n− 2) ≤ n− α− 1,

and the inequality is sharp as seen in CS(n, α). Let S be the independent set of

G corresponding to independence number α. If α ≥ 3, m ≤ n(n−1)−α(α−1)
2 − 2

and for any v ∈ V (G) \ S, |NS(v)| ≥ α − 1, where NS(v) = {u : u ∈ S and

uv ∈ E(G)}, then the inequality is always strict.
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Proof. We observe that G is a spanning subgraph of CS(n, α). By Lemmas 3
and 2, we get

(2.12) mDQ(G)(n− 2) ≤ mDQ(CS(n,α))(n− 2).

From Lemma 4, we have mDQ(CS(n,α))(n − 2) = n − α − 1. Combining this fact
with Inequality (2.12) proves Inequality (2.11) and also shows that equality holds
for CS(n, α).

Now, given the conditions in the statement of the theorem, we will show that
Inequality (2.11) is strict. It is clear that |E(CS(n, α))| = n(n−1)−α(α−1)

2 . Since

m ≤ n(n−1)−α(α−1)
2 − 2, therefore, G is a proper spanning subgraph of CS(n, α)

with at least two edges deleted from CS(n, α). If α = n−1, thenG ∼= CS(n, n−1),
a contradiction. Thus, α ≤ n−2 and |V (G)\S| = n−α ≥ 2. Using Lemmas 2 and

3, we only need to show that inequality is strict for G whenm = n(n−1)−α(α−1)
2 −2,

that is, when we delete exactly two edges, say e1 and e2, from CS(n, α). Let S =
{v1, v2, . . . , vα} and N = V (G) \ S = {vα+1, vα+2, . . . , vn}. Given the conditions
in the hypothesis, we can delete two edges from CS(n, α) in seven different ways.
Without loss of generality we take all the cases one by one as follows.

Case 1. Let e1 = {vα+1, v1} and e2 = {vα+1, v2}. Then, |NS(vα+1)| = α− 2,
which is a contradiction, as for any v ∈ V (G) \ S, |NS(v)| ≥ α− 1.

Case 2. Let e1 = {v1, vα+1} and e2 = {v2, vα+2}. Then, G contains n −
α − 2 isolated vertices and a connected component with the vertex set {v1, v2,
. . . , vα, vα+1, vα+2} which is not bipartite as it contains a triangle, as α ≥ 3. By
Lemma 13, mDQ(G)(n− 2) < n− α− 1.

Case 3. Let e1 = {v1, vα+1} and e2 = {v1, vα+2}. As in Case 2, G has exactly
n−α−1 components which include one connected component that is non-bipartite
and n−α− 2 isolated vertices. Thus, by Lemma 13, mDQ(G)(n− 2) < n−α− 1.

Case 4. Let e1 = {v1, vα+1} and e2 = {vα+2, vα+1}. Proceeding as in Case 3,
we get the required inequality.

Case 5. Let e1 = {vα+1, vα+2} and e2 = {vα+3, v1}, if n − α ≥ 3. Then, G
contains n−α−3 isolated vertices, one copy of K2 and a non-bipartite component
on the vertex set {v1, v2, . . . , vα, vα+3}. This shows that G has exactly n− α− 2
components which are either isolated vertices or bipartite. Using Lemma 13,
proves the result in this case.

Case 6. Let e1 = {vα+1, vα+2} and e2 = {vα+1, vα+3}, if n − α ≥ 3. In
this case G contains Kα, K1,2 and n − α − 3 isolated vertices. Using the same
reasoning as in the above cases proves the result.

Case 7. Let e1 = {vα+1, vα+2} and e2 = {vα+3, vα+4}, if n− α ≥ 4. Then, G
contains Kα, two copies of K2 and n−α− 4 isolated vertices. This shows that G
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has exactly n− α− 2 components which are either isolated vertices or bipartite.
Using Lemma 13, proves the result in this case.

Now, we obtain the bounds for the dsL spectral radius of a graph G in
terms of the order n and the independence number α. We also characterize the
corresponding extremal graphs.

Theorem 15. Let G be a connected graph with n vertices having independence

number α. Then

(2.13) ∂
Q
1 ≥

3n+ 2α− 6 +
√

8α2 − 8α+ (n− 2α+ 2)2

2
.

Equality holds if and only if G ∼= CS(n, α).

Proof. First, let α = 1. Then G ∼= Kn and it is easy to see that Kn = CS(n, 1).
We know that ∂

Q
1 (Kn) = 2n − 2. When we put α = 1 in the right hand side

of Inequality (2.13), it comes out to be 2n − 2 which shows that equality holds
for Kn. If α = n, then G reduces to an isolated vertex because G is connected.
So, let 2 ≤ α ≤ n − 1. As the graph G has independence number α, it can be
considered as a spanning subgraph of CS(n, α). Lemma 4 shows that equality
always holds whenever G ∼= CS(n, α). Thus, to prove the result, we need to
show that Inequality (2.13) is strict when G is a proper spanning subgraph of
CS(n, α). Using Lemma 2, we only need to prove that Inequality (2.13) is strict
when G = CS(n, α) − e, where e is any edge of CS(n, α). We know that the
dsL matrix corresponding to any connected graph H is symmetric, positive and
irreducible. Therefore, by the Perron-Frobenius Theorem, ∂Q

1 (H − uv) > ∂
Q
1 (H)

whenever uv ∈ E(H) and H − uv is connected. Using this observation, we get

∂
Q
1 (CS(n, α)− e) > ∂

Q
1 (CS(n, α)) =

3n+ 2α− 6 +
√

8α2 − 8α+ (n− 2α+ 2)2

2

which proves the result.

Theorem 16. If G be a connected graph with n vertices having independence

number α ≥ n+4
3 . Then

(2.14) ∂
Q
1 (G) ≥ 2n+ α− 2

with equality if and only if n+ 4− 3α = 0 and G ∼= CS(n, α).

Proof. We claim that

(2.15)
3n+ 2α− 6 +

√

8α2 − 8α+ (n− 2α+ 2)2

2
≥ 2n+ α− 2.
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If possible, suppose that

3n+ 2α− 6 +
√

8α2 − 8α+ (n− 2α+ 2)2

2
< 2n+ α− 2,

which implies that
√

8α2 − 8α+ (n− 2α+ 2)2 < n+2, or 12α2−16α−4αn < 0,

or α < n+4
3 , which is a contradiction as α ≥ n+4

3 . This proves the claim.
Now, from Theorem 15 and Inequality (2.15), we get

∂
Q
1 (G) ≥

3n+ 2α− 6 +
√

8α2 − 8α+ (n− 2α+ 2)2

2
≥ 2n+ α− 2,

which proves the required inequality.

We observe that equality holds in the Inequality (2.14) whenever equality
holds in both Theorem 15 and Inequality (2.15). It can be easily seen that
equality holds in the Inequality (2.15) if and only if n+4−3α = 0. This fact and
the Theorem 15 shows that equality holds in the Inequality (2.14) if and only if
n+ 4− 3α = 0 and G ∼= CS(n, α). This completes the proof.

3. Distribution of the dsL Eigenvalues and the Chromatic Number

The following lemmas which will be used in sequel.

Lemma 17 [1]. Let H = Kn1,n2,...,nk
be a complete k-partite graph with n1 =

· · · = nk and n = kn1. Then the dsL spectrum of H is given as

DSLS(H) =

(
2n+ 2n1 − 4 n+ 2n1 − 4 n+ n1 − 4

1 k − 1 n− k

)

.

Lemma 18 [3]. Let G ba a connected graph on n ≥ 3 vertices with diameter

d ≥ 2. Let ∂
Q
n (G) ≤ ∂

Q
n−1(G) ≤ · · · ≤ ∂

Q
1 (G) and qn ≤ qn−1 ≤ · · · ≤ q1 be the

dsL eigenvalues of G and the signless Laplacian eigenvalues of the complement

G of G, respectively. Then

∂
Q
i (G) ≥ n− 2 + qi for every 1 ≤ i ≤ n.

Lemma 19 [14]. Let G = Kn1,n2,...,nt be a complete t-partite graph with n =
n1+n2+· · ·+nt vertices for t ≥ 2. Let PDQ(G)(λ) be the characteristic polynomial

of DQ(G). Then

PDQ(G)(λ) =

t∏

i=1

(λ−n−ni+4)ni−1

[
t∏

i=1

(λ−n−2ni+4)−
t∑

i=1

ni

t∏

j=1,j 6=i

(λ−n−2nj+4)

]

.
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Theorem 20. Let G be a connected graph of order n and chromatic number

χ ≤ √
n. If the color classes are of the same cardinality, then

(3.16) ∂
Q
1 (G) ≥ 2n+ 2χ− 4

with equality if and only if G ∼= Kχ,χ,...,χ
︸ ︷︷ ︸

χ

.

Proof. For n = 1, the result is trivial. So, let n ≥ 2. So G ≇ Kn as χ ≤ √
n. Let

b be the cardinality of each color class so that b = n
χ
. Since G ≇ Kn, therefore,

b ≥ 2. Now, let H be the graph obtained from G by joining every two non-
adjacent vertices, if there are any, which fall in different color classes. Clearly,
H = Kb,b,...,b

︸ ︷︷ ︸

χ

and we can consider G as a spanning subgraph of H. Using Lemma

2 and Lemma 17, we get

(3.17) ∂
Q
1 (G) ≥ ∂

Q
1 (H) = 2n+ 2b− 4.

As χ ≤ √
n, we see that b = n

χ
≥ χ. Using this observation in Inequality (3.17),

we get

∂
Q
1 (G) ≥ 2n+ 2χ− 4,

which proves Inequality (3.16).

From Lemma 17, we see that ∂Q
1 (Kχ,χ,...,χ
︸ ︷︷ ︸

χ

) = 2n+ 2χ− 4 which shows that

equality holds for Kχ,χ,...,χ
︸ ︷︷ ︸

χ

. To complete the proof, we will show that Inequality

(3.16) is strict when G ≇ Kχ,χ,...,χ
︸ ︷︷ ︸

χ

. Since b = n
χ

≥ χ, therefore, we have the

following two cases.

Case 1. Let b = n
χ
> χ. Using the fact that G is a spanning subgraph of H

and Lemmas 2 and 17, we get

∂
Q
1 (G) ≥ ∂

Q
1 (H) = 2n+ 2b− 4 > 2n+ 2χ− 4,

which proves the result in this case.

Case 2. Let b = n
χ

= χ. In this case we see that G is a proper spanning
subgraph of Kχ,χ,...,χ

︸ ︷︷ ︸

χ

. Using Lemma 2, we only need to show that Inequality

(3.16) is strict when G = Kχ,χ,...,χ
︸ ︷︷ ︸

χ

−e, where e is any edge in Kχ,χ,...,χ
︸ ︷︷ ︸

χ

. Since
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DQ(G) is positive, symmetric and irreducible, therefore, by the Perron-Frobenius
theorem, we get

∂
Q
1 (Kχ,χ,...,χ
︸ ︷︷ ︸

χ

−e) > ∂
Q
1 (Kχ,χ,...,χ
︸ ︷︷ ︸

χ

) = 2n+ 2χ− 4,

which proves the result in this case. This completes the proof.

As a consequence of Theorem 20, we have the following result for the class
of balanced bipartite graphs.

Corollary 21. Let G be a balanced bipartite graph on n ≥ 4 vertices. Then

∂
Q
1 (G) ≥ 2n with equality if and only if G ∼= K2,2.

Theorem 22. Let G be a connected graph with n ≥ 5 vertices having chromatic

number χ. Let n1 ≥ · · · ≥ nχ be the cardinalities of the color classes of G with

n1 ≥ 3 and 2nχ ≥ n1. Then

(3.18) mDQ(G)

[

n− 2, n+

⌈
n

χ

⌉

− 4
)

≤ n− χ−
⌈
n

χ

⌉

+ 1.

Proof. First, we show that the interval
[

n− 2, n+
⌈
n
χ

⌉

− 4
)

is well defined. As

n1 ≥ 3 and 2nχ ≥ n1, it is easy to see that χ < n
2 , which shows that n

χ
> 2. Thus,

⌈
n
χ

⌉

≥ 3 so that n+
⌈
n
χ

⌉

− 4 ≥ n− 1. This shows that the interval in Inequality

(3.18) is well defined. Since G has chromatic number χ with cardinalities of the
color classes given by n1 ≥ · · · ≥ nχ, therefore, G can be considered as a spanning
subgraph of H = Kn1,n2,...,nχ . Using Lemma 2 and Lemma 3, we get

(3.19) mDQ(G)

[

n− 2, n+

⌈
n

χ

⌉

− 4
)

≤ mDQ(H)

[

n− 2, n+

⌈
n

χ

⌉

− 4
)

.

From Lemma 19, exactly n−χ dsL eigenvalues of H are known. In particular, the
eigenvalue n+ n1 − 4 is of multiplicity n1 − 1. Using Lemma 18, we see that the
rest of the χ eigenvalues of H are all greater than or equal to n+ 2nχ − 4. Also,

it is easy to see that n1 ≥
⌈
n
χ

⌉

, so that n+ 2nχ − 4 ≥ n+ n1 − 4 ≥ n+
⌈
n
χ

⌉

− 4.

By applying these observations and Lemma 19, we get

mDQ(H)

[

n− 2, n+

⌈
n

χ

⌉

− 4
)

≤ n− χ− n1 + 1 ≤ n− χ−
⌈
n

χ

⌉

+ 1.

Using the above inequality in Inequality (3.19) completes the proof.

After using Lemma 3 and Inequality (2.1), we have the following consequence
of Theorem 22.
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Corollary 23. Let G be a connected graph with n ≥ 5 vertices having chromatic

number χ. Let n1 ≥ · · · ≥ nχ be the cardinalities of the color classes of G with

n1 ≥ 3 and 2nχ ≥ n1. Then

mDQ(G)

[

n+

⌈
n

χ

⌉

− 4, 2Trmax

]

≥ χ+

⌈
n

χ

⌉

− 1.

We have the following lemma.

Lemma 24. Let G be a connected graph with n ≥ 6 vertices having chromatic

number χ. Let n1 ≥ · · · ≥ nχ be the cardinalities of the color classes of G. If

ni ≥ 3 for all 1 ≤ i ≤ χ, then n− 2 cannot be a dsL eigenvalue of G.

Proof. If possible, suppose that n− 2 is a dsL eigenvalue of G with multiplicity
t ≥ 1. By Lemma 13, G must contain at least t components, each of which
is bipartite or an isolated vertex. Since ni ≥ 3 for all 1 ≤ i ≤ χ, therefore,
each component of G contains at least three mutually adjacent vertices, that
is, a triangle. Thus, no component of G is bipartite or an isolated vertex, a
contradiction. This proves the result.

The following result shows that we can improve the Inequality (3.18) in The-
orem 22 whenever and ni ≥ 3 for all 1 ≤ i ≤ χ.

Theorem 25. Let G be a connected graph with n ≥ 6 vertices and having chro-

matic number χ. Let n1 ≥ · · · ≥ nχ ≥ 3 be the cardinalities of the color classes

of G with 2nχ ≥ n1. Then

mDQ(G)

(

n− 2, n+

⌈
n

χ

⌉

− 4

)

≤ n− χ−
⌈
n

χ

⌉

+ 1.

Proof. It is given that ni ≥ 3 for all 1 ≤ i ≤ χ. Using Lemma 24, we see
that n − 2 cannot be a dsL eigenvalue of G. The rest of the proof follows by
Theorem 22.

4. Concluding Remarks

Although we were able to show that the bound in Theorem 5 as well as in Theorem
14 is best possible but still all the graphs satisfying the respective bounds have
not been characterized. So in this direction, we propose the following research
problems.

Problem 1. Determine the families of graphs ϑ for which mDQ(G)[n − 2, n+
α− 4) = n− α, for any G ∈ ϑ.
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Problem 2. Determine the families of graphs ϑ for which mDQ(G)(n − 2) =
n− α− 1, for any G ∈ ϑ.
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