($I, F)$-PARTITION OF PLANAR GRAPHS WITHOUT CYCLES OF LENGTH 4, 6, OR 9

Yingli Kang
Department of Mathematics, Jinhua Polytechnic
Western Haitang Road 888
321017 Jinhua, China
e-mail: ylk8mandy@126.com
Hongkai Lu

AND

Ligang Jin
School of Mathematical Sciences
Zhejiang Normal University
Yingbin Road 688
321004 Jinhua
e-mail: 1298488241@qq.com
ligang.jin@zjnu.cn

Abstract

A graph G is (I, F)-partitionable if its vertex set can be partitioned into two parts such that one part is an independent set, and the other induces a forest. A k-cycle is a cycle of length k. A 9 -cycle $\left[v_{1} v_{2} \cdots v_{9}\right.$] of a plane graph is called special if its interior contains either an edge $v_{1} v_{4}$ or a common neighbor of v_{1}, v_{4}, and v_{7}. In this paper, we prove that every plane graph with neither 4 - or 6 -cycles nor special 9 -cycles is (I, F)-partitionable. As corollaries, for each $k \in\{8,9\}$, every planar graph without cycles of length from $\{4,6, k\}$ is (I, F)-partitionable and consequently, they are also signed 3 -colorable.

Keywords: planar graph, (I, F)-partition, super-extension, bad cycle, discharging.
2020 Mathematics Subject Classification: 05C10, 05C15.

1. Introduction

Graph considered in this paper are finite and simple. A graph G is k-degenerate if every subgraph H of G contains a vertex of degree at most k in H. Clearly, every k-degenerate graph is $(k+1)$-colorable. Let p and q be two nonnegative integers. A graph G is (p, q)-partitionable if $V(G)$ can be partitioned into two subsets which induce a p-degenerate subgraph and a q-degenerate subgraph of G, respectively. Thomassen $[15,16]$ proved that planar graphs are both (1,2)-partitionable and (0,3)-partitionable.

A graph G is (I, F)-partitionable (also called near-bipartitionable) if its vertex set can be partitioned into two parts such that one part is an independent set and the other induces a forest. By definition, (I, F)-partition is exactly $(0,1)$ partition, and every (I, F)-partitionable graph is 3 -colorable. Hence, it is of interest to see which 3-color theorem can be strengthened in the context of (I,F)partition.

Borodin and Glebov [1] confirmed that every planar graph of girth at least 5 is (I, F)-partitionable. Kawarabayashi and Thomassen [10] proved an extension of this result and guessed it might be true that every triangle-free planar graph is (I, F)-partitionable.

Conjecture 1 [10]. Every triangle-free planar graph is (I, F)-partitionable.
The famous Steinberg conjecture, proposed in 1976 (open Problem 2.9 in [6]) and disproved in 2016 [4], states that every planar graph without cycles of length 4 or 5 is 3 -colorable. It has motivated a lot of research on 3 -coloring of planar graphs with restriction on short cycles. It can be concluded from literature that for integers $4<i<j<k<10$, planar graphs without cycles of length from $\{4, i, j, k\}$ are 3-colorable. Further studies give partial results to the following question.

Problem 2. For which pair of integers (i, j) with $4<i<j<10$, every planar graph without cycles of length from $\{4, i, j\}$ is 3 -colorable?

This question was answered in the affirmative for pairs $(i, j) \in\{(5,7),(5,8)$, $(6,7),(6,8),(6,9),(7,9)\}[2,3,7,8,13,17,18]$, and the question for the remaining cases of (i, j) is still open.

This paper is interested in the following generalized form of Problem 2 and proves a partial result on it.

Problem 3. For which pair of integers (i, j) with $4<i<j<10$, every planar graph without cycles of length from $\{4, i, j\}$ is (I, F)-partitionable?

Consider a plane graph G. A vertex is external if it lies on the boundary of the unbounded face; internal otherwise. For a cycle C, let $\operatorname{int}(C)$ and $\operatorname{ext}(C)$
denote the set of vertices in the interior and exterior of C, respectively. A cycle C is separating if both $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ are nonempty. Denote by int $[C]$ (respectively, $\operatorname{ext}[C]$) the subgraph of G consisting of C and its interior (respectively, C and its exterior).

Denote by $G[S]$ the subgraph of a graph G induced by a set S with $S \subseteq V(G)$ or $S \subseteq E(G)$. Given two disjoint subgraphs H_{1} and H_{2} of a graph G, denote by $E_{G}\left(H_{1}, H_{2}\right)$ the set of edges of G connecting a vertex of H_{1} to a vertex of H_{2}.

Definition. Let C be a cycle of a plane graph G. An edge of int $[C]$ connecting two non-consecutive vertices of C is called a chord of C. If a vertex $v \in \operatorname{int}(C)$ has three neighbors v_{1}, v_{2}, v_{3} on C, then $G\left[\left\{v v_{1}, v v_{2}, v v_{3}\right\}\right]$ is called a claw of C. If $u \in \operatorname{int}(C)$ has two neighbors u_{1} and u_{2} on $C, v \in \operatorname{int}(C)$ has two neighbors v_{1} and v_{2} on C, and $u v \in E(G)$, then $G\left[\left\{u v, u u_{1}, u u_{2}, v v_{1}, v v_{2}\right\}\right]$ is called a biclaw of C. If each of three pairwise adjacent vertices $u, v, w \in \operatorname{int}(C)$ has a neighbor on C, say $u^{\prime}, v^{\prime}, w^{\prime}$ respectively, then $G\left[\left\{u v, v w, u w, u u^{\prime}, v v^{\prime}, w w^{\prime}\right\}\right]$ is called a triclaw of C. The cycles into which a chord, a claw, a biclaw, or a triclaw divides C are called cells. A cell of length c_{i} is called a c_{i}-cell. We further call a (c_{1}, c_{2})-chord, a (c_{1}, c_{2}, c_{3})-claw, a ($c_{1}, c_{2}, c_{3}, c_{4}$)-biclaw, or a ($c_{1}, c_{2}, c_{3}, c_{4}$)-triclaw, as depicted in Figure 1.

Figure 1. A cycle C in dotted line and a chord, a claw, a biclaw, and a triclaw of C in solid line.

A k-cycle is a cycle of length k. A 9 -cycle of a plane graph is special if it has a $(3,8)$-chord or a $(5,5,5)$-claw. Let \mathcal{G} denote the class of connected plane graphs with neither 4 - or 6 -cycles nor special 9 -cycles.

The following theorem is the main result of this paper.
Theorem 4. Every graph of \mathcal{G} is (I,F)-partitionable.
Liu and $\mathrm{Yu}[11]$ proved that planar graphs without cycles of length 4,6 , or 8 are (I, F)-partitionable, which is the only known partial result to Problem 3. Lu et al. [12] proved an extension of the result of Liu and Yu. Theorem 4 not only extends the result of Liu and Yu, but also implies a new partial result to Problem 3 as follows.

Corollary 5 [11]. Every planar graph without cycles of length 4, 6, or 8 is (I, F) partitionable.

Corollary 6. Every planar graph without cycles of length 4,6 , or 9 is (I, F) partitionable.

A signed graph is a pair (G, σ), where G is a graph and $\sigma: E(G) \rightarrow\{1,-1\}$ is a signature of G. The study on coloring of signed graph was initiated by Zaslavsky in the 1980's and has attracted some recent attention. For a positive integer k, let Z_{k} be the cyclic group of order k, and let $M_{k}=\{ \pm 1, \ldots, \pm p\}$ if $k=2 p$ is even and $M_{k}=\{0, \pm 1, \ldots, \pm p\}$ if $k=2 p+1$ is odd. A k-coloring of (G, σ) is a mapping $f: V(G) \rightarrow M_{k}$ such that $f(u) \neq \sigma(e) f(v)$ for each edge $e=u v$. A Z_{k}-coloring of (G, σ) is a mapping $f: V(G) \rightarrow Z_{k}$ such that $f(u) \neq \sigma(e) f(v)$ for each edge $e=u v$. These two definitions were introduced respectively by Máčajová, Raspaud, and Škoviera [14] and by Kang and Steffen [9]. These two definitions are differ for any even k but equivalent for any odd k. A graph G is signed k-colorable if (G, σ) has a k-coloring for any signature σ of G.

We remark that every (I, F)-partitionable graph is signed 3-colorable. This is because no matter what the signature σ of an (I, F)-partitionable graph G is, assigning the independent set part with the color 0 and properly coloring the forest part by color set $\{1,-1\}$ yields a proper 3 -coloring of the signed graph (G, σ).

Some 3-color problems were asked in the context of signed 3-coloring. The following question stands in the middle of Problems 2 and 3.

Problem 7. For which pair of integers (i, j) with $4<i<j<10$, every planar graph without cycles of length from $\{4, i, j\}$ is signed 3-colorable?

Hu and Li [5] proved that planar graphs without cycles of length from 4 to 8 are signed 3 -colorable. Notice that the result of Liu and Yu [11] implies that planar graphs without cycles of length 4,6 , or 8 are signed 3 -colorable, which extends the result of Hu and Li . This is the only known partial result to Problem 7.

The following corollary is a direct consequence of Corollary 6, which provides a new partial result to Problem 7.

Corollary 8. Every planar graph without cycles of length 4, 6, or 9 is signed 3-colorable.

The structure of the remaining part of the paper is as follows. In Section 2 , both the method of super-extended theorem and the technique of bad cycle, which were usually used for solving 3 -color problem, are extended to the context of (I, F)-partition. We address the statement of the super-extended theorem,
which strengthens Theorem 4. In Section 3, the proof of the super-extended theorem is given by using discharging method. The proof follows a similar way as in [8]. More precisely, for the minimal counterexample to the super-extended theorem, we prove all the necessary reducible configurations proposed in [8] and consequently, the final contradiction can be derived by exactly the same argument of the discharging part of [8]. For the seek of completeness, we provide the discharging part in the section of Appendix.

2. Super-Extended Theorem and Terminology

Denote by $d(v)$ the degree of a vertex $v,|C|$ the length of a cycle $C,|f|$ the size of a face f, and $|P|$ the number of edges a path P contains. Let k be a positive integer. A k-vertex (respectively, k^{+}-vertex, and k^{-}-vertex) is a vertex v with $d(v)=k$ (respectively, $d(v) \geq k$, and $d(v) \leq k$). Similar definition is applied for cycle, face, and path by constitution $|C|,|f|$, and $|P|$ for $d(v)$, respectively.

An (I, F)-coloring of a graph G is a mapping from $V(G)$ to the color set $\{I, F\}$ such that vertices of the color I is an independent set and vertices of the color F induce a forest. A vertex of color F is called an F-vertex. A path or cycle on only F-vertices is called an F-path or F-cycle, respectively. An I-edge is an edge whose ends are both I-vertices. Let H be a subgraph of a graph G and ϕ be an (I, F)-coloring of H. A super-extension of ϕ to G is an (I, F)-coloring of G whose restriction on H is ϕ such that $G-E(H)$ contains no F-path connecting two vertices of H.

Remark 9. Let H_{2} be a subgraph of a graph H_{3}, H_{1} be a subgraph of H_{2}, and ϕ_{1} be an (I, F)-coloring of H_{1}. If ϕ_{i} is a super-extension of ϕ_{i-1} to H_{i} for each $i \in\{2,3\}$, then ϕ_{3} is a super-extension of ϕ_{1} to H_{3}.

Proof. By assumption, ϕ_{3} is an (I, F)-coloring of H_{3}, and the restriction of ϕ_{3} in H_{1} is exactly ϕ_{1}. So, it suffices to show that $H_{3}-E\left(H_{1}\right)$ contains no F-path connecting two vertices of H_{1}. Otherwise, let P be such an F-path. Since ϕ_{2} is a super-extension of ϕ_{1} to H_{1}, P is not a subgraph of H_{2}. Then $P-E\left(H_{2}\right)$ is an F-path of $H_{3}-E\left(H_{2}\right)$ connecting two vertices of H_{2}, contradicting that ϕ_{3} is a super-extension of ϕ_{2} to H_{3}.

Given a plane graph G, denote by $D(G)$ the boundary of the unbounded face of G. A good cycle is a cycle of length at most 12 which has none of claws, biclaws and triclaws. A bad cycle is a cycle of length at most 12 which is not good.

We will prove the following theorem, which strengthens Theorem 4.
Theorem 10 (Super-extended theorem). Let $G \in \mathcal{G}$. If $D(G)$ is a good cycle, then every (I, F)-coloring of $G[V(D(G))]$ can super-extend to G.

To see that Theorem 4 follows from Theorem 10, take any graph $G \in \mathcal{G}$. If G has no triangles, then it has girth at least 5 and is known to be (I, F) partitionable [1]. So, let T be a triangle of G. If there is a 10^{-}-cycle containing T inside, then let C be the outermost one, that is, the one which is contained in the interior of no other 10^{-}-cycles; otherwise, let $C=T$. Take any (I, F)-coloring ϕ of $G[V(C)]$. Denote by H the plane graph obtained from ext $[C]$ by re-embedding it so that C is the boundary of the unbounded face of H. Suppose that $H \notin \mathcal{G}$. Since $\operatorname{ext}[C] \in \mathcal{G}$, it is only possible that the re-embedding makes a non-special 9-cycle (say C^{\prime}) of ext $[C]$ be special in H. It follows that C^{\prime} contains C inside, a contradiction to the choice of C. Therefore, $H \in \mathcal{G}$. Moreover, since $|C| \leq 10$, it is easy to check by definition that C is a good cycle in both int $[C]$ and H. By Theorem 10, ϕ can super-extend to both int $[C]$ and H. This results in an (I, F)-coloring of G.

The remainder of this section is devoted to some necessary definitions and terminology.

Consider a plane graph G. A path or a cycle C is triangular if it has an edge as the common part between C and some triangle. A cycle C is ext-triangular if it has an edge as the common part between C and some triangle of ext[$[C]$. A path is a splitting path of a cycle C if its two end-vertices locate on C and all other vertices locate inside C. A directed path $\vec{P}=v_{1} v_{2} \cdots v_{k}$ is the path on vertices $v_{1}, v_{2}, \ldots, v_{k}$ with direction $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}$, and P denotes the undirected path associated with \vec{P}. Given an (I, F)-coloring of G, a defective segment means an I-edge, an F-cycle, or a splitting F-path of $D(G)$.

Remark 11. Given a plane graph G, a subgraph H of G which contains $D(G)$, and an (I, F)-coloring ϕ of H which is a super-extension from $D(G)$, for any vertex-induced subgraph U of G with $V(U) \cap V(H)=\emptyset$, if assigning each vertex of U with a color from $\{I, F\}$ brings no defective segments, that is, each vertex of U is contained in no defective segments, then the resulting coloring of $H+U+$ $E_{G}(H, U)$ is a super-extension from $D(G)$.

Consider a plane graph G, a subgraph H of G which contains $D(G)$, and an (I, F)-coloring ϕ of H. Let u be an uncolored vertex which has at most two neighbors locating in H. Nicely coloring u means assigning u with the color I if u has no neighbors of color I, and assigning u with the color F otherwise. Let $\vec{P}=v_{1} v_{2} \cdots v_{k}(k \geq 2)$ be a vertex-induced directed path of $G-V(H)$ such that v_{i} has precisely one neighbor (say t_{i}) locating in H for each $i \in\{1,2, \ldots, k\}$. I-nicely coloring (respectively, F-nicely coloring) \vec{P} means assigning v_{i} with the color F for each i with $\phi\left(t_{i}\right)=I$ and then assigning all the remaining vertices of P with I and F alternately (respectively, with F and I alternately) along \vec{P}. It is easy to deduce the following two properties, which will be used often for the proof of reducible configurations in Section 3.1.
(1) Each of nicely coloring u, I-nicely coloring \vec{P}, and F-nicely coloring \vec{P} brings no defective segments and therefore, the resulting coloring is a super-extension of ϕ by Remark 11.
(2) For the case of I-nicely coloring \vec{P}, let x be an uncolored vertex adjacent to v_{1}, and let $t=k$ if x has no other neighbors on P; otherwise, let $t \in\{2,3, \ldots, k\}$ be the minimum such that $v_{t} x \in E(G)$. If $v_{1} v_{2} \cdots v_{t}$ is not an F-path, then assigning x with F brings no defective segment which contains the edge $v_{1} x$.

Given a plane graph G and an (I, F)-coloring of G, a pair of vertices (u, v) is F-linked if at least one of the following holds.
(1) There exists an F-path between u and v.
(2) There exist two vertex-disjoint F-paths, one connects u with an external vertex, and the other connects v with another external vertex.

3. The Proof of Theorem 10

We shall prove Theorem 10 by contradiction. Let G be a counterexample to Theorem 10 with minimum $|V(G)|+|E(G)|$. Thus, the boundary D of the unbounded face f_{0} of G is a good cycle, and there exists an (I, F)-coloring ϕ_{0} of $G[V(D)]$ which cannot super-extend to G.

3.1. Reducible configurations

Lemma 12. D has no chords.
Proof. Otherwise, let e be a chord of D, which divides D into two cycles, say D_{1} and D_{2}. By the minimality of G, the restriction of ϕ_{0} in $D \cap D_{i}$ can superextend to int $\left[D_{i}\right]$ for $i \in\{1,2\}$. It is easy to verify by definition that the resulting coloring of G is a super-extension of ϕ_{0}, a contradiction.

Lemma 13. Every internal vertex of G has degree at least 3 .
Proof. Otherwise, let v be an internal vertex with $d(v) \leq 2$. The pre-coloring ϕ_{0} can super-extend to $G-v$ by the minimality of G, and further to G by nicely coloring v.

Lemma 14. G has no separating good cycles.
Proof. Suppose to the contrary that C is a separating good cycle of G. Let $H_{1}=G-\operatorname{int}(C)$ and $H_{2}=\operatorname{int}[C]$. By the minimality of G, ϕ_{0} can super-extend to H_{1}, and the resulting coloring of C can super-extend to H_{2}, which can restate by planarity that the resulting coloring of H_{1} can super-extend to H_{2}. By Remark 9 , the resulting coloring of G is a super-extension of ϕ_{0}, a contradiction.

The following three lemmas can be concluded easily.
Lemma 15. Every 9^{-}-cycle of G is facial except that an 8 -cycle of G might have a (3, 7)- or (5,5)-chord.

Lemma 16. Let $H \in \mathcal{G}$. If C is a bad cycle of H, then C has length either 11 or 12. Furthermore, if $|C|=11$, then C has a $(3,7,7)$ - or $(5,5,7)$-claw; if $|C|=12$, then C has $a(5,5,8)$-claw, a $(3,7,5,7)$ - or $(5,5,5,7)$-biclaw, or a (3, 7, 7, 7)-triclaw.

Lemma 17. Every bad cycle C of G is adjacent to at most one triangle. Furthermore, if C is ext-triangular, then C has a (5,5,7)-claw or (5,5,5,7)-biclaw.

Lemma 18. G is 2 -connected.
Proof. Otherwise, we may assume that G has a pendant block B with a cut vertex v such that $B-v$ does not intersect with D. By the minimality of G, ϕ_{0} can super-extend to $G-(B-v)$. Consider only B. We distinguish two cases as follows. If v is contained in a 10^{-}-cycle, then take the outermost one, that is, the one which is contained in the interior of no other 10^{-}-cycles, denoted by C. Lemma 16 implies that C is good and therefore, the coloring of v can extend to an (I, F)-coloring of $B[V(C)]$, which can further super-extend to both the interior and exterior (if not empty) of C in B. This results in an (I, F)-coloring of B. It remains to assume that v is contained in no 10^{-}-cycles. Insert into the unbounded face f of B an edge e between the two neighbors of v on f, creating a 3 -face, say T. Note that the embedding of $B+e$ in the plane which takes T as the unbounded face belongs to \mathcal{G}. Similarly, the coloring of v can extend to an (I, F)-coloring of T and can further super-extend to $B+e$. In either case, the resulting coloring of G is a super-extension of ϕ_{0}, a contradiction.

Lemma 19. Let P be a splitting path of D, which divides D into two cycles D^{\prime} and $D^{\prime \prime}$. If $2 \leq|P| \leq 5$, then at least one of D^{\prime} and $D^{\prime \prime}$ has length $|P|+1$ to $2|P|-1$. More precisely, since $G \in \mathcal{G}$,
(1) if $|P|=2$, then at least one of D^{\prime} and $D^{\prime \prime}$ is a triangle;
(2) if $|P|=3$, then at least one of D^{\prime} and $D^{\prime \prime}$ is a 5 -cycle;
(3) if $|P|=4$, then at least one of D^{\prime} and $D^{\prime \prime}$ is a 5 - or 7 -cycle;
(4) if $|P|=5$, then at least one of D^{\prime} and $D^{\prime \prime}$ is a 7 -, 8-, or 9-cycle.

Proof. Suppose to the contrary that $\left|D^{\prime}\right|,\left|D^{\prime \prime}\right| \geq 2|P|$. Since D has length at most $12,\left|D^{\prime}\right|+\left|D^{\prime \prime}\right|=|D|+2|P| \leq 12+2|P|$. It follows that $2|P| \leq\left|D^{\prime}\right|,\left|D^{\prime \prime}\right|$ ≤ 12.
(1) Let $P=x y z$. By Lemma 13, y has a neighbor y^{\prime} other than x and z. If y^{\prime} is external, then D has a claw, a contradiction. So, y^{\prime} lies inside D^{\prime} or $D^{\prime \prime}$,
w.l.o.g., say D^{\prime}. By Lemma $14, D^{\prime}$ is a bad cycle. Moreover, since G has no 4 -cycles, $5 \leq\left|D^{\prime}\right|,\left|D^{\prime \prime}\right| \leq 11$. Hence by Lemma $16, D^{\prime}$ has a claw, which yields that D has a biclaw, a contradiction.
(2) Let $P=$ wxyz. We may let x^{\prime} and y^{\prime} be neighbors of x and y with $\left\{x x^{\prime}, y y^{\prime}\right\} \cap E(P)=\emptyset$, respectively. If both x^{\prime} and y^{\prime} are external, then D has a biclaw, a contradiction. So, without loss of generality, let x^{\prime} lie inside D^{\prime}. Moreover, since G has no 6 -cycles, $7 \leq\left|D^{\prime}\right|,\left|D^{\prime \prime}\right| \leq 11$. Hence by Lemmas 14 and $16, D^{\prime}$ is a bad 11 -cycle with a claw and $D^{\prime \prime}$ is a 7 -face. So, y^{\prime} has no choices but coincides with x^{\prime}. Now, D has a triclaw, a contradiction.
(3) Let $P=$ vwxyz. In this case, $8 \leq\left|D^{\prime}\right|,\left|D^{\prime \prime}\right| \leq 12$. We claim that G has no edge connecting two non-consecutive vertices on P. Otherwise, such an edge e together with P forms a triangle as well as a splitting 3 -path of D. By the statement (2), we can deduce that e is a (3,5)-chord of D^{\prime}, a contradiction.

Let w^{\prime}, x^{\prime}, and y^{\prime} be neighbors of w, x, and y with $\left\{w w^{\prime}, x x^{\prime}, y y^{\prime}\right\} \cap E(P)=\emptyset$, respectively. Clearly, x^{\prime} lies in int $\left[D^{\prime}\right]$ or $\operatorname{int}\left[D^{\prime \prime}\right]$, without loss of generality, say $\operatorname{int}\left[D^{\prime}\right]$. If x^{\prime} is external, then both the paths $v w x x^{\prime}$ and $x^{\prime} x y z$ are splitting 3 paths of D. By the statement (2), D^{\prime} is an 8 -cycle with a $(5,5)$-chord $x x^{\prime}$. Hence, y^{\prime} has no choice for its location but to lie inside $D^{\prime \prime}$, and so does w^{\prime}. So, $D^{\prime \prime}$ is a bad cycle and by Lemma 16 , either $w^{\prime}=y^{\prime}$ which yields a 4 -cycle or $w^{\prime} y^{\prime} \in E(G)$ which yields a special 9 -cycle with a $(5,5,5)$-claw, a contradiction. It remains to assume that $x^{\prime} \in \operatorname{int}\left(D^{\prime}\right)$. Thus, D^{\prime} is a bad cycle, which implies that $D^{\prime \prime}$ has length 8 or 9 . For $\left|D^{\prime \prime}\right|=9, D^{\prime \prime}$ is facial and D^{\prime} is a bad 11-cycle with a claw, which is impossible because of the locations of w^{\prime}, x^{\prime} and y^{\prime}. For $\left|D^{\prime \prime}\right|=8$, at least one of w^{\prime} and y^{\prime} lies in int $\left[D^{\prime}\right]$, which together with x^{\prime} yields either a 4 -cycle or a special 9 -cycle with a (3,8)-chord, a contradiction.
(4) Let $P=$ uvwxyz. In this case, $10 \leq\left|D^{\prime}\right|,\left|D^{\prime \prime}\right| \leq 12$. By a similar argument as in the case (3), one can conclude that G has no edge connecting two nonconsecutive vertices on P. Let $v^{\prime}, w^{\prime}, x^{\prime}, y^{\prime}$ be neighbors of v, w, x, y not on P, respectively.

We claim that both w^{\prime} and x^{\prime} are internal. Otherwise, let $w^{\prime} \in V\left(D^{\prime}\right)$. Since both $u v w w^{\prime}$ and $w^{\prime} w x y z$ are splitting paths of D, D^{\prime} is a 10 -cycle with a (5,7)-chord $w w^{\prime}$. If $x^{\prime} \in V\left(D^{\prime \prime}\right)$, then similarly, $D^{\prime \prime}$ is a 10 -cycle with a $(5,7)$ chord $x x^{\prime}$, which yields no locations for v^{\prime} and y^{\prime}. Hence, $x^{\prime} \in \operatorname{int}\left(D^{\prime \prime}\right)$. Moreover, $v^{\prime} \in \operatorname{int}\left(D^{\prime \prime}\right)$ since otherwise, $u v v^{\prime}$ is a splitting 2-path of D which yields a triangle adjacent to a 5 -cycle. Therefore, $v^{\prime} x^{\prime} \in E(G)$ and $D^{\prime \prime}$ is a bad 12 -cycle with a biclaw, which yields no location for y^{\prime}.

If one of w^{\prime} and x^{\prime} lies inside D^{\prime} and the other lies inside $D^{\prime \prime}$, then both D^{\prime} and $D^{\prime \prime}$ are bad 11 -cycles with a claw, yielding $v^{\prime}=w^{\prime}$ and $y^{\prime}=x^{\prime}$. Now, G has a special 9 -cycle with a (3,8)-chord. Otherwise, let $w^{\prime}, x^{\prime} \in \operatorname{int}\left(D^{\prime}\right)$. Since G has no 4 -cycles, $x^{\prime}=w^{\prime}$ and hence, D^{\prime} is a bad cycle with either a (3,7,7)-claw or a (3,7,5,7)-biclaw. If $v^{\prime} \in V\left(D^{\prime \prime}\right)$, then $u v v^{\prime}$ is a splitting 2-path of D, forming a
$(3,8)$-chord $u v$. Hence, $v^{\prime} \in \operatorname{int}\left(D^{\prime \prime}\right)$ and similarly, $y^{\prime} \in \operatorname{int}\left(D^{\prime \prime}\right)$. It follows that either $v^{\prime}=y^{\prime}$ or $v^{\prime} y^{\prime} \in E(G)$, yielding a 6 -cycle in both cases.

Lemma 20. If G^{\prime} is a plane graph obtained from G by deleting a nonempty set of internal vertices and either identifying two vertices without identifying edges or adding an edge, which satisfies the following two conditions:
(a) identify no two vertices on D and create no edge connecting two vertices on D, and
(b) create neither 6^{-}-cycles nor ext-triangular 7- or 8-cycles, then ϕ_{0} can super-extend to G^{\prime}.

Proof. The item (a) guarantees that D is unchanged and bounds G^{\prime} and that ϕ_{0} is an (I, F)-coloring of $G^{\prime}[V(D)]$. By the item (b), G^{\prime} is simple and G^{\prime} contains no 4 - or 6 -cycles. Hence, to super-extend ϕ_{0} to G^{\prime} by the minimality of G, it suffices to show both that D is a good cycle in G^{\prime} and that G^{\prime} contains no special 9 -cycles.

Suppose to the contrary that D is a bad cycle of G^{\prime}, i.e., D has a claw, biclaw, or triclaw, say H. For the case of identifying two vertices, the resulting vertex is incident with $k(k \leq 2)$ cells of H that are created by the operation. If $k=0$, then D has H also in G, a contradiction. Moreover, since the operation does not identify edges, $k \neq 1$. Therefore, $k=2$. It follows by Lemma 16 that there is a 5^{-}-cycle or an ext-triangular 7 -cycle created, contradicting the item (b). For the case of inserting a new edge, say e, we can similarly deduce that both cells of H incident with e are created, yielding a similar contradiction as above.

Suppose to the contrary that G^{\prime} contains a special 9 -cycle C. By a similar argument on C as on D above, we can deduce that there is a 5^{-}-cycle or an ext-triangular 8 -cycle created, contradicting the item (b).

Lemma 21. Let G^{\prime} be a plane graph obtained from G by the following operation T : deleting a nonempty set S of internal vertices and then identifying two edges $u_{1} u_{2}$ and $v_{1} v_{2}$ so that u_{1} is identified with v_{1}. For $i \in\{1,2\}$, let T_{i} denote the operation on G that consists of deleting all the vertices of S and identifying u_{i} and v_{i}. If at least one of $u_{1} u_{2}$ and $v_{1} v_{2}$ is contained in no 8^{-}-cycle of $G-S$, and the conditions (a) and (b) of Lemma 20 hold for both T_{1} and T_{2}, then ϕ_{0} can super-extend to G^{\prime}.

Proof. For $i \in\{1,2\}$, denote by w_{i} the vertex resulting from u_{i} and v_{i} by T. Since the condition (a) holds for both T_{1} and T_{2}, D bounds G^{\prime} and ϕ_{0} is an (I, F)-coloring of $G^{\prime}[V(D)]$.

Suppose that T creates a 6^{-}-cycle or a special 9 -cycle or a bad D, denoted by C. Since the two conditions (a) and (b) hold for both T_{1} and T_{2}, by the proof of Lemma 20, each T_{i} does not create C. Hence, $w_{1} w_{2}$ must be either a common
edge of some two cells of C or a chord of some cell of C. This implies that both $u_{1} u_{2}$ and $v_{1} v_{2}$ are contained in a 8^{-}-cycle of $G-S$, contradicting the assumption.

Therefore, ϕ_{0} can super-extend to G^{\prime} by the minimality of G.
Given a plane graph, a good path is a path $P=v_{1} v_{2} v_{3} v_{4}$ of the boundary of some face such that the edge $v_{1} v_{2}$ is triangular and all the vertices of P are internal 3 -vertices, see Figure 2.

Figure 2. Good path.

Lemma 22. G has no good paths.
Proof. Suppose to the contrary that G has a good path $P=v_{1} v_{2} v_{3} v_{4}$, using the same label for vertices as in Figure 2. Since $G \in \mathcal{G}$, all the vertices in Figure 2 are pairwise distinct except that t_{3} and t_{4} might coincide. Apply on G the following operation T : remove all the vertice of P and identify x with t_{3}, obtaining a smaller plane graph G^{\prime}.

Suppose that T creates a 6^{-}-cycle or an ext-triangular 7 - or 8 -cycle. Thus, $G-v_{4}$ has a 12^{-}-cycle C containing $x v_{1} v_{2} v_{3} t_{3}$ and additionally, if $|C| \in\{11,12\}$ then the path $C-\left\{v_{1}, v_{2}, v_{3}\right\}$ is triangular. By planarity, $t_{12} \in V(C)$ or $t_{12} \in$ $\operatorname{int}(C)$ or $v_{4} \in \operatorname{int}(C)$. For the first case, between the two cycles formed by paths $C-v_{1} v_{2}$ and $v_{1} t_{12} v_{2}$, at least one is a triangular 6^{-}-cycle, contradicting that $G \in \mathcal{G}$. For the last two cases, C is a bad cycle by Lemma 14. But now C is adjacent to two triangles, contradicting Lemma 17. So, the item (b) of Lemma 20 holds for T.

Suppose that T identifies two external vertices or create an edge connecting two external vertices. Thus, $x v_{1} v_{2} v_{3} t_{3}$ is contained in a splitting 4- or 5 -path of D, which together with D forms a 9^{-}-cycle by Lemma 19. Thus, T creates a 5^{-}-cycle, a contradiction. Therefore, the item (a) of Lemma 20 holds for T.

Hence, ϕ_{0} can super-extend to G^{\prime} by Lemma 20 and further to G as follows. Nicely color v_{4} and v_{3} in turn, which for sure brings no defective segments. Clearly, x and t_{3} receive the same color, say α. Denote by β and γ the colors of t_{12} and v_{3}, respectively. We distinguish the following four cases.
(i) If $\alpha=I$, then color v_{1} by F and color v_{2} different from t_{12}, which brings no defective segments, we are done by Remark 11.
(ii) If $\alpha=F$ and $\beta=I$, then color both v_{1} and v_{2} by F, we are done. Notice that $x v_{1} v_{2} v_{3} t_{3}$ might be an F-path, which however brings neither F-cycle nor
splitting F-path of D since otherwise, identifying x with t_{3} yields an F-cycle or a splitting F-path of D in G^{\prime}.
(iii) If $\alpha=\beta=F$ and $\gamma=I$, then color v_{1} by I and v_{2} by F, we are done.
(iv) Let $\alpha=\beta=F$ and $\gamma=F$. Since identifying x with t_{3} yields neither F cycle nor splitting F-path of D in G^{\prime}, either $\left(x, t_{12}\right)$ or $\left(t_{12}, t_{3}\right)$ is not F-linked, for which case we color v_{1} by F or by I respectively and color v_{2} different from v_{1}.

Lemma 23. For $k \in\{5,7\}$, the graph G has no k-face that contains k internal 3 -vertices.

Proof. Suppose to the contrary that G has such a k-face $f=\left[v_{1} \cdots v_{k}\right]$. Let t_{i} be the remaining neighbor of v_{i} for $i \in\{1,2, \ldots, k\}$. Since $G \in \mathcal{G}$ and Lemma 22 , these vertices t_{1}, \ldots, t_{k} are pairwise distinct.

Case 1. Let $k=5$. Since $G \in \mathcal{G}, f$ contains a vertex incident with two 7^{+}-faces, without loss of generality, say v_{2}. Apply on G the following operation T : remove $V(f)$ and insert an edge between t_{1} and t_{3}, obtaining a smaller plane graph G^{\prime}.

Suppose that T creates a 6^{-}-cycle or an ext-triangle 7 - or 8 -cycle. Then $G-$ $\left\{v_{4}, v_{5}\right\}$ has an 11^{-}-cycle C containing the path $P=t_{1} v_{1} v_{2} v_{3} t_{3}$ and additionally, $\operatorname{ext}[C]$ has a triangle sharing an edge with $C-E(P)$ when $|C| \in\{10,11\}$. If C is a good cycle, then $t_{2} \in V(C)$ and thus, $v_{2} t_{2}$ is a $\left(7^{+}, 7^{+}\right)$-chord of a 11^{-}-cycle C, a contradiction. So, C is a bad 11-cycle. By Lemma $16, C$ must contain t_{2} inside and have a $(3,7,7)$-claw. Now, C is adjacent to two triangles in G, contradicting Lemma 17. Therefore, the item (b) of Lemma 20 holds for T.

If both t_{1} and t_{3} are external, then P is a splitting 4-path of D, which together with D forms a 5 - or 7 -cycle C by Lemma 19. Then T creates a 2 - or 4 -cycle, contradicting the truth of the item (b). Hence, the item (a) of Lemma 20 holds for T.

Hence, ϕ_{0} can super-extend to G^{\prime} by Lemma 20 and further to G as follows. Firstly, assume that all the vertices of $\left\{t_{1}, t_{2}, \ldots, t_{5}\right\}$ are of color F. If both the pairs $\left(t_{1}, t_{2}\right)$ and $\left(t_{2}, t_{3}\right)$ are F-linked, then $t_{1} t_{3}$ is contained in an F-cycle or a splitting F-path of D in G^{\prime}, a contradiction. Hence, at least one of the pairs $\left(t_{1}, t_{2}\right)$ and $\left(t_{2}, t_{3}\right)$ is not F-linked, without loss of generality, say $\left(t_{1}, t_{2}\right)$. Assign $v_{1}, v_{2}, \ldots, v_{5}$ with F, F, I, F, I, respectively. Note that the coloring of $V(f)$ brings no defective segments, we are done by Remark 11. It remains to assume that there is a vertex from $\left\{t_{1}, t_{2}, \ldots, t_{5}\right\}$ of color I, say t_{q}. I-nicely color the path $f-v_{q}$ with any direction. Since not both t_{1} and t_{3} are of color I, the path $f-v_{q}$ is not an F-path. So, assigning v_{q} with color F brings no defective segments, we are done by Remark 11.

Case 2. Let $k=7$. Apply on G the following operation T : remove all the vertice of f and insert an edge between t_{1} and t_{4}, obtaining a smaller plane graph G^{\prime}.

Suppose that T creates a 6^{-}-cycle or an ext-triangle 7 - or 8 -cycle. Then $G-\left\{v_{5}, v_{6}, v_{7}\right\}$ has a 12^{-}-cycle C containing the path $P=t_{1} v_{1} v_{2} v_{3} v_{4} t_{4}$ and additionally, ext $[C]$ has a triangle sharing an edge with $C-E(P)$ when $|C| \in$ $\{11,12\}$. If C is a good cycle, then $t_{2}, t_{3} \in V(C)$. Since $|C| \leq 12$, each edge of $v_{1} v_{2} v_{3} v_{4}$ is incident with a 5 -face. Now $|C|=11$, which implies that one of those 5 -faces is adjacent to a triangle, a contradiction. So, C is a bad cycle. On one hand, C has a ($5,5,7$)-claw or ($5,5,5,7$)-biclaw by Lemma 17 . On the other hand, either $v_{5}, v_{6}, v_{7} \in \operatorname{int}(C)$ or C contains $t_{2} t_{3}$ inside by planarity. A contradiction follows. So, the item (b) of Lemma 20 holds for T.

If both t_{1} and t_{4} are external vertices, then P is a splitting 5 -path of D, which together with D forms a 9^{-}-cycle by Lemma 19 . Then T creates a 5^{-}cycle, contradicting the truth of the item (b). So, the item (a) of Lemma 20 holds for T.

Hence, ϕ_{0} can super-extend to G^{\prime} by Lemma 20 and further to G in a similar way as for Case 1.

A 3-7-face H consists of a 3 -face $[x z y]$ and a 7 -face $\left[x z v_{1} \cdots v_{5}\right]$ such that their common part is the edge $x z, z$ is an internal 4 -vertex, and all other vertices of H are internal 3-vertices, see Figure 3.

Figure 3. 3-7-face.

Lemma 24. G has no 3-7-faces.
Proof. Suppose to the contrary that G has a $3-7$-face H, using the same label for vertices as in Figure 3. The pre-coloring ϕ_{0} can super-extend to $G-V(H)$ by the minimality of G and further to G as follows.
I-nicely color the directed path $\vec{P}=v_{5} v_{4} \cdots v_{1} z y$. If at least one of y and z is of color I, then assign x with F, which brings no defective segments except that $\left[x z v_{1} v_{2} \cdots v_{5}\right]$ might be an F-cycle. For this exceptional case, the remaining neighbor of each vertex from $\left\{z, v_{1}, v_{2}, \ldots, v_{5}\right\}$ is of color I. Reassign x with I
and y with F, which obviously brings no defective segments, we are done. Hence, we may next assume that both y and z are of color F.

If v_{5} is of color F, then assign x with I, we are done. So, let v_{5} be of color I. Denote by y^{\prime} the remaining neighbor of y. If y^{\prime} is of color F, then reassign y with I and assign x with F, we are done. So, let y^{\prime} be of color I. F-nicely recolor \vec{P}, which yields that both v_{5} and y are of color F, but the color of z might be changed. Finally, color x different from z, which brings no defective segments, we are done.

A 7-7-face H consists of two 7 -faces $\left[x u_{6} \cdots u_{1}\right]$ and $\left[x v_{1} \cdots v_{6}\right]$ such that their common part is the vertex x, u_{1} is adjacent to v_{1}, both x and u_{1} are internal 4 -vertices, and all other vertices of H are internal 3 -vertices, see Figure 4 .

Figure 4. 7-7-face.

Lemma 25. G has no 7-7-faces.
Proof. Suppose to the contrary that G has a 7 -7-face H, using the same label for vertices as in Figure 4. The pre-coloring ϕ_{0} can super-extend to $G-V(H)$ by the minimality of G and further to G as follows. Let $\vec{P}_{1}=u_{6} u_{5} \cdots u_{1}$ and $\overrightarrow{P_{2}}=v_{6} v_{5} \cdots v_{1}$.
I-nicely color the directed path \vec{P}_{1}. If P_{1} is an F-path, then F-nicely color $\overrightarrow{P_{2}}$. Note that v_{6} must be of color F. Reassign v_{1} with F if its color is not F and finally, assign x with I. Note that the coloring of $\left\{v_{1}, x\right\}$ brings no defective segments, we are done by Remark 11. Hence, we may next assume that P_{1} is not an F-path.
I-nicely color the directed path $\overrightarrow{P_{2}}$. If P_{2} is an F-path, then u_{1} must be of color I. F-nicely recolor the path \vec{P}_{1} regardless of the edge $u_{1} v_{1}$, yielding both u_{1} and u_{6} of color F. So, we can assign x with I. It is easy to see that the edge $u_{1} v_{1}$ has both ends of color F but is not contained in any F-cycle or splitting F-path of D, we are done. Hence, we may next assume that P_{2} is not an F-path.

If not both u_{1} and v_{1} are of color F, then assigning x with F brings no defective segments, we are done. So, let both u_{1} and v_{1} be of color F. If v_{2} is of color F, then reassign v_{1} with I and assign x with F, we are done. So, let v_{2}
be of color I. Denote by t_{1} the neighbor of u_{1} not in H. If t_{1} is of color F, then F-nicely recolor the path \vec{P}_{1} regardless of the edge $u_{1} v_{1}$, yielding u_{1} of color I. So, the edge $u_{1} v_{1}$ is contained in no defective segments, and assigning x with F brings no defective segments, we are done. Hence, let t_{1} be of color I. F-nicely recolor $\overrightarrow{P_{2}}$, yielding v_{6}, v_{2}, v_{1} of color F, F, I, respectively. Assign x with F, which might make $u_{2} u_{1} x v_{6}$ be contained in an F-cycle or a splitting F-path of D. For this case, remove the colors of x and v_{1} and F-nicely recolor \vec{P}_{1}, yielding that $u_{2} u_{1}$ would be contained in no defective segments no matter what colors x and v_{1} will receive. Assign x with I and v_{1} with F, we are done.

An M-9-face is a 9 -face $\left[v_{1} \cdots v_{9}\right]$ such that the edges $v_{1} v_{2}, v_{3} v_{4}, v_{4} v_{5}, v_{6} v_{7}$ are triangular, $v_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{7}$ are internal 3 -vertices, and v_{4} is an internal 4 -vertex, see Figure 5.

Figure 5. M-9-face.

Lemma 26. G has no M-9-faces.
Proof. Suppose to the contrary that G has an M-9-face f, using the same label for vertices as in Figure 5. Let $S_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, S_{2}=\left\{v_{5}, v_{6}, v_{7}\right\}$, and $S=$ $S_{1} \cup S_{2}$. Apply on G the operation T as follows: remove all the vertices of S and identify the edges $z v_{4}$ with $v_{8} v_{9}$ so that z is identified with v_{8}, obtaining a smaller plane graph G^{\prime}. Denote by T_{1} (respectively, T_{2}) the operation on G consisting of removing all the vertices of S and identifying z with v_{8} (respectively, v_{4} with v_{9}). Similarly as the proof of Lemma 22, we can deduce that both the items (a) and (b) hold for T_{1} as well as T_{2}. Moreover, notice that $v_{4} z$ is contained in no 8^{-}-cycle of $G-S$.

By Lemma 21, the pre-coloring ϕ_{0} can super-extend to G^{\prime} and further to G as follows. Color the vertices of S_{1} as well as S_{2} in the same way as we did for good path in the proof of Lemma 22. Clearly, the coloring of S brings no I edges. Hence, it remains to show that the coloring of S brings neither F-cycle nor splitting F-path of D. Otherwise, denote by H such a new F-cycle or splitting
F-path of D in G. The way we color S_{1} and S_{2} implies that $V(H) \cap S_{1} \neq \emptyset$ and $V(H) \cap S_{2} \neq \emptyset$, and the coloring of S_{1} as well as S_{2} belongs to case (ii) or (iv) of the proof of Lemma 22. Thus, all the four vertices we identified are of color F and so, v_{5} is of color I. It follows that the coloring of S_{2} belongs to case (ii), for which the coloring of S_{2} brings neither F-cycle nor splitting F-path of D, contradicting that $V(H) \cap S_{2} \neq \emptyset$.

3.2. Incompatibility of reducible configurations

By exactly the same discharging procedure as in the article [8], we can derive the incompatibility of reducible configurations as depicted in Lemmas 12 up to 26 , which completes the proof of Theorem 10. More precisely, in Section 2.1 of [8], the authors prove reducible configurations for the minimal counterexample $H \in \mathcal{G}$, which are exactly the same as Lemmas 13 up to 26 of this paper. Subsection 2.2 of [8] are discharging procedure, which shows that these reducible configurations are incompatible for a graph of \mathcal{G}. For the seek of completeness, we provide the discharging part as appendix.

Acknowledgement

Yingli Kang is supported by National Natural Science Foundation of China (Grant No.: 11901258), Natural Science Foundation of Zhejiang Province of China (Grant No.: LY22A010016), and Department of Education of Zhejiang Province of China (Grant No.: FX2022084). Ligang Jin is supported by National Natural Science Foundation of China (Grant No.: 11801522) and Natural Science Foundation of Zhejiang Province of China (Grant No.: LY20A010014).

References

[1] O.V. Borodin and A.N. Glebov, On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph, Diskretn. Anal. Issled. Oper. 8(4) (2001) 34-53, in Russian.
[2] O.V. Borodin, A.N. Glebov, A. Raspaud and M.R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005) 303-311.
https://doi.org/10.1016/j.jctb.2004.11.001
[3] O.V. Borodin, A.N. Glebov, M. Montassier and A. Raspaud, Planar graphs without 5- and 7-cycles and without adjacent triangles are 3-colorable, J. Combin. Theory Ser. B 99 (2009) 668-673.
https://doi.org/10.1016/j.jctb.2008.11.001
[4] V. Cohen-Addad, M. Hebdige, D. Král, Z. Li and E. Salgado, Steinberg's Conjecture is false, J. Combin. Theory Ser. B 122 (2017) 452-456.
https://doi.org/10.1016/j.jctb.2016.07.006
[5] L. Hu and X. Li, Every signed planar graph without cycles of length from 4 to 8 is 3-colorable, Discrete Math. 341 (2018) 513-519. https://doi.org/10.1016/j.disc.2017.09.019
[6] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, NewYork, 1995). https://doi.org/10.1002/9781118032497
[7] L. Jin, Y. Kang, M. Schubert and Y. Wang, Planar graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable, SIAM J. Discrete Math. 31 (2017) 1836-1847. https://doi.org/10.1137/16M1086418
[8] Y. Kang, L. Jin and Y. Wang, The 3-colorability of planar graphs without cycles of length 4, 6 and 9, Discrete Math. 339 (2016) 299-307. https://doi.org/10.1016/j.disc.2015.08.023
[9] Y. Kang and E. Steffen, Circular coloring of signed graphs, J. Graph Theory 87 (2018) 135-148. https://doi.org/10.1002/jgt. 22147
[10] K. Kawarabayashi and C. Thomassen, Decomposing a planar graph of girth 5 into an independent set and a forest, J. Combin. Theory Ser. B 99 (2009) 674-684. https://doi.org/10.1016/j.jctb.2008.11.002
[11] R. Liu and G. Yu, Planar graphs without short even cycles are near-bipartite, Discrete Appl. Math. 284 (2020) 626-630.
https://doi.org/10.1016/j.dam.2020.04.017
[12] F. Lu, M. Rao, Q. Wang and T. Wang, Planar graphs without normally adjacent short cycles, Discrete Math. 345(10) (2022) 112986.
https://doi.org/10.1016/j.disc.2022.112986
[13] H. Lu, Y. Wang, W. Wang, Y. Bu, M. Montassier and A. Raspaud, On the 3colorability of planar graphs without 4-, 7- and 9-cycles, Discrete Math. 309 (2009) 4596-4607. https://doi.org/10.1016/j.disc.2009.02.030
[14] E. Máčajová, A. Raspaud, M. Škoviera, The chromatic number of a signed graph, Electron. J. Combin. 23(1) (2016) \#P1.14. https://doi.org/10.37236/4938
[15] C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory Ser. B 65 (1995) 305-314. https://doi.org/10.1006/jctb.1995.1057
[16] C. Thomassen, Decomposing a planar graph into an independent set and 3degenerate graph, J. Combin. Theory Ser. B 83 (2001) 262-271. https://doi.org/10.1006/jctb.2001.2056
[17] W. Wang and M. Chen, Planar graphs without 4, 6, 8-cycles are 3-colorable, Sci. China Math. 50 (2007) 1552-1562.
https://doi.org/10.1007/s11425-007-0106-4
[18] B. Xu, On 3-colorable plane graphs without 5- and 7-cycles, Discrete Math. Algorithms Appl. 1 (2009) 347-353.
https://doi.org/10.1142/S1793830909000270

Appendix

A vertex incident with a triangle is called a triangular vertex. We say a vertex is bad if it is an internal triangular 3-vertex; good otherwise. A triangular 7-face is light if it contains no external vertices and every incident nontriangular vertex has degree 3 .

Recall that G is a minimal counterexample to Theorem $10, f_{0}$ is the unbounded face of G, and D is the boundary of f_{0}. Let $V=V(G), E=E(G)$, and F be the set of faces of G. Give initial charge $\operatorname{ch}(x)$ to each element x of $V \cup F$ as $\operatorname{ch}\left(f_{0}\right)=\left|f_{0}\right|+4, \operatorname{ch}(v)=d(v)-4$ for $v \in V$, and $\operatorname{ch}(f)=|f|-4$ for $f \in F \backslash\left\{f_{0}\right\}$. Discharge the elements of $V \cup F$ according to the following rules:
$R 1$. Every 3-face receives $\frac{1}{3}$ from each incident vertex.
$R 2$. Let v be an internal 3 -vertex and f be a face containing v.
(1) v receives $\frac{1}{4}$ from f if $|f|=5$.
(2) Suppose $|f| \geq 7$. Let a and b denote the lengths of other two faces containing v with $a \leq b$. The vertex v receives from f charge $\frac{2}{3}$ if $a=3$, charge $\frac{1}{2}$ if $a=b=5$, charge $\frac{3}{8}$ if $a=5$ and $b \geq 7$, and charge $\frac{1}{3}$ if $a \geq 7$.
$R 3$. Let v be an internal 4-vertex and f be a 7^{+}-face containing v.
(1) If v is incident with precisely two 3 -faces, then v receives $\frac{1}{3}$ from f.
(2) If v is incident with precisely one 3 -face that is adjacent to f, then v receives $\frac{1}{6}$ from f.
$R 4$. Let f be a light 7 -face adjacent to a 3 -face T on edge $x y, z$ be the vertex on T other than x and y, and h be the face containing edge $y z$ other than T.
(1) If $d(x)=3$ and $d(y) \geq 5$, then y sends $\frac{1}{24}$ to f.
(2) If $z \in V(D)$, then z sends $\frac{5}{24}$ to f through T.
(3) If $d(x)=3, d(y)=4, z \notin V(D)$, and $d(z) \geq 4$, then h sends $\frac{5}{24}$ to f through y.
$R 5$. The face f_{0} sends $\frac{4}{3}$ to each incident vertex.
$R 6$. Let v be an external vertex and f be a 5^{+}-face containing v other than f_{0}.
(1) If $d(v)=2$, then v receives $\frac{2}{3}$ from f.
(2) Suppose $d(v)=3$. If v is triangular, then v receives $\frac{1}{12}$ from f; otherwise, v sends $\frac{1}{12}$ to f.
(3) If $d(v) \geq 4$, then v sends $\frac{1}{3}$ to f.

Let $c h^{*}(x)$ denote the final charge of each element x of $V \cup F$ after discharging. On one hand, by Euler's formula $|V|-|E|+|F|=2$, we can deduce that $\sum_{x \in V \cup F} c h(x)=0$. Since charges are only moved around over $V \cup F$ in the discharging procedure, we have $\sum_{x \in V \cup F} c h^{*}(x)=0$. On the other hand, we will show that $c h^{*}(x) \geq 0$ for each $x \in V \cup F$ and $c h^{*}\left(x_{0}\right)>0$ for some vertex x_{0}. Hence, this obvious contradiction completes the proof of Theorem 10.

Claim 27. $c h^{*}(f) \geq 0$ for $f \in F$.
Proof. Denote by $V(f)$ the set of vertices of f.
First suppose that f contains no external vertices.
Let $|f|=3$. By $R 1$, we have $c h^{*}(f)=|f|-4+3 \times \frac{1}{3}=0$, we are done.
Let $|f|=5$. Lemma 23 implies that f contains at most four 3-vertices. Hence, $c h^{*}(f) \geq|f|-4-4 \times \frac{1}{4}=0$ by $R 2(1)$.

Let $|f|=7$. If G has no 3 -face adjacent to f, then f sends at most $\frac{1}{2}$ to each incident 3 -vertex by $R 2(2)$. Since Lemma 23 implies that f contains at most six 3 -vertices, we have $c h^{*}(f) \geq|f|-4-6 \times \frac{1}{2}=0$. Hence, we may next assume that f is adjacent to a 3 -face $[x y z]$ on the edge $x y$ with $d(x) \leq d(y)$. Since G has no special 9 -cycles, f is adjacent to no other 3 -faces. Notice that now only rules $R 2(2), R 3(2)$, and $R 4(3)$ might make f send charge out.

Suppose $d(y)=3$. In this case, f sends $\frac{2}{3}$ to both x and y, and at most $\frac{1}{2}$ to each of other incident 3 -vertices. Moreover, it follows from Lemma 22 that f contains at least two 4^{+}-vertices. Hence, we have $c h^{*}(f) \geq|f|-4-2 \times \frac{2}{3}-3 \times \frac{1}{2}$ >0.

Suppose $d(x)=3$ and $d(y)=4$. In this case, f sends $\frac{2}{3}$ to $x, \frac{1}{6}$ to y, and at most $\frac{3}{8}$ to the neighbor of x on f other than y. If z is not an internal 3-vertex, then f receives charge $\frac{5}{24}$ either from z by $R 4(2)$ or from the face containing $y z$ other than T by $R 4(3)$, yielding $c h^{*}(f) \geq|f|-4-\frac{2}{3}-\frac{1}{6}-\frac{3}{8}-4 \times \frac{1}{2}+\frac{5}{24}=0$. Hence, we may next assume that z is an internal 3-vertex. Since G has no 3 -7-faces by Lemma 24, f is not light. So, $c h^{*}(f) \geq|f|-4-\frac{2}{3}-\frac{1}{6}-4 \times \frac{1}{2}>0$.

Suppose $d(x)=3$ and $d(y) \geq 5$. In this case, f sends $\frac{2}{3}$ to x and at most $\frac{3}{8}$ to the neighbor of x on f other than y. By $\mathrm{R} 4(1), f$ receives $\frac{1}{24}$ from y. Thus, we have $c h^{*}(f) \geq|f|-4-\frac{2}{3}-\frac{3}{8}+\frac{1}{24}-4 \times \frac{1}{2}=0$.

It remains to suppose $d(x) \geq 4$. In this case, f might send charge out through x and y by $R 4(3)$. If f is not light, then $c h^{*}(f) \geq|f|-4-2\left(\frac{1}{6}+\frac{5}{24}\right)-4 \times \frac{1}{2}>0$. Moreover, if $d(y) \geq 5$, then f sends nothing to y or through y, yielding $c h^{*}(f) \geq$ $|f|-4-\left(\frac{1}{6}+\frac{5}{24}\right)-5 \times \frac{1}{2}>0$. Hence, we may next assume that f is light and
$d(x)=d(y)=4$. Since G has no 7 -7-faces by Lemma $25, f$ sends nothing out through x or y. It follows that $c h^{*}(f) \geq|f|-4-2 \times \frac{1}{6}-5 \times \frac{1}{2}>0$.

Let $|f|=8$. Since f sends at most $\frac{1}{2}$ to each incident vertex by $R 2(2)$, we have $c h^{*}(f) \geq|f|-4-8 \times \frac{1}{2}=0$.

Let $|f| \geq 9$. We define

$$
\begin{aligned}
& A(f)=\{v: u v w \text { is a path on } f, \text { both } u \text { and } w \text { are bad, and } v \text { is good }\}, \\
& B(f)=\{v: u v w \text { is a path on } f, u \text { is bad, and both } v \text { and } w \text { are good }\}, \\
& C(f)=\{v: u v w \text { is a path on } f, \text { and all of } u, v, w \text { are good }\}, \\
& D(f)=\{v: v \text { is a bad vertex on } f\} .
\end{aligned}
$$

Clearly, $A(f), B(f), C(f)$, and $D(f)$ are pairwise disjoint sets whose union is $V(f)$. By our rules, f sends at most $\frac{1}{3}$ to each vertex in $A(f)$, at most $\frac{3}{8}$ in total to and through each vertex in $B(f)$, at most $\frac{1}{2}$ in total to and through each vertex in $C(f)$, and $\frac{2}{3}$ to each vertex in $D(f)$. Hence, we have

$$
\begin{aligned}
c h^{*}(f) \geq & |f|-4-\frac{1}{3}|A(f)|-\frac{3}{8}|B(f)|-\frac{1}{2}|C(f)|-\frac{2}{3}|D(f)| \\
= & |f|-4-\frac{1}{3}|A(f)|-\frac{3}{8}|B(f)|-\frac{1}{2}|C(f)|-\frac{2}{3}(|f|-|A(f)|-|B(f)| \\
& \quad-|C(f)|)
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{3}|A(f)|+\frac{7}{24}|B(f)|+\frac{1}{6}|C(f)|+\frac{1}{3}|f|-4 \tag{*}
\end{equation*}
$$

Clearly, $|B(f)|$ is always even, and if $B(f)=\emptyset$ then either $C(f)=\emptyset$ or $C(f)=$ $V(f)$.

Suppose $|f|=9$. By the inequality $(*)$, it suffices to consider the following three cases.

Case 1. Let $|A(f)| \leq 2$ and $|B(f)|=|C(f)|=0$. By Lemma 22, one can deduce that $|A(f)|=2($ say $A(f)=\{u, v\}), D(f)$ is divided by u and v as $3+4$ on the boundary of f, and $d(u), d(v) \geq 4$. Furthermore, by the drawing of 3-faces adjacent to f, we can apply Lemma 26 to get that $\max \{d(u), d(v)\} \geq 5$. Hence, $c h^{*}(f) \geq|f|-4-7 \times \frac{2}{3}-\frac{1}{3}=0$.

Case 2. Let $|A(f)|=1,|B(f)|=2$, and $|C(f)|=0$. By Lemma $22, D(f)$ is divided by $B(f) \cup A(f)$ as $3+3$ or $2+4$ on the boundary of f.

For the case $3+3$, let $A(f)=\{u\}$. By Lemma $22, d(u) \geq 4$. Moreover, u is not a 4 -vertex incident with two 3 -faces by Lemma 26 . Hence, u receives at most $\frac{1}{6}$ from f, which yields $c h^{*}(f) \geq|f|-4-6 \times \frac{2}{3}-2 \times \frac{3}{8}-\frac{1}{6}>0$.

For the case $2+4$, let $f=\left[u_{1} \cdots u_{9}\right]$ with $A(f)=\left\{u_{1}\right\}$ and $B(f)=\left\{u_{4}, u_{5}\right\}$. Lemma 22 implies that $d\left(u_{1}\right), d\left(u_{5}\right) \geq 4$. If u_{1} is not a 4 -vertex incident with two 3 -faces, then f sends at most $\frac{1}{6}$ to u_{1}, which yields $c h^{*}(f) \geq|f|-4-6 \times \frac{2}{3}-2 \times$
$\frac{3}{8}-\frac{1}{6}>0$; otherwise, the drawing of 3 -faces adjacent to f shows that $d\left(u_{4}\right) \geq 4$ and f sends nothing through u_{4} or u_{5} and at most $\frac{1}{3}$ to each of them, yielding $c h^{*}(f) \geq|f|-4-6 \times \frac{2}{3}-3 \times \frac{1}{3}=0$.

Case 3. Let $|A(f)|=0,|B(f)|=2$, and $|C(f)| \leq 2$. It follows that f contains five consecutive bad vertices, which form a good path, contradicting Lemma 22.

Suppose $|f| \geq 10$. By the inequality ($*$), it suffices to consider two cases: (1) $|B(f)|=0$ and $2|A(f)|+|C(f)|<4 ;(2)|B(f)|=2$ and $|A(f)|=|C(f)|=0$. For either case, f contains five consecutive bad vertices, contradicting Lemma 22.

Next suppose that f contains external vertices.
Since $\left|f_{0}\right| \leq 12$, if $f=f_{0}$ then by $R 5$ we have $c h^{*}(f)=\left|f_{0}\right|+4-\left|f_{0}\right| \times \frac{4}{3} \geq 0$. Hence, we may assume $f \neq f_{0}$. By our rules, f sends at most $\frac{2}{3}$ to each incident vertex. Lemma 19 implies that if $|f| \leq 8$, then the external vertices on f are consecutive one by one. Furthermore, f has at most one 2-vertex if $|f|=5$, and has at most two 2 -vertices if $|f| \in\{7,8\}$.

Let $|f|=3$. We have $c h^{*}(f)=|f|-4+3 \times \frac{1}{3}=0$ by $R 1$.
Let $|f|=5$. If f has no 2 -vertices, then f sends at most $\frac{1}{4}$ to each vertex, yielding $c h^{*}(f) \geq|f|-4-4 \times \frac{1}{4}=0$. Hence, we may assume f has precisely one 2 -vertex. It follows that f has two external 3 -vertices, both of which send at least $\frac{1}{12}$ to f by $R 6$. Hence, we have $c h^{*}(f) \geq|f|-4-\frac{2}{3}+2 \times \frac{1}{12}-2 \times \frac{1}{4}=0$.

Let $|f|=7$. Note that f contains at most two bad vertices. First assume that f has precisely one external vertex, say u. Then u is a 4^{+}-vertex, which sends $\frac{1}{3}$ to f by $R 6(3)$, yielding $c h^{*}(f) \geq|f|-4+\frac{1}{3}-2 \times \frac{2}{3}-4 \times \frac{1}{2}=0$. It remains to assume that f has at least two external vertices. Then f has at least two external 3^{+}-vertices, say u and v. If both u and v are not triangular, then they send $2 \times \frac{1}{12}$ in total to f, yielding $c h^{*}(f) \geq|f|-4+2 \times \frac{1}{12}-4 \times \frac{2}{3}-\frac{1}{2}=0$; otherwise, one of u and v is triangular and the other is not, and f has at most one bad vertex, yielding $c h^{*}(f) \geq|f|-4+\frac{1}{12}-\frac{1}{12}-3 \times \frac{2}{3}-2 \times \frac{1}{2}=0$.

Let $|f|=8$. Clearly, f contains no bad vertices. If f has no 2 -vertices, then f sends at most $\frac{1}{2}$ to each incident vertex, yielding $c h^{*}(f) \geq|f|-4-8 \times \frac{1}{2}=0$. Hence, we may assume that f has precisely one or two 2 -vertices. It follows that f has two external 3^{+}-vertices, each of which sends at least $\frac{1}{12}$ to f. Thus, $c h^{*}(f) \geq|f|-4-2 \times \frac{2}{3}+2 \times \frac{1}{12}-4 \times \frac{1}{2}>0$.

It remains to suppose $|f| \geq 9$. If f has an external 4^{+}-vertex, then f receives $\frac{1}{3}$ from this vertex by $R 6(3)$, yielding $c h^{*}(f) \geq|f|-4+\frac{1}{3}-(|f|-1) \times \frac{2}{3} \geq 0$. Hence, we may assume that f has no external 4^{+}-vertex, which implies f has at least two external 3 -vertices. By $R 6$, we have $c h^{*}(f) \geq|f|-4-2 \times \frac{1}{12}-(|f|-2) \times \frac{2}{3}>0$.

Claim 28. $c h^{*}(v) \geq 0$ for $v \in V$.
Proof. First suppose that v is internal. We have $d(v) \geq 3$ by Lemma 13 .

Let $d(v)=3$. Since $G \in \mathcal{G}$, the list of lengths of the faces containing v is one of the followings: $\left\{3,7^{+}, 7^{+}\right\},\left\{5,5,7^{+}\right\},\left\{5,7^{+}, 7^{+}\right\}$, and $\left\{7^{+}, 7^{+}, 7^{+}\right\}$. We are done for each case by $R 1$ and $R 2$.

If $d(v)=4$, then the charge v sends out equals to what v receives by $R 1$ and $R 3$, yielding that $c h^{*}(v)=d(v)-4=0$.

It remains to suppose $d(v) \geq 5$. By $R 1$ and $R 4(1), v$ sends $\frac{1}{3}$ to each incident 3 -face and at most $\frac{1}{24}$ to each other incident face, which gives $c h^{*}(v) \geq d(v)-$ $4-\frac{d(v)}{2} \times \frac{1}{3}-\frac{d(v)}{2} \times \frac{1}{24}>0$.

Next suppose that v is external. Clearly, $d(v) \geq 2$.
By $R 1, R 5$ and $R 6$, we have $c h^{*}(v)=d(v)-4+\frac{4}{3}+\frac{2}{3}=0$ if $d(v)=2$, $c h^{*}(v)=d(v)-4+\frac{4}{3}-\frac{1}{3}+\frac{1}{12}>0$ if $d(v)=3$ and v is triangular, and $c h^{*}(v)=$ $d(v)-4+\frac{4}{3}-\frac{1}{12}-\frac{1}{12}>0$ if $d(v)=3$ and v is not triangular.

It remains to suppose $d(v) \geq 4$. The vertex v receives $\frac{4}{3}$ from f_{0} by $R 5$, sends $\frac{1}{3}$ to each other incident face by $R 1$ and $R 6(3)$, and might send $\frac{5}{24}$ out through each incident 3 -face whose other two vertices are internal. It follows that $c h^{*}(v) \geq d(v)-4+\frac{4}{3}-(d(v)-1) \times \frac{1}{3}-\frac{d(v)-2}{2} \times \frac{5}{24}>0$.

Claim 29. D contains a vertex x_{0} such that $c h^{*}\left(x_{0}\right)>0$.
Proof. Let x_{0} be any 3^{+}-vertex on D, as desired.
The proof of Theorem 10 is completed by Claims 27, 28 and 29.
Received 5 May 2023
Revised 20 September 2023
Accepted 20 September 2023
Available online 16 October 2023

[^0]
[^0]: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

