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Abstract

A graph G is (I, F )-partitionable if its vertex set can be partitioned into
two parts such that one part is an independent set, and the other induces
a forest. A k-cycle is a cycle of length k. A 9-cycle [v1v2 · · · v9] of a plane
graph is called special if its interior contains either an edge v1v4 or a common
neighbor of v1, v4, and v7. In this paper, we prove that every plane graph
with neither 4- or 6-cycles nor special 9-cycles is (I, F )-partitionable. As
corollaries, for each k ∈ {8, 9}, every planar graph without cycles of length
from {4, 6, k} is (I, F )-partitionable and consequently, they are also signed
3-colorable.
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1. Introduction

Graph considered in this paper are finite and simple. A graph G is k-degenerate if
every subgraph H of G contains a vertex of degree at most k in H. Clearly, every
k-degenerate graph is (k+ 1)-colorable. Let p and q be two nonnegative integers.
A graph G is (p, q)-partitionable if V (G) can be partitioned into two subsets which
induce a p-degenerate subgraph and a q-degenerate subgraph of G, respectively.
Thomassen [15, 16] proved that planar graphs are both (1, 2)-partitionable and
(0, 3)-partitionable.

A graph G is (I, F )-partitionable (also called near-bipartitionable) if its vertex
set can be partitioned into two parts such that one part is an independent set
and the other induces a forest. By definition, (I, F )-partition is exactly (0, 1)-
partition, and every (I, F )-partitionable graph is 3-colorable. Hence, it is of
interest to see which 3-color theorem can be strengthened in the context of (I, F )-
partition.

Borodin and Glebov [1] confirmed that every planar graph of girth at least 5
is (I, F )-partitionable. Kawarabayashi and Thomassen [10] proved an extension
of this result and guessed it might be true that every triangle-free planar graph
is (I, F )-partitionable.

Conjecture 1 [10]. Every triangle-free planar graph is (I, F )-partitionable.

The famous Steinberg conjecture, proposed in 1976 (open Problem 2.9 in [6])
and disproved in 2016 [4], states that every planar graph without cycles of length
4 or 5 is 3-colorable. It has motivated a lot of research on 3-coloring of planar
graphs with restriction on short cycles. It can be concluded from literature that
for integers 4 < i < j < k < 10, planar graphs without cycles of length from
{4, i, j, k} are 3-colorable. Further studies give partial results to the following
question.

Problem 2. For which pair of integers (i, j) with 4 < i < j < 10, every planar
graph without cycles of length from {4, i, j} is 3-colorable?

This question was answered in the affirmative for pairs (i, j) ∈ {(5, 7), (5, 8),
(6, 7), (6, 8), (6, 9), (7, 9)} [2, 3, 7, 8, 13, 17, 18], and the question for the remaining
cases of (i, j) is still open.

This paper is interested in the following generalized form of Problem 2 and
proves a partial result on it.

Problem 3. For which pair of integers (i, j) with 4 < i < j < 10, every planar
graph without cycles of length from {4, i, j} is (I, F )-partitionable?

Consider a plane graph G. A vertex is external if it lies on the boundary
of the unbounded face; internal otherwise. For a cycle C, let int(C) and ext(C)
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denote the set of vertices in the interior and exterior of C, respectively. A cycle C
is separating if both int(C) and ext(C) are nonempty. Denote by int[C] (respec-
tively, ext[C]) the subgraph of G consisting of C and its interior (respectively, C
and its exterior).

Denote by G[S] the subgraph of a graph G induced by a set S with S ⊆ V (G)
or S ⊆ E(G). Given two disjoint subgraphs H1 and H2 of a graph G, denote by
EG(H1, H2) the set of edges of G connecting a vertex of H1 to a vertex of H2.

Definition. Let C be a cycle of a plane graph G. An edge of int[C] connecting
two non-consecutive vertices of C is called a chord of C. If a vertex v ∈ int(C)
has three neighbors v1, v2, v3 on C, then G[{vv1, vv2, vv3}] is called a claw of C.
If u ∈ int(C) has two neighbors u1 and u2 on C, v ∈ int(C) has two neighbors v1
and v2 on C, and uv ∈ E(G), then G[{uv, uu1, uu2, vv1, vv2}] is called a biclaw of
C. If each of three pairwise adjacent vertices u, v, w ∈ int(C) has a neighbor on
C, say u′, v′, w′ respectively, then G[{uv, vw, uw, uu′, vv′, ww′}] is called a triclaw
of C. The cycles into which a chord, a claw, a biclaw, or a triclaw divides C are
called cells. A cell of length ci is called a ci-cell. We further call a (c1, c2)-chord,
a (c1, c2, c3)-claw, a (c1, c2, c3, c4)-biclaw, or a (c1, c2, c3, c4)-triclaw, as depicted
in Figure 1.

chord claw biclaw triclaw

1c

2c

1c 2c

3c
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2c 3c
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Figure 1. A cycle C in dotted line and a chord, a claw, a biclaw, and a triclaw of C in
solid line.

A k-cycle is a cycle of length k. A 9-cycle of a plane graph is special if it
has a (3, 8)-chord or a (5, 5, 5)-claw. Let G denote the class of connected plane
graphs with neither 4- or 6-cycles nor special 9-cycles.

The following theorem is the main result of this paper.

Theorem 4. Every graph of G is (I, F )-partitionable.

Liu and Yu [11] proved that planar graphs without cycles of length 4, 6, or
8 are (I, F )-partitionable, which is the only known partial result to Problem 3.
Lu et al. [12] proved an extension of the result of Liu and Yu. Theorem 4 not
only extends the result of Liu and Yu, but also implies a new partial result to
Problem 3 as follows.
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Corollary 5 [11]. Every planar graph without cycles of length 4, 6, or 8 is (I, F )-
partitionable.

Corollary 6. Every planar graph without cycles of length 4, 6, or 9 is (I, F )-
partitionable.

A signed graph is a pair (G, σ), where G is a graph and σ : E(G)→ {1,−1}
is a signature of G. The study on coloring of signed graph was initiated by
Zaslavsky in the 1980’s and has attracted some recent attention. For a positive
integer k, let Zk be the cyclic group of order k, and let Mk = {±1, . . . ,±p} if
k = 2p is even and Mk = {0,±1, . . . ,±p} if k = 2p + 1 is odd. A k-coloring
of (G, σ) is a mapping f : V (G) → Mk such that f(u) 6= σ(e)f(v) for each
edge e = uv. A Zk-coloring of (G, σ) is a mapping f : V (G) → Zk such that
f(u) 6= σ(e)f(v) for each edge e = uv. These two definitions were introduced
respectively by Máčajová, Raspaud, and Škoviera [14] and by Kang and Steffen
[9]. These two definitions are differ for any even k but equivalent for any odd
k. A graph G is signed k-colorable if (G, σ) has a k-coloring for any signature σ
of G.

We remark that every (I, F )-partitionable graph is signed 3-colorable. This
is because no matter what the signature σ of an (I, F )-partitionable graph G
is, assigning the independent set part with the color 0 and properly coloring the
forest part by color set {1,−1} yields a proper 3-coloring of the signed graph
(G, σ).

Some 3-color problems were asked in the context of signed 3-coloring. The
following question stands in the middle of Problems 2 and 3.

Problem 7. For which pair of integers (i, j) with 4 < i < j < 10, every planar
graph without cycles of length from {4, i, j} is signed 3-colorable?

Hu and Li [5] proved that planar graphs without cycles of length from 4
to 8 are signed 3-colorable. Notice that the result of Liu and Yu [11] implies
that planar graphs without cycles of length 4, 6, or 8 are signed 3-colorable,
which extends the result of Hu and Li. This is the only known partial result to
Problem 7.

The following corollary is a direct consequence of Corollary 6, which provides
a new partial result to Problem 7.

Corollary 8. Every planar graph without cycles of length 4, 6, or 9 is signed
3-colorable.

The structure of the remaining part of the paper is as follows. In Section
2, both the method of super-extended theorem and the technique of bad cycle,
which were usually used for solving 3-color problem, are extended to the context
of (I, F )-partition. We address the statement of the super-extended theorem,
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which strengthens Theorem 4. In Section 3, the proof of the super-extended
theorem is given by using discharging method. The proof follows a similar way
as in [8]. More precisely, for the minimal counterexample to the super-extended
theorem, we prove all the necessary reducible configurations proposed in [8] and
consequently, the final contradiction can be derived by exactly the same argument
of the discharging part of [8]. For the seek of completeness, we provide the
discharging part in the section of Appendix.

2. Super-Extended Theorem and Terminology

Denote by d(v) the degree of a vertex v, |C| the length of a cycle C, |f | the size
of a face f , and |P | the number of edges a path P contains. Let k be a positive
integer. A k-vertex (respectively, k+-vertex, and k−-vertex ) is a vertex v with
d(v) = k (respectively, d(v) ≥ k, and d(v) ≤ k). Similar definition is applied for
cycle, face, and path by constitution |C|, |f |, and |P | for d(v), respectively.

An (I, F )-coloring of a graph G is a mapping from V (G) to the color set
{I, F} such that vertices of the color I is an independent set and vertices of the
color F induce a forest. A vertex of color F is called an F -vertex. A path or cycle
on only F -vertices is called an F -path or F -cycle, respectively. An I-edge is an
edge whose ends are both I-vertices. Let H be a subgraph of a graph G and φ be
an (I, F )-coloring of H. A super-extension of φ to G is an (I, F )-coloring of G
whose restriction on H is φ such that G− E(H) contains no F -path connecting
two vertices of H.

Remark 9. Let H2 be a subgraph of a graph H3, H1 be a subgraph of H2, and
φ1 be an (I, F )-coloring of H1. If φi is a super-extension of φi−1 to Hi for each
i ∈ {2, 3}, then φ3 is a super-extension of φ1 to H3.

Proof. By assumption, φ3 is an (I, F )-coloring of H3, and the restriction of φ3
in H1 is exactly φ1. So, it suffices to show that H3 − E(H1) contains no F -path
connecting two vertices of H1. Otherwise, let P be such an F -path. Since φ2 is
a super-extension of φ1 to H1, P is not a subgraph of H2. Then P −E(H2) is an
F -path of H3 − E(H2) connecting two vertices of H2, contradicting that φ3 is a
super-extension of φ2 to H3.

Given a plane graph G, denote by D(G) the boundary of the unbounded face
of G. A good cycle is a cycle of length at most 12 which has none of claws, biclaws
and triclaws. A bad cycle is a cycle of length at most 12 which is not good.

We will prove the following theorem, which strengthens Theorem 4.

Theorem 10 (Super-extended theorem). Let G ∈ G. If D(G) is a good cycle,
then every (I, F )-coloring of G[V (D(G))] can super-extend to G.
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To see that Theorem 4 follows from Theorem 10, take any graph G ∈ G.
If G has no triangles, then it has girth at least 5 and is known to be (I, F )-
partitionable [1]. So, let T be a triangle of G. If there is a 10−-cycle containing T
inside, then let C be the outermost one, that is, the one which is contained in the
interior of no other 10−-cycles; otherwise, let C = T . Take any (I, F )-coloring φ
of G[V (C)]. Denote by H the plane graph obtained from ext[C] by re-embedding
it so that C is the boundary of the unbounded face of H. Suppose that H /∈ G.
Since ext[C] ∈ G, it is only possible that the re-embedding makes a non-special
9-cycle (say C ′) of ext[C] be special in H. It follows that C ′ contains C inside,
a contradiction to the choice of C. Therefore, H ∈ G. Moreover, since |C| ≤ 10,
it is easy to check by definition that C is a good cycle in both int[C] and H.
By Theorem 10, φ can super-extend to both int[C] and H. This results in an
(I, F )-coloring of G.

The remainder of this section is devoted to some necessary definitions and
terminology.

Consider a plane graph G. A path or a cycle C is triangular if it has an edge
as the common part between C and some triangle. A cycle C is ext-triangular
if it has an edge as the common part between C and some triangle of ext[C].
A path is a splitting path of a cycle C if its two end-vertices locate on C and
all other vertices locate inside C. A directed path ~P = v1v2 · · · vk is the path
on vertices v1, v2, . . . , vk with direction v1 → v2 → · · · → vk, and P denotes the
undirected path associated with ~P . Given an (I, F )-coloring of G, a defective
segment means an I-edge, an F -cycle, or a splitting F -path of D(G).

Remark 11. Given a plane graph G, a subgraph H of G which contains D(G),
and an (I, F )-coloring φ of H which is a super-extension from D(G), for any
vertex-induced subgraph U of G with V (U)∩ V (H) = ∅, if assigning each vertex
of U with a color from {I, F} brings no defective segments, that is, each vertex
of U is contained in no defective segments, then the resulting coloring of H+U +
EG(H,U) is a super-extension from D(G).

Consider a plane graph G, a subgraph H of G which contains D(G), and
an (I, F )-coloring φ of H. Let u be an uncolored vertex which has at most two
neighbors locating in H. Nicely coloring u means assigning u with the color I if
u has no neighbors of color I, and assigning u with the color F otherwise. Let
~P = v1v2 · · · vk (k ≥ 2) be a vertex-induced directed path of G−V (H) such that
vi has precisely one neighbor (say ti) locating in H for each i ∈ {1, 2, . . . , k}.
I-nicely coloring (respectively, F -nicely coloring) ~P means assigning vi with the
color F for each i with φ(ti) = I and then assigning all the remaining vertices of
P with I and F alternately (respectively, with F and I alternately) along ~P . It
is easy to deduce the following two properties, which will be used often for the
proof of reducible configurations in Section 3.1.
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(1) Each of nicely coloring u, I-nicely coloring ~P , and F -nicely coloring ~P brings
no defective segments and therefore, the resulting coloring is a super-extension
of φ by Remark 11.

(2) For the case of I-nicely coloring ~P , let x be an uncolored vertex adjacent to v1,
and let t = k if x has no other neighbors on P ; otherwise, let t ∈ {2, 3, . . . , k}
be the minimum such that vtx ∈ E(G). If v1v2 · · · vt is not an F -path, then
assigning x with F brings no defective segment which contains the edge v1x.

Given a plane graph G and an (I, F )-coloring of G, a pair of vertices (u, v)
is F -linked if at least one of the following holds.

(1) There exists an F -path between u and v.

(2) There exist two vertex-disjoint F -paths, one connects u with an external
vertex, and the other connects v with another external vertex.

3. The Proof of Theorem 10

We shall prove Theorem 10 by contradiction. Let G be a counterexample to
Theorem 10 with minimum |V (G)| + |E(G)|. Thus, the boundary D of the
unbounded face f0 of G is a good cycle, and there exists an (I, F )-coloring φ0 of
G[V (D)] which cannot super-extend to G.

3.1. Reducible configurations

Lemma 12. D has no chords.

Proof. Otherwise, let e be a chord of D, which divides D into two cycles, say
D1 and D2. By the minimality of G, the restriction of φ0 in D ∩Di can super-
extend to int[Di] for i ∈ {1, 2}. It is easy to verify by definition that the resulting
coloring of G is a super-extension of φ0, a contradiction.

Lemma 13. Every internal vertex of G has degree at least 3.

Proof. Otherwise, let v be an internal vertex with d(v) ≤ 2. The pre-coloring
φ0 can super-extend to G− v by the minimality of G, and further to G by nicely
coloring v.

Lemma 14. G has no separating good cycles.

Proof. Suppose to the contrary that C is a separating good cycle of G. Let
H1 = G− int(C) and H2 = int[C]. By the minimality of G, φ0 can super-extend
to H1, and the resulting coloring of C can super-extend to H2, which can restate
by planarity that the resulting coloring of H1 can super-extend to H2. By Remark
9, the resulting coloring of G is a super-extension of φ0, a contradiction.
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The following three lemmas can be concluded easily.

Lemma 15. Every 9−-cycle of G is facial except that an 8-cycle of G might have
a (3, 7)- or (5, 5)-chord.

Lemma 16. Let H ∈ G. If C is a bad cycle of H, then C has length either
11 or 12. Furthermore, if |C| = 11, then C has a (3, 7, 7)- or (5, 5, 7)-claw;
if |C| = 12, then C has a (5, 5, 8)-claw, a (3, 7, 5, 7)- or (5, 5, 5, 7)-biclaw, or a
(3, 7, 7, 7)-triclaw.

Lemma 17. Every bad cycle C of G is adjacent to at most one triangle. Fur-
thermore, if C is ext-triangular, then C has a (5, 5, 7)-claw or (5, 5, 5, 7)-biclaw.

Lemma 18. G is 2-connected.

Proof. Otherwise, we may assume that G has a pendant block B with a cut
vertex v such that B − v does not intersect with D. By the minimality of G, φ0
can super-extend to G − (B − v). Consider only B. We distinguish two cases
as follows. If v is contained in a 10−-cycle, then take the outermost one, that
is, the one which is contained in the interior of no other 10−-cycles, denoted by
C. Lemma 16 implies that C is good and therefore, the coloring of v can extend
to an (I, F )-coloring of B[V (C)], which can further super-extend to both the
interior and exterior (if not empty) of C in B. This results in an (I, F )-coloring
of B. It remains to assume that v is contained in no 10−-cycles. Insert into the
unbounded face f of B an edge e between the two neighbors of v on f , creating
a 3-face, say T . Note that the embedding of B + e in the plane which takes T as
the unbounded face belongs to G. Similarly, the coloring of v can extend to an
(I, F )-coloring of T and can further super-extend to B + e. In either case, the
resulting coloring of G is a super-extension of φ0, a contradiction.

Lemma 19. Let P be a splitting path of D, which divides D into two cycles D′

and D′′. If 2 ≤ |P | ≤ 5, then at least one of D′ and D′′ has length |P | + 1 to
2|P | − 1. More precisely, since G ∈ G,

(1) if |P | = 2, then at least one of D′ and D′′ is a triangle;

(2) if |P | = 3, then at least one of D′ and D′′ is a 5-cycle;

(3) if |P | = 4, then at least one of D′ and D′′ is a 5- or 7-cycle;

(4) if |P | = 5, then at least one of D′ and D′′ is a 7-, 8-, or 9-cycle.

Proof. Suppose to the contrary that |D′|, |D′′| ≥ 2|P |. Since D has length at
most 12, |D′| + |D′′| = |D| + 2|P | ≤ 12 + 2|P |. It follows that 2|P | ≤ |D′|, |D′′|
≤ 12.

(1) Let P = xyz. By Lemma 13, y has a neighbor y′ other than x and z.
If y′ is external, then D has a claw, a contradiction. So, y′ lies inside D′ or D′′,
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w.l.o.g., say D′. By Lemma 14, D′ is a bad cycle. Moreover, since G has no
4-cycles, 5 ≤ |D′|, |D′′| ≤ 11. Hence by Lemma 16, D′ has a claw, which yields
that D has a biclaw, a contradiction.

(2) Let P = wxyz. We may let x′ and y′ be neighbors of x and y with
{xx′, yy′} ∩ E(P ) = ∅, respectively. If both x′ and y′ are external, then D has
a biclaw, a contradiction. So, without loss of generality, let x′ lie inside D′.
Moreover, since G has no 6-cycles, 7 ≤ |D′|, |D′′| ≤ 11. Hence by Lemmas 14 and
16, D′ is a bad 11-cycle with a claw and D′′ is a 7-face. So, y′ has no choices but
coincides with x′. Now, D has a triclaw, a contradiction.

(3) Let P = vwxyz. In this case, 8 ≤ |D′|, |D′′| ≤ 12. We claim that G has
no edge connecting two non-consecutive vertices on P . Otherwise, such an edge
e together with P forms a triangle as well as a splitting 3-path of D. By the
statement (2), we can deduce that e is a (3,5)-chord of D′, a contradiction.

Let w′, x′, and y′ be neighbors of w, x, and y with {ww′, xx′, yy′}∩E(P ) = ∅,
respectively. Clearly, x′ lies in int[D′] or int[D′′], without loss of generality, say
int[D′]. If x′ is external, then both the paths vwxx′ and x′xyz are splitting 3-
paths of D. By the statement (2), D′ is an 8-cycle with a (5,5)-chord xx′. Hence,
y′ has no choice for its location but to lie inside D′′, and so does w′. So, D′′ is a
bad cycle and by Lemma 16, either w′ = y′ which yields a 4-cycle or w′y′ ∈ E(G)
which yields a special 9-cycle with a (5, 5, 5)-claw, a contradiction. It remains to
assume that x′ ∈ int(D′). Thus, D′ is a bad cycle, which implies that D′′ has
length 8 or 9. For |D′′| = 9, D′′ is facial and D′ is a bad 11-cycle with a claw,
which is impossible because of the locations of w′, x′ and y′. For |D′′| = 8, at
least one of w′ and y′ lies in int[D′], which together with x′ yields either a 4-cycle
or a special 9-cycle with a (3, 8)-chord, a contradiction.

(4) Let P = uvwxyz. In this case, 10 ≤ |D′|, |D′′| ≤ 12. By a similar
argument as in the case (3), one can conclude that G has no edge connecting two
nonconsecutive vertices on P . Let v′, w′, x′, y′ be neighbors of v, w, x, y not on P ,
respectively.

We claim that both w′ and x′ are internal. Otherwise, let w′ ∈ V (D′).
Since both uvww′ and w′wxyz are splitting paths of D, D′ is a 10-cycle with
a (5,7)-chord ww′. If x′ ∈ V (D′′), then similarly, D′′ is a 10-cycle with a (5,7)-
chord xx′, which yields no locations for v′ and y′. Hence, x′ ∈ int(D′′). Moreover,
v′ ∈ int(D′′) since otherwise, uvv′ is a splitting 2-path of D which yields a triangle
adjacent to a 5-cycle. Therefore, v′x′ ∈ E(G) and D′′ is a bad 12-cycle with a
biclaw, which yields no location for y′.

If one of w′ and x′ lies inside D′ and the other lies inside D′′, then both D′

and D′′ are bad 11-cycles with a claw, yielding v′ = w′ and y′ = x′. Now, G has
a special 9-cycle with a (3,8)-chord. Otherwise, let w′, x′ ∈ int(D′). Since G has
no 4-cycles, x′ = w′ and hence, D′ is a bad cycle with either a (3, 7, 7)-claw or a
(3,7,5,7)-biclaw. If v′ ∈ V (D′′), then uvv′ is a splitting 2-path of D, forming a
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(3,8)-chord uv. Hence, v′ ∈ int(D′′) and similarly, y′ ∈ int(D′′). It follows that
either v′ = y′ or v′y′ ∈ E(G), yielding a 6-cycle in both cases.

Lemma 20. If G′ is a plane graph obtained from G by deleting a nonempty set
of internal vertices and either identifying two vertices without identifying edges
or adding an edge, which satisfies the following two conditions:

(a) identify no two vertices on D and create no edge connecting two vertices on
D, and

(b) create neither 6−-cycles nor ext-triangular 7- or 8-cycles,

then φ0 can super-extend to G′.

Proof. The item (a) guarantees that D is unchanged and bounds G′ and that φ0
is an (I, F )-coloring of G′[V (D)]. By the item (b), G′ is simple and G′ contains
no 4- or 6-cycles. Hence, to super-extend φ0 to G′ by the minimality of G, it
suffices to show both that D is a good cycle in G′ and that G′ contains no special
9-cycles.

Suppose to the contrary that D is a bad cycle of G′, i.e., D has a claw, biclaw,
or triclaw, say H. For the case of identifying two vertices, the resulting vertex is
incident with k (k ≤ 2) cells of H that are created by the operation. If k = 0,
then D has H also in G, a contradiction. Moreover, since the operation does not
identify edges, k 6= 1. Therefore, k = 2. It follows by Lemma 16 that there is a
5−-cycle or an ext-triangular 7-cycle created, contradicting the item (b). For the
case of inserting a new edge, say e, we can similarly deduce that both cells of H
incident with e are created, yielding a similar contradiction as above.

Suppose to the contrary that G′ contains a special 9-cycle C. By a similar
argument on C as on D above, we can deduce that there is a 5−-cycle or an
ext-triangular 8-cycle created, contradicting the item (b).

Lemma 21. Let G′ be a plane graph obtained from G by the following operation
T : deleting a nonempty set S of internal vertices and then identifying two edges
u1u2 and v1v2 so that u1 is identified with v1. For i ∈ {1, 2}, let Ti denote the
operation on G that consists of deleting all the vertices of S and identifying ui
and vi. If at least one of u1u2 and v1v2 is contained in no 8−-cycle of G − S,
and the conditions (a) and (b) of Lemma 20 hold for both T1 and T2, then φ0 can
super-extend to G′.

Proof. For i ∈ {1, 2}, denote by wi the vertex resulting from ui and vi by T .
Since the condition (a) holds for both T1 and T2, D bounds G′ and φ0 is an
(I, F )-coloring of G′[V (D)].

Suppose that T creates a 6−-cycle or a special 9-cycle or a bad D, denoted
by C. Since the two conditions (a) and (b) hold for both T1 and T2, by the proof
of Lemma 20, each Ti does not create C. Hence, w1w2 must be either a common
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edge of some two cells of C or a chord of some cell of C. This implies that both
u1u2 and v1v2 are contained in a 8−-cycle of G−S, contradicting the assumption.

Therefore, φ0 can super-extend to G′ by the minimality of G.

Given a plane graph, a good path is a path P = v1v2v3v4 of the boundary
of some face such that the edge v1v2 is triangular and all the vertices of P are
internal 3-vertices, see Figure 2.
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Figure 2. Good path.

Lemma 22. G has no good paths.

Proof. Suppose to the contrary that G has a good path P = v1v2v3v4, using the
same label for vertices as in Figure 2. Since G ∈ G, all the vertices in Figure 2 are
pairwise distinct except that t3 and t4 might coincide. Apply on G the following
operation T : remove all the vertice of P and identify x with t3, obtaining a
smaller plane graph G′.

Suppose that T creates a 6−-cycle or an ext-triangular 7- or 8-cycle. Thus,
G− v4 has a 12−-cycle C containing xv1v2v3t3 and additionally, if |C| ∈ {11, 12}
then the path C − {v1, v2, v3} is triangular. By planarity, t12 ∈ V (C) or t12 ∈
int(C) or v4 ∈ int(C). For the first case, between the two cycles formed by paths
C − v1v2 and v1t12v2, at least one is a triangular 6−-cycle, contradicting that
G ∈ G. For the last two cases, C is a bad cycle by Lemma 14. But now C is
adjacent to two triangles, contradicting Lemma 17. So, the item (b) of Lemma
20 holds for T .

Suppose that T identifies two external vertices or create an edge connecting
two external vertices. Thus, xv1v2v3t3 is contained in a splitting 4- or 5-path of
D, which together with D forms a 9−-cycle by Lemma 19. Thus, T creates a
5−-cycle, a contradiction. Therefore, the item (a) of Lemma 20 holds for T .

Hence, φ0 can super-extend to G′ by Lemma 20 and further to G as follows.
Nicely color v4 and v3 in turn, which for sure brings no defective segments.
Clearly, x and t3 receive the same color, say α. Denote by β and γ the colors of
t12 and v3, respectively. We distinguish the following four cases.

(i) If α = I, then color v1 by F and color v2 different from t12, which brings
no defective segments, we are done by Remark 11.

(ii) If α = F and β = I, then color both v1 and v2 by F , we are done. Notice
that xv1v2v3t3 might be an F -path, which however brings neither F -cycle nor
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splitting F -path of D since otherwise, identifying x with t3 yields an F -cycle or
a splitting F -path of D in G′.

(iii) If α = β = F and γ = I, then color v1 by I and v2 by F , we are done.
(iv) Let α = β = F and γ = F . Since identifying x with t3 yields neither F -

cycle nor splitting F -path of D in G′, either (x, t12) or (t12, t3) is not F -linked, for
which case we color v1 by F or by I respectively and color v2 different from v1.

Lemma 23. For k ∈ {5, 7}, the graph G has no k-face that contains k internal
3-vertices.

Proof. Suppose to the contrary that G has such a k-face f = [v1 · · · vk]. Let ti
be the remaining neighbor of vi for i ∈ {1, 2, . . . , k}. Since G ∈ G and Lemma
22, these vertices t1, . . . , tk are pairwise distinct.

Case 1. Let k = 5. Since G ∈ G, f contains a vertex incident with two
7+-faces, without loss of generality, say v2. Apply on G the following operation
T : remove V (f) and insert an edge between t1 and t3, obtaining a smaller plane
graph G′.

Suppose that T creates a 6−-cycle or an ext-triangle 7- or 8-cycle. Then G−
{v4, v5} has an 11−-cycle C containing the path P = t1v1v2v3t3 and additionally,
ext[C] has a triangle sharing an edge with C−E(P ) when |C| ∈ {10, 11}. If C is
a good cycle, then t2 ∈ V (C) and thus, v2t2 is a (7+, 7+)-chord of a 11−-cycle C,
a contradiction. So, C is a bad 11-cycle. By Lemma 16, C must contain t2 inside
and have a (3, 7, 7)-claw. Now, C is adjacent to two triangles in G, contradicting
Lemma 17. Therefore, the item (b) of Lemma 20 holds for T .

If both t1 and t3 are external, then P is a splitting 4-path of D, which together
with D forms a 5- or 7-cycle C by Lemma 19. Then T creates a 2- or 4-cycle,
contradicting the truth of the item (b). Hence, the item (a) of Lemma 20 holds
for T .

Hence, φ0 can super-extend to G′ by Lemma 20 and further to G as follows.
Firstly, assume that all the vertices of {t1, t2, . . . , t5} are of color F . If both the
pairs (t1, t2) and (t2, t3) are F -linked, then t1t3 is contained in an F -cycle or a
splitting F -path of D in G′, a contradiction. Hence, at least one of the pairs
(t1, t2) and (t2, t3) is not F -linked, without loss of generality, say (t1, t2). Assign
v1, v2, . . . , v5 with F, F, I, F, I, respectively. Note that the coloring of V (f) brings
no defective segments, we are done by Remark 11. It remains to assume that there
is a vertex from {t1, t2, . . . , t5} of color I, say tq. I-nicely color the path f − vq
with any direction. Since not both t1 and t3 are of color I, the path f − vq is not
an F -path. So, assigning vq with color F brings no defective segments, we are
done by Remark 11.

Case 2. Let k = 7. Apply on G the following operation T : remove all the
vertice of f and insert an edge between t1 and t4, obtaining a smaller plane
graph G′.
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Suppose that T creates a 6−-cycle or an ext-triangle 7- or 8-cycle. Then
G − {v5, v6, v7} has a 12−-cycle C containing the path P = t1v1v2v3v4t4 and
additionally, ext[C] has a triangle sharing an edge with C − E(P ) when |C| ∈
{11, 12}. If C is a good cycle, then t2, t3 ∈ V (C). Since |C| ≤ 12, each edge of
v1v2v3v4 is incident with a 5-face. Now |C| = 11, which implies that one of those
5-faces is adjacent to a triangle, a contradiction. So, C is a bad cycle. On one
hand, C has a (5,5,7)-claw or (5,5,5,7)-biclaw by Lemma 17. On the other hand,
either v5, v6, v7 ∈ int(C) or C contains t2t3 inside by planarity. A contradiction
follows. So, the item (b) of Lemma 20 holds for T .

If both t1 and t4 are external vertices, then P is a splitting 5-path of D,
which together with D forms a 9−-cycle by Lemma 19. Then T creates a 5−-
cycle, contradicting the truth of the item (b). So, the item (a) of Lemma 20 holds
for T .

Hence, φ0 can super-extend to G′ by Lemma 20 and further to G in a similar
way as for Case 1.

A 3-7-face H consists of a 3-face [xzy] and a 7-face [xzv1 · · · v5] such that
their common part is the edge xz, z is an internal 4-vertex, and all other vertices
of H are internal 3-vertices, see Figure 3.
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Figure 3. 3-7-face.

Lemma 24. G has no 3-7-faces.

Proof. Suppose to the contrary that G has a 3-7-face H, using the same label
for vertices as in Figure 3. The pre-coloring φ0 can super-extend to G − V (H)
by the minimality of G and further to G as follows.

I-nicely color the directed path ~P = v5v4 · · · v1zy. If at least one of y and
z is of color I, then assign x with F , which brings no defective segments except
that [xzv1v2 · · · v5] might be an F -cycle. For this exceptional case, the remaining
neighbor of each vertex from {z, v1, v2, . . . , v5} is of color I. Reassign x with I
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and y with F , which obviously brings no defective segments, we are done. Hence,
we may next assume that both y and z are of color F .

If v5 is of color F , then assign x with I, we are done. So, let v5 be of color
I. Denote by y′ the remaining neighbor of y. If y′ is of color F , then reassign y
with I and assign x with F , we are done. So, let y′ be of color I. F -nicely recolor
~P , which yields that both v5 and y are of color F , but the color of z might be
changed. Finally, color x different from z, which brings no defective segments,
we are done.

A 7-7-face H consists of two 7-faces [xu6 · · ·u1] and [xv1 · · · v6] such that their
common part is the vertex x, u1 is adjacent to v1, both x and u1 are internal
4-vertices, and all other vertices of H are internal 3-vertices, see Figure 4.
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Figure 4. 7-7-face.

Lemma 25. G has no 7-7-faces.

Proof. Suppose to the contrary that G has a 7-7-face H, using the same label
for vertices as in Figure 4. The pre-coloring φ0 can super-extend to G − V (H)
by the minimality of G and further to G as follows. Let ~P1 = u6u5 · · ·u1 and
~P2 = v6v5 · · · v1.

I-nicely color the directed path ~P1. If P1 is an F -path, then F -nicely color
~P2. Note that v6 must be of color F . Reassign v1 with F if its color is not F
and finally, assign x with I. Note that the coloring of {v1, x} brings no defective
segments, we are done by Remark 11. Hence, we may next assume that P1 is not
an F -path.

I-nicely color the directed path ~P2. If P2 is an F -path, then u1 must be of
color I. F -nicely recolor the path ~P1 regardless of the edge u1v1, yielding both
u1 and u6 of color F . So, we can assign x with I. It is easy to see that the edge
u1v1 has both ends of color F but is not contained in any F -cycle or splitting
F -path of D, we are done. Hence, we may next assume that P2 is not an F -path.

If not both u1 and v1 are of color F , then assigning x with F brings no
defective segments, we are done. So, let both u1 and v1 be of color F . If v2 is
of color F , then reassign v1 with I and assign x with F , we are done. So, let v2
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be of color I. Denote by t1 the neighbor of u1 not in H. If t1 is of color F , then
F -nicely recolor the path ~P1 regardless of the edge u1v1, yielding u1 of color I.
So, the edge u1v1 is contained in no defective segments, and assigning x with F
brings no defective segments, we are done. Hence, let t1 be of color I. F -nicely
recolor ~P2, yielding v6, v2, v1 of color F, F, I, respectively. Assign x with F , which
might make u2u1xv6 be contained in an F -cycle or a splitting F -path of D. For
this case, remove the colors of x and v1 and F -nicely recolor ~P1, yielding that
u2u1 would be contained in no defective segments no matter what colors x and
v1 will receive. Assign x with I and v1 with F , we are done.

An M-9-face is a 9-face [v1 · · · v9] such that the edges v1v2, v3v4, v4v5, v6v7
are triangular, v1, v2, v3, v5, v6, v7 are internal 3-vertices, and v4 is an internal
4-vertex, see Figure 5.
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Figure 5. M-9-face.

Lemma 26. G has no M-9-faces.

Proof. Suppose to the contrary that G has an M-9-face f , using the same label
for vertices as in Figure 5. Let S1 = {v1, v2, v3}, S2 = {v5, v6, v7}, and S =
S1 ∪S2. Apply on G the operation T as follows: remove all the vertices of S and
identify the edges zv4 with v8v9 so that z is identified with v8, obtaining a smaller
plane graph G′. Denote by T1 (respectively, T2) the operation on G consisting
of removing all the vertices of S and identifying z with v8 (respectively, v4 with
v9). Similarly as the proof of Lemma 22, we can deduce that both the items (a)
and (b) hold for T1 as well as T2. Moreover, notice that v4z is contained in no
8−-cycle of G− S.

By Lemma 21, the pre-coloring φ0 can super-extend to G′ and further to
G as follows. Color the vertices of S1 as well as S2 in the same way as we did
for good path in the proof of Lemma 22. Clearly, the coloring of S brings no I-
edges. Hence, it remains to show that the coloring of S brings neither F -cycle nor
splitting F -path of D. Otherwise, denote by H such a new F -cycle or splitting
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F -path of D in G. The way we color S1 and S2 implies that V (H) ∩ S1 6= ∅ and
V (H) ∩ S2 6= ∅, and the coloring of S1 as well as S2 belongs to case (ii) or (iv)
of the proof of Lemma 22. Thus, all the four vertices we identified are of color
F and so, v5 is of color I. It follows that the coloring of S2 belongs to case (ii),
for which the coloring of S2 brings neither F -cycle nor splitting F -path of D,
contradicting that V (H) ∩ S2 6= ∅.

3.2. Incompatibility of reducible configurations

By exactly the same discharging procedure as in the article [8], we can derive the
incompatibility of reducible configurations as depicted in Lemmas 12 up to 26,
which completes the proof of Theorem 10. More precisely, in Section 2.1 of [8], the
authors prove reducible configurations for the minimal counterexample H ∈ G,
which are exactly the same as Lemmas 13 up to 26 of this paper. Subsection 2.2
of [8] are discharging procedure, which shows that these reducible configurations
are incompatible for a graph of G. For the seek of completeness, we provide the
discharging part as appendix.
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[14] E. Máčajová, A. Raspaud, M. Škoviera, The chromatic number of a signed graph,
Electron. J. Combin. 23(1) (2016) #P1.14.
https://doi.org/10.37236/4938

[15] C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin.
Theory Ser. B 65 (1995) 305–314.
https://doi.org/10.1006/jctb.1995.1057

[16] C. Thomassen, Decomposing a planar graph into an independent set and 3-
degenerate graph, J. Combin. Theory Ser. B 83 (2001) 262–271.
https://doi.org/10.1006/jctb.2001.2056

[17] W. Wang and M. Chen, Planar graphs without 4, 6, 8-cycles are 3-colorable, Sci.
China Math. 50 (2007) 1552–1562.
https://doi.org/10.1007/s11425-007-0106-4

https://doi.org/10.1016/j.disc.2017.09.019
https://doi.org/10.1002/9781118032497
https://doi.org/10.1137/16M1086418
https://doi.org/10.1016/j.disc.2015.08.023
https://doi.org/10.1002/jgt.22147
https://doi.org/10.1016/j.jctb.2008.11.002
https://doi.org/10.1016/j.dam.2020.04.017
https://doi.org/10.1016/j.disc.2022.112986
https://doi.org/10.1016/j.disc.2009.02.030
https://doi.org/10.37236/4938
https://doi.org/10.1006/jctb.1995.1057
https://doi.org/10.1006/jctb.2001.2056
https://doi.org/10.1007/s11425-007-0106-4


18 Y. Kang, H. Lu and L. Jin

[18] B. Xu, On 3-colorable plane graphs without 5- and 7-cycles, Discrete Math. Algo-
rithms Appl. 1 (2009) 347–353.
https://doi.org/10.1142/S1793830909000270

Appendix

A vertex incident with a triangle is called a triangular vertex. We say a vertex
is bad if it is an internal triangular 3-vertex; good otherwise. A triangular 7-face
is light if it contains no external vertices and every incident nontriangular vertex
has degree 3.

Recall that G is a minimal counterexample to Theorem 10, f0 is the un-
bounded face of G, and D is the boundary of f0. Let V = V (G), E = E(G),
and F be the set of faces of G. Give initial charge ch(x) to each element x of
V ∪ F as ch(f0) = |f0| + 4, ch(v) = d(v) − 4 for v ∈ V , and ch(f) = |f | − 4 for
f ∈ F \ {f0}. Discharge the elements of V ∪ F according to the following rules:

R1. Every 3-face receives 1
3 from each incident vertex.

R2. Let v be an internal 3-vertex and f be a face containing v.

(1) v receives 1
4 from f if |f | = 5.

(2) Suppose |f | ≥ 7. Let a and b denote the lengths of other two faces
containing v with a ≤ b. The vertex v receives from f charge 2

3 if a = 3,
charge 1

2 if a = b = 5, charge 3
8 if a = 5 and b ≥ 7, and charge 1

3 if a ≥ 7.

R3. Let v be an internal 4-vertex and f be a 7+-face containing v.

(1) If v is incident with precisely two 3-faces, then v receives 1
3 from f .

(2) If v is incident with precisely one 3-face that is adjacent to f , then v
receives 1

6 from f .

R4. Let f be a light 7-face adjacent to a 3-face T on edge xy, z be the vertex on
T other than x and y, and h be the face containing edge yz other than T .

(1) If d(x) = 3 and d(y) ≥ 5, then y sends 1
24 to f .

(2) If z ∈ V (D), then z sends 5
24 to f through T .

(3) If d(x) = 3, d(y) = 4, z /∈ V (D), and d(z) ≥ 4, then h sends 5
24 to f

through y.

R5. The face f0 sends 4
3 to each incident vertex.

R6. Let v be an external vertex and f be a 5+-face containing v other than f0.

https://doi.org/10.1142/S1793830909000270
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(1) If d(v) = 2, then v receives 2
3 from f .

(2) Suppose d(v) = 3. If v is triangular, then v receives 1
12 from f ; otherwise,

v sends 1
12 to f .

(3) If d(v) ≥ 4, then v sends 1
3 to f .

Let ch∗(x) denote the final charge of each element x of V ∪ F after discharg-
ing. On one hand, by Euler’s formula |V | − |E| + |F | = 2, we can deduce that∑

x∈V ∪F ch(x) = 0. Since charges are only moved around over V ∪ F in the dis-
charging procedure, we have

∑
x∈V ∪F ch

∗(x) = 0. On the other hand, we will
show that ch∗(x) ≥ 0 for each x ∈ V ∪ F and ch∗(x0) > 0 for some vertex x0.
Hence, this obvious contradiction completes the proof of Theorem 10.

Claim 27. ch∗(f) ≥ 0 for f ∈ F .

Proof. Denote by V (f) the set of vertices of f .
First suppose that f contains no external vertices.
Let |f | = 3. By R1, we have ch∗(f) = |f | − 4 + 3× 1

3 = 0, we are done.
Let |f | = 5. Lemma 23 implies that f contains at most four 3-vertices.

Hence, ch∗(f) ≥ |f | − 4− 4× 1
4 = 0 by R2(1).

Let |f | = 7. If G has no 3-face adjacent to f , then f sends at most 1
2 to each

incident 3-vertex by R2(2). Since Lemma 23 implies that f contains at most six
3-vertices, we have ch∗(f) ≥ |f | − 4 − 6 × 1

2 = 0. Hence, we may next assume
that f is adjacent to a 3-face [xyz] on the edge xy with d(x) ≤ d(y). Since G has
no special 9-cycles, f is adjacent to no other 3-faces. Notice that now only rules
R2(2), R3(2), and R4(3) might make f send charge out.

Suppose d(y) = 3. In this case, f sends 2
3 to both x and y, and at most 1

2
to each of other incident 3-vertices. Moreover, it follows from Lemma 22 that f
contains at least two 4+-vertices. Hence, we have ch∗(f) ≥ |f |− 4− 2× 2

3 − 3× 1
2

> 0.
Suppose d(x) = 3 and d(y) = 4. In this case, f sends 2

3 to x, 1
6 to y, and at

most 3
8 to the neighbor of x on f other than y. If z is not an internal 3-vertex,

then f receives charge 5
24 either from z by R4(2) or from the face containing yz

other than T by R4(3), yielding ch∗(f) ≥ |f |−4− 2
3−

1
6−

3
8−4× 1

2+ 5
24 = 0. Hence,

we may next assume that z is an internal 3-vertex. Since G has no 3-7-faces by
Lemma 24, f is not light. So, ch∗(f) ≥ |f | − 4− 2

3 −
1
6 − 4× 1

2 > 0.
Suppose d(x) = 3 and d(y) ≥ 5. In this case, f sends 2

3 to x and at most 3
8

to the neighbor of x on f other than y. By R4(1), f receives 1
24 from y. Thus,

we have ch∗(f) ≥ |f | − 4− 2
3 −

3
8 + 1

24 − 4× 1
2 = 0.

It remains to suppose d(x) ≥ 4. In this case, f might send charge out through
x and y by R4(3). If f is not light, then ch∗(f) ≥ |f | − 4− 2(16 + 5

24)− 4× 1
2 > 0.

Moreover, if d(y) ≥ 5, then f sends nothing to y or through y, yielding ch∗(f) ≥
|f | − 4 − (16 + 5

24) − 5 × 1
2 > 0. Hence, we may next assume that f is light and
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d(x) = d(y) = 4. Since G has no 7-7-faces by Lemma 25, f sends nothing out
through x or y. It follows that ch∗(f) ≥ |f | − 4− 2× 1

6 − 5× 1
2 > 0.

Let |f | = 8. Since f sends at most 1
2 to each incident vertex by R2(2), we

have ch∗(f) ≥ |f | − 4− 8× 1
2 = 0.

Let |f | ≥ 9. We define

A(f) = {v : uvw is a path on f , both u and w are bad, and v is good},
B(f) = {v : uvw is a path on f , u is bad, and both v and w are good},
C(f) = {v : uvw is a path on f , and all of u, v, w are good},
D(f) = {v : v is a bad vertex on f}.

Clearly, A(f), B(f), C(f), and D(f) are pairwise disjoint sets whose union is
V (f). By our rules, f sends at most 1

3 to each vertex in A(f), at most 3
8 in

total to and through each vertex in B(f), at most 1
2 in total to and through each

vertex in C(f), and 2
3 to each vertex in D(f). Hence, we have

ch∗(f) ≥ |f | − 4− 1

3
|A(f)| − 3

8
|B(f)| − 1

2
|C(f)| − 2

3
|D(f)|

= |f | − 4− 1

3
|A(f)| − 3

8
|B(f)| − 1

2
|C(f)| − 2

3
(|f | − |A(f)| − |B(f)|

− |C(f)|)

=
1

3
|A(f)|+ 7

24
|B(f)|+ 1

6
|C(f)|+ 1

3
|f | − 4.(∗)

Clearly, |B(f)| is always even, and if B(f) = ∅ then either C(f) = ∅ or C(f) =
V (f).

Suppose |f | = 9. By the inequality (∗), it suffices to consider the following
three cases.

Case 1. Let |A(f)| ≤ 2 and |B(f)| = |C(f)| = 0. By Lemma 22, one can
deduce that |A(f)| = 2 (say A(f) = {u, v}), D(f) is divided by u and v as 3+4
on the boundary of f , and d(u), d(v) ≥ 4. Furthermore, by the drawing of 3-faces
adjacent to f , we can apply Lemma 26 to get that max{d(u), d(v)} ≥ 5. Hence,
ch∗(f) ≥ |f | − 4− 7× 2

3 −
1
3 = 0.

Case 2. Let |A(f)| = 1, |B(f)| = 2, and |C(f)| = 0. By Lemma 22, D(f) is
divided by B(f) ∪A(f) as 3+3 or 2+4 on the boundary of f .

For the case 3+3, let A(f) = {u}. By Lemma 22, d(u) ≥ 4. Moreover, u is
not a 4-vertex incident with two 3-faces by Lemma 26. Hence, u receives at most
1
6 from f , which yields ch∗(f) ≥ |f | − 4− 6× 2

3 − 2× 3
8 −

1
6 > 0.

For the case 2+4, let f = [u1 · · ·u9] with A(f) = {u1} and B(f) = {u4, u5}.
Lemma 22 implies that d(u1), d(u5) ≥ 4. If u1 is not a 4-vertex incident with two
3-faces, then f sends at most 1

6 to u1, which yields ch∗(f) ≥ |f | − 4− 6× 2
3 − 2×
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3
8 −

1
6 > 0; otherwise, the drawing of 3-faces adjacent to f shows that d(u4) ≥ 4

and f sends nothing through u4 or u5 and at most 1
3 to each of them, yielding

ch∗(f) ≥ |f | − 4− 6× 2
3 − 3× 1

3 = 0.

Case 3. Let |A(f)| = 0, |B(f)| = 2, and |C(f)| ≤ 2. It follows that f contains
five consecutive bad vertices, which form a good path, contradicting Lemma 22.

Suppose |f | ≥ 10. By the inequality (∗), it suffices to consider two cases: (1)
|B(f)| = 0 and 2|A(f)|+ |C(f)| < 4; (2) |B(f)| = 2 and |A(f)| = |C(f)| = 0. For
either case, f contains five consecutive bad vertices, contradicting Lemma 22.

Next suppose that f contains external vertices.

Since |f0| ≤ 12, if f = f0 then by R5 we have ch∗(f) = |f0|+4−|f0|× 4
3 ≥ 0.

Hence, we may assume f 6= f0. By our rules, f sends at most 2
3 to each incident

vertex. Lemma 19 implies that if |f | ≤ 8, then the external vertices on f are
consecutive one by one. Furthermore, f has at most one 2-vertex if |f | = 5, and
has at most two 2-vertices if |f | ∈ {7, 8}.

Let |f | = 3. We have ch∗(f) = |f | − 4 + 3× 1
3 = 0 by R1.

Let |f | = 5. If f has no 2-vertices, then f sends at most 1
4 to each vertex,

yielding ch∗(f) ≥ |f | − 4 − 4 × 1
4 = 0. Hence, we may assume f has precisely

one 2-vertex. It follows that f has two external 3-vertices, both of which send at
least 1

12 to f by R6. Hence, we have ch∗(f) ≥ |f | − 4− 2
3 + 2× 1

12 − 2× 1
4 = 0.

Let |f | = 7. Note that f contains at most two bad vertices. First assume
that f has precisely one external vertex, say u. Then u is a 4+-vertex, which
sends 1

3 to f by R6(3), yielding ch∗(f) ≥ |f | − 4 + 1
3 − 2 × 2

3 − 4 × 1
2 = 0. It

remains to assume that f has at least two external vertices. Then f has at least
two external 3+-vertices, say u and v. If both u and v are not triangular, then
they send 2× 1

12 in total to f , yielding ch∗(f) ≥ |f | − 4 + 2× 1
12 − 4× 2

3 −
1
2 = 0;

otherwise, one of u and v is triangular and the other is not, and f has at most
one bad vertex, yielding ch∗(f) ≥ |f | − 4 + 1

12 −
1
12 − 3× 2

3 − 2× 1
2 = 0.

Let |f | = 8. Clearly, f contains no bad vertices. If f has no 2-vertices, then
f sends at most 1

2 to each incident vertex, yielding ch∗(f) ≥ |f | − 4− 8× 1
2 = 0.

Hence, we may assume that f has precisely one or two 2-vertices. It follows
that f has two external 3+-vertices, each of which sends at least 1

12 to f . Thus,
ch∗(f) ≥ |f | − 4− 2× 2

3 + 2× 1
12 − 4× 1

2 > 0.

It remains to suppose |f | ≥ 9. If f has an external 4+-vertex, then f receives
1
3 from this vertex by R6(3), yielding ch∗(f) ≥ |f |−4+ 1

3−(|f |−1)× 2
3 ≥ 0. Hence,

we may assume that f has no external 4+-vertex, which implies f has at least two
external 3-vertices. By R6, we have ch∗(f) ≥ |f |−4−2× 1

12−(|f |−2)× 2
3 > 0.

Claim 28. ch∗(v) ≥ 0 for v ∈ V .

Proof. First suppose that v is internal. We have d(v) ≥ 3 by Lemma 13.
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Let d(v) = 3. Since G ∈ G, the list of lengths of the faces containing v is one
of the followings: {3, 7+, 7+}, {5, 5, 7+}, {5, 7+, 7+}, and {7+, 7+, 7+}. We are
done for each case by R1 and R2.

If d(v) = 4, then the charge v sends out equals to what v receives by R1 and
R3, yielding that ch∗(v) = d(v)− 4 = 0.

It remains to suppose d(v) ≥ 5. By R1 and R4(1), v sends 1
3 to each incident

3-face and at most 1
24 to each other incident face, which gives ch∗(v) ≥ d(v) −

4− d(v)
2 ×

1
3 −

d(v)
2 ×

1
24 > 0.

Next suppose that v is external. Clearly, d(v) ≥ 2.
By R1, R5 and R6, we have ch∗(v) = d(v) − 4 + 4

3 + 2
3 = 0 if d(v) = 2,

ch∗(v) = d(v)− 4 + 4
3 −

1
3 + 1

12 > 0 if d(v) = 3 and v is triangular, and ch∗(v) =
d(v)− 4 + 4

3 −
1
12 −

1
12 > 0 if d(v) = 3 and v is not triangular.

It remains to suppose d(v) ≥ 4. The vertex v receives 4
3 from f0 by R5,

sends 1
3 to each other incident face by R1 and R6(3), and might send 5

24 out
through each incident 3-face whose other two vertices are internal. It follows
that ch∗(v) ≥ d(v)− 4 + 4

3 − (d(v)− 1)× 1
3 −

d(v)−2
2 × 5

24 > 0.

Claim 29. D contains a vertex x0 such that ch∗(x0) > 0.

Proof. Let x0 be any 3+-vertex on D, as desired.

The proof of Theorem 10 is completed by Claims 27, 28 and 29.
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