DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

Y. Kang

Yingli Kang

Jinhua Polytechnic

email: ylk8mandy@126.com

H. Lu

Hongkai Lu

Zhejiang Normal University

email: 1298488241@qq.com

L. Jin

Ligang Jin

Zhejiang Normal University

email: ligang.jin@zjnu.cn

Title:

$(I,F)$-partition of planar graphs without cycles of length 4, 6, or 9

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-05-05 , Revised: 2023-09-20 , Accepted: 2023-09-20 , Available online: 2023-10-16 , https://doi.org/10.7151/dmgt.2523

Abstract:

A graph $G$ is $(I,F)$-partitionable if its vertex set can be partitioned into two parts such that one part is an independent set, and the other induces a forest. A $k$-cycle is a cycle of length $k$. A 9-cycle $[v_1v_2\cdots v_9]$ of a plane graph is called special if its interior contains either an edge $v_1v_4$ or a common neighbor of $v_1$, $v_4$, and $v_7$. In this paper, we prove that every plane graph with neither 4- or 6-cycles nor special 9-cycles is $(I,F)$-partitionable. As corollaries, for each $k\in\{8,9\}$, every planar graph without cycles of length from $\{4, 6, k\}$ is $(I,F)$-partitionable and consequently, they are also signed 3-colorable.

Keywords:

planar graph, $(I,F)$-partition, super-extension, bad cycle, discharging

References:

  1. O.V. Borodin and A.N. Glebov, On the partition of a planar graph of girth $5$ into an empty and an acyclic subgraph, Diskretn. Anal. Issled. Oper. 8(4) (2001) 34–53, in Russian.
  2. O.V. Borodin, A.N. Glebov, A. Raspaud and M.R. Salavatipour, Planar graphs without cycles of length from $4$ to $7$ are $3$-colorable, J. Combin. Theory Ser. B 93 (2005) 303–311.
    https://doi.org/10.1016/j.jctb.2004.11.001
  3. O.V. Borodin, A.N. Glebov, M. Montassier and A. Raspaud, Planar graphs without $5$- and $7$-cycles and without adjacent triangles are $3$-colorable, J. Combin. Theory Ser. B 99 (2009) 668–673.
    https://doi.org/10.1016/j.jctb.2008.11.001
  4. V. Cohen-Addad, M. Hebdige, D. Král, Z. Li and E. Salgado, Steinberg's Conjecture is false, J. Combin. Theory Ser. B 122 (2017) 452–456.
    https://doi.org/10.1016/j.jctb.2016.07.006
  5. L. Hu and X. Li, Every signed planar graph without cycles of length from $4$ to $8$ is $3$-colorable, Discrete Math. 341 (2018) 513–519.
    https://doi.org/10.1016/j.disc.2017.09.019
  6. T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, NewYork, 1995).
    https://doi.org/10.1002/9781118032497
  7. L. Jin, Y. Kang, M. Schubert and Y. Wang, Planar graphs without $4$- and $5$-cycles and without ext-triangular $7$-cycles are $3$-colorable, SIAM J. Discrete Math. 31 (2017) 1836–1847.
    https://doi.org/10.1137/16M1086418
  8. Y. Kang, L. Jin and Y. Wang, The $3$-colorability of planar graphs without cycles of length $4$, $6$ and $9$, Discrete Math. 339 (2016) 299–307.
    https://doi.org/10.1016/j.disc.2015.08.023
  9. Y. Kang and E. Steffen, Circular coloring of signed graphs, J. Graph Theory 87 (2018) 135–148.
    https://doi.org/10.1002/jgt.22147
  10. K. Kawarabayashi and C. Thomassen, Decomposing a planar graph of girth $5$ into an independent set and a forest, J. Combin. Theory Ser. B 99 (2009) 674–684.
    https://doi.org/10.1016/j.jctb.2008.11.002
  11. R. Liu and G. Yu, Planar graphs without short even cycles are near-bipartite, Discrete Appl. Math. 284 (2020) 626–630.
    https://doi.org/10.1016/j.dam.2020.04.017
  12. F. Lu, M. Rao, Q. Wang and T. Wang, Planar graphs without normally adjacent short cycles, Discrete Math. 345(10) (2022) 112986.
    https://doi.org/10.1016/j.disc.2022.112986
  13. H. Lu, Y. Wang, W. Wang, Y. Bu, M. Montassier and A. Raspaud, On the $3$-colorability of planar graphs without $4$-, $7$- and $9$-cycles, Discrete Math. 309 (2009) 4596–4607.
    https://doi.org/10.1016/j.disc.2009.02.030
  14. E. Máčajová, A. Raspaud, M. Škoviera, The chromatic number of a signed graph, Electron. J. Combin. 23(1) (2016) #P1.14.
    https://doi.org/10.37236/4938
  15. C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory Ser. B 65 (1995) 305–314.
    https://doi.org/10.1006/jctb.1995.1057
  16. C. Thomassen, Decomposing a planar graph into an independent set and $3$-degenerate graph, J. Combin. Theory Ser. B 83 (2001) 262–271.
    https://doi.org/10.1006/jctb.2001.2056
  17. W. Wang and M. Chen, Planar graphs without $4$, $6$, $8$-cycles are $3$-colorable, Sci. China Math. 50 (2007) 1552–1562.
    https://doi.org/10.1007/s11425-007-0106-4
  18. B. Xu, On $3$-colorable plane graphs without $5$- and $7$-cycles, Discrete Math. Algorithms Appl. 1 (2009) 347–353.
    https://doi.org/10.1142/S1793830909000270

Close