Discussiones Mathematicae Graph Theory 45 (2025) 129–150 https://doi.org/10.7151/dmgt.2523

(I, F)-PARTITION OF PLANAR GRAPHS WITHOUT CYCLES OF LENGTH 4, 6, OR 9

YINGLI KANG

Department of Mathematics, Jinhua Polytechnic Western Haitang Road 888 321017 Jinhua, China

e-mail: ylk8mandy@126.com

Hongkai Lu

AND

LIGANG JIN

School of Mathematical Sciences Zhejiang Normal University Yingbin Road 688 321004 Jinhua e-mail: 1298488241@qq.com ligang.jin@zjnu.cn

Abstract

A graph G is (I, F)-partitionable if its vertex set can be partitioned into two parts such that one part is an independent set, and the other induces a forest. A k-cycle is a cycle of length k. A 9-cycle $[v_1v_2\cdots v_9]$ of a plane graph is called special if its interior contains either an edge v_1v_4 or a common neighbor of v_1 , v_4 , and v_7 . In this paper, we prove that every plane graph with neither 4- or 6-cycles nor special 9-cycles is (I, F)-partitionable. As corollaries, for each $k \in \{8, 9\}$, every planar graph without cycles of length from $\{4, 6, k\}$ is (I, F)-partitionable and consequently, they are also signed 3-colorable.

Keywords: planar graph, (I, F)-partition, super-extension, bad cycle, discharging.

2020 Mathematics Subject Classification: 05C10, 05C15.

1. INTRODUCTION

Graphs considered in this paper are finite and simple. A graph G is k-degenerate if every subgraph H of G contains a vertex of degree at most k in H. Clearly, every k-degenerate graph is (k + 1)-colorable. Let p and q be two nonnegative integers. A graph G is (p,q)-partitionable if V(G) can be partitioned into two subsets which induce a p-degenerate subgraph and a q-degenerate subgraph of G, respectively. Thomassen [15, 16] proved that planar graphs are both (1,2)partitionable and (0,3)-partitionable.

A graph G is (I, F)-partitionable (also called *near-bipartitionable*) if its vertex set can be partitioned into two parts such that one part is an independent set and the other induces a forest. By definition, (I, F)-partition is exactly (0, 1)partition, and every (I, F)-partitionable graph is 3-colorable. Hence, it is of interest to see which 3-color theorem can be strengthened in the context of (I, F)partition.

Borodin and Glebov [1] confirmed that every planar graph of girth at least 5 is (I, F)-partitionable. Kawarabayashi and Thomassen [10] proved an extension of this result and guessed it might be true that every triangle-free planar graph is (I, F)-partitionable.

Conjecture 1 [10]. Every triangle-free planar graph is (I, F)-partitionable.

The famous Steinberg conjecture, proposed in 1976 (open Problem 2.9 in [6]) and disproved in 2016 [4], states that every planar graph without cycles of length 4 or 5 is 3-colorable. It has motivated a lot of research on 3-coloring of planar graphs with restriction on short cycles. It can be concluded from literature that for integers 4 < i < j < k < 10, planar graphs without cycles of length from $\{4, i, j, k\}$ are 3-colorable. Further studies give partial results to the following question.

Problem 2. For which pair of integers (i, j) with 4 < i < j < 10, every planar graph without cycles of length from $\{4, i, j\}$ is 3-colorable?

This question was answered in the affirmative for pairs $(i, j) \in \{(5, 7), (5, 8), (6, 7), (6, 8), (6, 9), (7, 9)\}$ [2, 3, 7, 8, 13, 17, 18], and the question for the remaining cases of (i, j) is still open.

This paper is interested in the following generalized form of Problem 2 and proves a partial result on it.

Problem 3. For which pair of integers (i, j) with 4 < i < j < 10, every planar graph without cycles of length from $\{4, i, j\}$ is (I, F)-partitionable?

Consider a plane graph G. A vertex is *external* if it lies on the boundary of the unbounded face; *internal* otherwise. For a cycle C, let int(C) and ext(C)

denote the set of vertices in the interior and exterior of C, respectively. A cycle C is *separating* if both int(C) and ext(C) are nonempty. Denote by int[C] (respectively, ext[C]) the subgraph of G consisting of C and its interior (respectively, C and its exterior).

Denote by G[S] the subgraph of a graph G induced by a set S with $S \subseteq V(G)$ or $S \subseteq E(G)$. Given two disjoint subgraphs H_1 and H_2 of a graph G, denote by $E_G(H_1, H_2)$ the set of edges of G connecting a vertex of H_1 to a vertex of H_2 .

Definition. Let C be a cycle of a plane graph G. An edge of $\operatorname{int}[C]$ connecting two non-consecutive vertices of C is called a *chord* of C. If a vertex $v \in \operatorname{int}(C)$ has three neighbors v_1, v_2, v_3 on C, then $G[\{vv_1, vv_2, vv_3\}]$ is called a *claw* of C. If $u \in \operatorname{int}(C)$ has two neighbors u_1 and u_2 on $C, v \in \operatorname{int}(C)$ has two neighbors v_1 and v_2 on C, and $uv \in E(G)$, then $G[\{uv, uu_1, uu_2, vv_1, vv_2\}]$ is called a *biclaw* of C. If each of three pairwise adjacent vertices $u, v, w \in \operatorname{int}(C)$ has a neighbor on C, say u', v', w' respectively, then $G[\{uv, vw, uw, uu', vv', ww'\}]$ is called a *triclaw* of C. The cycles into which a chord, a claw, a biclaw, or a triclaw divides C are called *cells*. A cell of length c_i is called a c_i -cell. We further call a (c_1, c_2) -chord, a (c_1, c_2, c_3) -claw, a (c_1, c_2, c_3, c_4) -biclaw, or a (c_1, c_2, c_3, c_4) -triclaw, as depicted in Figure 1.

Figure 1. A cycle C in dotted line and a chord, a claw, a biclaw, and a triclaw of C in solid line.

A *k*-cycle is a cycle of length *k*. A 9-cycle of a plane graph is *special* if it has a (3,8)-chord or a (5,5,5)-claw. Let \mathcal{G} denote the class of connected plane graphs with neither 4- or 6-cycles nor special 9-cycles.

The following theorem is the main result of this paper.

Theorem 4. Every graph of \mathcal{G} is (I, F)-partitionable.

Liu and Yu [11] proved that planar graphs without cycles of length 4, 6, or 8 are (I, F)-partitionable, which is the only known partial result to Problem 3. Lu *et al.* [12] proved an extension of the result of Liu and Yu. Theorem 4 not only extends the result of Liu and Yu, but also implies a new partial result to Problem 3 as follows.

Corollary 5 [11]. Every planar graph without cycles of length 4, 6, or 8 is (I, F)-partitionable.

Corollary 6. Every planar graph without cycles of length 4, 6, or 9 is (I, F)-partitionable.

A signed graph is a pair (G, σ) , where G is a graph and $\sigma: E(G) \to \{1, -1\}$ is a signature of G. The study on coloring of signed graph was initiated by Zaslavsky in the 1980's and has attracted some recent attention. For a positive integer k, let Z_k be the cyclic group of order k, and let $M_k = \{\pm 1, \ldots, \pm p\}$ if k = 2p is even and $M_k = \{0, \pm 1, \ldots, \pm p\}$ if k = 2p + 1 is odd. A k-coloring of (G, σ) is a mapping $f: V(G) \to M_k$ such that $f(u) \neq \sigma(e)f(v)$ for each edge e = uv. A Z_k -coloring of (G, σ) is a mapping $f: V(G) \to Z_k$ such that $f(u) \neq \sigma(e)f(v)$ for each edge e = uv. These two definitions were introduced respectively by Máčajová, Raspaud, and Škoviera [14] and by Kang and Steffen [9]. These two definitions are differ for any even k but equivalent for any odd k. A graph G is signed k-colorable if (G, σ) has a k-coloring for any signature σ of G.

We remark that every (I, F)-partitionable graph is signed 3-colorable. This is because no matter what the signature σ of an (I, F)-partitionable graph Gis, assigning the independent set part with the color 0 and properly coloring the forest part by color set $\{1, -1\}$ yields a proper 3-coloring of the signed graph (G, σ) .

Some 3-color problems were asked in the context of signed 3-coloring. The following question stands in the middle of Problems 2 and 3.

Problem 7. For which pair of integers (i, j) with 4 < i < j < 10, every planar graph without cycles of length from $\{4, i, j\}$ is signed 3-colorable?

Hu and Li [5] proved that planar graphs without cycles of length from 4 to 8 are signed 3-colorable. Notice that the result of Liu and Yu [11] implies that planar graphs without cycles of length 4, 6, or 8 are signed 3-colorable, which extends the result of Hu and Li. This is the only known partial result to Problem 7.

The following corollary is a direct consequence of Corollary 6, which provides a new partial result to Problem 7.

Corollary 8. Every planar graph without cycles of length 4, 6, or 9 is signed 3-colorable.

The structure of the remaining part of the paper is as follows. In Section 2, both the method of super-extended theorem and the technique of bad cycle, which were usually used for solving 3-color problem, are extended to the context of (I, F)-partition. We address the statement of the super-extended theorem,

which strengthens Theorem 4. In Section 3, the proof of the super-extended theorem is given by using discharging method. The proof follows a similar way as in [8]. More precisely, for the minimal counterexample to the super-extended theorem, we prove all the necessary reducible configurations proposed in [8] and consequently, the final contradiction can be derived by exactly the same argument of the discharging part of [8]. For the seek of completeness, we provide the discharging part in the section of Appendix.

2. Super-Extended Theorem and Terminology

Denote by d(v) the degree of a vertex v, |C| the length of a cycle C, |f| the size of a face f, and |P| the number of edges a path P contains. Let k be a positive integer. A *k*-vertex (respectively, k^+ -vertex, and k^- -vertex) is a vertex v with d(v) = k (respectively, $d(v) \ge k$, and $d(v) \le k$). Similar definition is applied for cycle, face, and path by constitution |C|, |f|, and |P| for d(v), respectively.

An (I, F)-coloring of a graph G is a mapping from V(G) to the color set $\{I, F\}$ such that vertices of the color I is an independent set and vertices of the color F induce a forest. A vertex of color F is called an F-vertex. A path or cycle on only F-vertices is called an F-path or F-cycle, respectively. An I-edge is an edge whose ends are both I-vertices. Let H be a subgraph of a graph G and ϕ be an (I, F)-coloring of H. A super-extension of ϕ to G is an (I, F)-coloring of G whose restriction on H is ϕ such that G - E(H) contains no F-path connecting two vertices of H.

Remark 9. Let H_2 be a subgraph of a graph H_3 , H_1 be a subgraph of H_2 , and ϕ_1 be an (I, F)-coloring of H_1 . If ϕ_i is a super-extension of ϕ_{i-1} to H_i for each $i \in \{2, 3\}$, then ϕ_3 is a super-extension of ϕ_1 to H_3 .

Proof. By assumption, ϕ_3 is an (I, F)-coloring of H_3 , and the restriction of ϕ_3 in H_1 is exactly ϕ_1 . So, it suffices to show that $H_3 - E(H_1)$ contains no F-path connecting two vertices of H_1 . Otherwise, let P be such an F-path. Since ϕ_2 is a super-extension of ϕ_1 to H_1 , P is not a subgraph of H_2 . Then $P - E(H_2)$ is an F-path of $H_3 - E(H_2)$ connecting two vertices of H_2 , contradicting that ϕ_3 is a super-extension of ϕ_2 to H_3 .

Given a plane graph G, denote by D(G) the boundary of the unbounded face of G. A good cycle is a cycle of length at most 12 which has none of claws, biclaws and triclaws. A bad cycle is a cycle of length at most 12 which is not good.

We will prove the following theorem, which strengthens Theorem 4.

Theorem 10 (Super-extended theorem). Let $G \in \mathcal{G}$. If D(G) is a good cycle, then every (I, F)-coloring of G[V(D(G))] can super-extend to G.

To see that Theorem 4 follows from Theorem 10, take any graph $G \in \mathcal{G}$. If G has no triangles, then it has girth at least 5 and is known to be (I, F)-partitionable [1]. So, let T be a triangle of G. If there is a 10⁻-cycle containing T inside, then let C be the outermost one, that is, the one which is contained in the interior of no other 10⁻-cycles; otherwise, let C = T. Take any (I, F)-coloring ϕ of G[V(C)]. Denote by H the plane graph obtained from ext[C] by re-embedding it so that C is the boundary of the unbounded face of H. Suppose that $H \notin \mathcal{G}$. Since $ext[C] \in \mathcal{G}$, it is only possible that the re-embedding makes a non-special 9-cycle (say C') of ext[C] be special in H. It follows that C' contains C inside, a contradiction to the choice of C. Therefore, $H \in \mathcal{G}$. Moreover, since $|C| \leq 10$, it is easy to check by definition that C is a good cycle in both int[C] and H. By Theorem 10, ϕ can super-extend to both int[C] and H. This results in an (I, F)-coloring of G.

The remainder of this section is devoted to some necessary definitions and terminology.

Consider a plane graph G. A path or a cycle C is triangular if it has an edge as the common part between C and some triangle. A cycle C is ext-triangular if it has an edge as the common part between C and some triangle of ext[C]. A path is a splitting path of a cycle C if its two end-vertices locate on C and all other vertices locate inside C. A directed path $\vec{P} = v_1 v_2 \cdots v_k$ is the path on vertices v_1, v_2, \ldots, v_k with direction $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$, and P denotes the undirected path associated with \vec{P} . Given an (I, F)-coloring of G, a defective segment means an I-edge, an F-cycle, or a splitting F-path of D(G).

Remark 11. Given a plane graph G, a subgraph H of G which contains D(G), and an (I, F)-coloring ϕ of H which is a super-extension from D(G), for any vertex-induced subgraph U of G with $V(U) \cap V(H) = \emptyset$, if assigning each vertex of U with a color from $\{I, F\}$ brings no defective segments, that is, each vertex of U is contained in no defective segments, then the resulting coloring of $H + U + E_G(H, U)$ is a super-extension from D(G).

Consider a plane graph G, a subgraph H of G which contains D(G), and an (I, F)-coloring ϕ of H. Let u be an uncolored vertex which has at most two neighbors locating in H. Nicely coloring u means assigning u with the color I if u has no neighbors of color I, and assigning u with the color F otherwise. Let $\vec{P} = v_1 v_2 \cdots v_k$ ($k \ge 2$) be a vertex-induced directed path of G - V(H) such that v_i has precisely one neighbor (say t_i) locating in H for each $i \in \{1, 2, \ldots, k\}$. I-nicely coloring (respectively, F-nicely coloring) \vec{P} means assigning v_i with the color F for each i with $\phi(t_i) = I$ and then assigning all the remaining vertices of P with I and F alternately (respectively, with F and I alternately) along \vec{P} . It is easy to deduce the following two properties, which will be used often for the proof of reducible configurations in Section 3.1.

- (1) Each of nicely coloring u, *I*-nicely coloring \vec{P} , and *F*-nicely coloring \vec{P} brings no defective segments and therefore, the resulting coloring is a super-extension of ϕ by Remark 11.
- (2) For the case of *I*-nicely coloring \vec{P} , let x be an uncolored vertex adjacent to v_1 , and let t = k if x has no other neighbors on P; otherwise, let $t \in \{2, 3, \ldots, k\}$ be the minimum such that $v_t x \in E(G)$. If $v_1 v_2 \cdots v_t$ is not an F-path, then assigning x with F brings no defective segment which contains the edge $v_1 x$.

Given a plane graph G and an (I, F)-coloring of G, a pair of vertices (u, v) is F-linked if at least one of the following holds.

- (1) There exists an F-path between u and v.
- (2) There exist two vertex-disjoint F-paths, one connects u with an external vertex, and the other connects v with another external vertex.

3. The Proof of Theorem 10

We shall prove Theorem 10 by contradiction. Let G be a counterexample to Theorem 10 with minimum |V(G)| + |E(G)|. Thus, the boundary D of the unbounded face f_0 of G is a good cycle, and there exists an (I, F)-coloring ϕ_0 of G[V(D)] which cannot super-extend to G.

3.1. Reducible configurations

Lemma 12. D has no chords.

Proof. Otherwise, let e be a chord of D, which divides D into two cycles, say D_1 and D_2 . By the minimality of G, the restriction of ϕ_0 in $D \cap D_i$ can superextend to $\operatorname{int}[D_i]$ for $i \in \{1, 2\}$. It is easy to verify by definition that the resulting coloring of G is a super-extension of ϕ_0 , a contradiction.

Lemma 13. Every internal vertex of G has degree at least 3.

Proof. Otherwise, let v be an internal vertex with $d(v) \leq 2$. The pre-coloring ϕ_0 can super-extend to G - v by the minimality of G, and further to G by nicely coloring v.

Lemma 14. G has no separating good cycles.

Proof. Suppose to the contrary that C is a separating good cycle of G. Let $H_1 = G - \text{int}(C)$ and $H_2 = \text{int}[C]$. By the minimality of G, ϕ_0 can super-extend to H_1 , and the resulting coloring of C can super-extend to H_2 , which can restate by planarity that the resulting coloring of H_1 can super-extend to H_2 . By Remark 9, the resulting coloring of G is a super-extension of ϕ_0 , a contradiction.

The following three lemmas can be concluded easily.

Lemma 15. Every 9^- -cycle of G is facial except that an 8-cycle of G might have a (3,7)- or (5,5)-chord.

Lemma 16. Let $H \in \mathcal{G}$. If C is a bad cycle of H, then C has length either 11 or 12. Furthermore, if |C| = 11, then C has a (3,7,7)- or (5,5,7)-claw; if |C| = 12, then C has a (5,5,8)-claw, a (3,7,5,7)- or (5,5,5,7)-biclaw, or a (3,7,7,7)-triclaw.

Lemma 17. Every bad cycle C of G is adjacent to at most one triangle. Furthermore, if C is ext-triangular, then C has a (5,5,7)-claw or (5,5,5,7)-biclaw.

Lemma 18. G is 2-connected.

Proof. Otherwise, we may assume that G has a pendant block B with a cut vertex v such that B - v does not intersect with D. By the minimality of G, ϕ_0 can super-extend to G - (B - v). Consider only B. We distinguish two cases as follows. If v is contained in a 10⁻-cycle, then take the outermost one, that is, the one which is contained in the interior of no other 10⁻-cycles, denoted by C. Lemma 16 implies that C is good and therefore, the coloring of v can extend to an (I, F)-coloring of B[V(C)], which can further super-extend to both the interior and exterior (if not empty) of C in B. This results in an (I, F)-coloring of B an edge e between the two neighbors of v on f, creating a 3-face, say T. Note that the embedding of B + e in the plane which takes T as the unbounded face belongs to \mathcal{G} . Similarly, the coloring of v can extend to an (I, F)-coloring of T and can further super-extend to B + e. In either case, the resulting coloring of G is a super-extension of ϕ_0 , a contradiction.

Lemma 19. Let P be a splitting path of D, which divides D into two cycles D' and D". If $2 \leq |P| \leq 5$, then at least one of D' and D" has length |P| + 1 to 2|P| - 1. More precisely, since $G \in \mathcal{G}$,

(1) if |P| = 2, then at least one of D' and D" is a triangle;

(2) if |P| = 3, then at least one of D' and D" is a 5-cycle;

(3) if |P| = 4, then at least one of D' and D" is a 5- or 7-cycle;

(4) if |P| = 5, then at least one of D' and D" is a 7-, 8-, or 9-cycle.

Proof. Suppose to the contrary that $|D'|, |D''| \ge 2|P|$. Since D has length at most 12, $|D'| + |D''| = |D| + 2|P| \le 12 + 2|P|$. It follows that $2|P| \le |D'|, |D''| \le 12$.

(1) Let P = xyz. By Lemma 13, y has a neighbor y' other than x and z. If y' is external, then D has a claw, a contradiction. So, y' lies inside D' or D",

136

w.l.o.g., say D'. By Lemma 14, D' is a bad cycle. Moreover, since G has no 4-cycles, $5 \leq |D'|, |D''| \leq 11$. Hence by Lemma 16, D' has a claw, which yields that D has a biclaw, a contradiction.

(2) Let P = wxyz. We may let x' and y' be neighbors of x and y with $\{xx', yy'\} \cap E(P) = \emptyset$, respectively. If both x' and y' are external, then D has a biclaw, a contradiction. So, without loss of generality, let x' lie inside D'. Moreover, since G has no 6-cycles, $7 \leq |D'|, |D''| \leq 11$. Hence by Lemmas 14 and 16, D' is a bad 11-cycle with a claw and D'' is a 7-face. So, y' has no choices but coincides with x'. Now, D has a triclaw, a contradiction.

(3) Let P = vwxyz. In this case, $8 \le |D'|, |D''| \le 12$. We claim that G has no edge connecting two non-consecutive vertices on P. Otherwise, such an edge e together with P forms a triangle as well as a splitting 3-path of D. By the statement (2), we can deduce that e is a (3,5)-chord of D', a contradiction.

Let w', x', and y' be neighbors of w, x, and y with $\{ww', xx', yy'\} \cap E(P) = \emptyset$, respectively. Clearly, x' lies in $\operatorname{int}[D']$ or $\operatorname{int}[D'']$, without loss of generality, say $\operatorname{int}[D']$. If x' is external, then both the paths vwxx' and x'xyz are splitting 3paths of D. By the statement (2), D' is an 8-cycle with a (5,5)-chord xx'. Hence, y' has no choice for its location but to lie inside D'', and so does w'. So, D'' is a bad cycle and by Lemma 16, either w' = y' which yields a 4-cycle or $w'y' \in E(G)$ which yields a special 9-cycle with a (5,5,5)-claw, a contradiction. It remains to assume that $x' \in \operatorname{int}(D')$. Thus, D' is a bad cycle, which implies that D'' has length 8 or 9. For |D''| = 9, D'' is facial and D' is a bad 11-cycle with a claw, which is impossible because of the locations of w', x' and y'. For |D''| = 8, at least one of w' and y' lies in $\operatorname{int}[D']$, which together with x' yields either a 4-cycle or a special 9-cycle with a (3,8)-chord, a contradiction.

(4) Let P = uvwxyz. In this case, $10 \leq |D'|, |D''| \leq 12$. By a similar argument as in the case (3), one can conclude that G has no edge connecting two nonconsecutive vertices on P. Let v', w', x', y' be neighbors of v, w, x, y not on P, respectively.

We claim that both w' and x' are internal. Otherwise, let $w' \in V(D')$. Since both uvww' and w'wxyz are splitting paths of D, D' is a 10-cycle with a (5,7)-chord ww'. If $x' \in V(D'')$, then similarly, D'' is a 10-cycle with a (5,7)chord xx', which yields no locations for v' and y'. Hence, $x' \in int(D'')$. Moreover, $v' \in int(D'')$ since otherwise, uvv' is a splitting 2-path of D which yields a triangle adjacent to a 5-cycle. Therefore, $v'x' \in E(G)$ and D'' is a bad 12-cycle with a biclaw, which yields no location for y'.

If one of w' and x' lies inside D' and the other lies inside D'', then both D'and D'' are bad 11-cycles with a claw, yielding v' = w' and y' = x'. Now, G has a special 9-cycle with a (3,8)-chord. Otherwise, let $w', x' \in int(D')$. Since G has no 4-cycles, x' = w' and hence, D' is a bad cycle with either a (3,7,7)-claw or a (3,7,5,7)-biclaw. If $v' \in V(D'')$, then uvv' is a splitting 2-path of D, forming a (3,8)-chord uv. Hence, $v' \in int(D'')$ and similarly, $y' \in int(D'')$. It follows that either v' = y' or $v'y' \in E(G)$, yielding a 6-cycle in both cases.

Lemma 20. If G' is a plane graph obtained from G by deleting a nonempty set of internal vertices and either identifying two vertices without identifying edges or adding an edge, which satisfies the following two conditions:

- (a) identify no two vertices on D and create no edge connecting two vertices on D, and
- (b) create neither 6⁻-cycles nor ext-triangular 7- or 8-cycles,

then ϕ_0 can super-extend to G'.

Proof. The item (a) guarantees that D is unchanged and bounds G' and that ϕ_0 is an (I, F)-coloring of G'[V(D)]. By the item (b), G' is simple and G' contains no 4- or 6-cycles. Hence, to super-extend ϕ_0 to G' by the minimality of G, it suffices to show both that D is a good cycle in G' and that G' contains no special 9-cycles.

Suppose to the contrary that D is a bad cycle of G', i.e., D has a claw, biclaw, or triclaw, say H. For the case of identifying two vertices, the resulting vertex is incident with k ($k \leq 2$) cells of H that are created by the operation. If k = 0, then D has H also in G, a contradiction. Moreover, since the operation does not identify edges, $k \neq 1$. Therefore, k = 2. It follows by Lemma 16 that there is a 5⁻-cycle or an ext-triangular 7-cycle created, contradicting the item (b). For the case of inserting a new edge, say e, we can similarly deduce that both cells of Hincident with e are created, yielding a similar contradiction as above.

Suppose to the contrary that G' contains a special 9-cycle C. By a similar argument on C as on D above, we can deduce that there is a 5⁻-cycle or an ext-triangular 8-cycle created, contradicting the item (b).

Lemma 21. Let G' be a plane graph obtained from G by the following operation T: deleting a nonempty set S of internal vertices and then identifying two edges u_1u_2 and v_1v_2 so that u_1 is identified with v_1 . For $i \in \{1,2\}$, let T_i denote the operation on G that consists of deleting all the vertices of S and identifying u_i and v_i . If at least one of u_1u_2 and v_1v_2 is contained in no 8⁻-cycle of G - S, and the conditions (a) and (b) of Lemma 20 hold for both T_1 and T_2 , then ϕ_0 can super-extend to G'.

Proof. For $i \in \{1, 2\}$, denote by w_i the vertex resulting from u_i and v_i by T. Since the condition (a) holds for both T_1 and T_2 , D bounds G' and ϕ_0 is an (I, F)-coloring of G'[V(D)].

Suppose that T creates a 6⁻-cycle or a special 9-cycle or a bad D, denoted by C. Since the two conditions (a) and (b) hold for both T_1 and T_2 , by the proof of Lemma 20, each T_i does not create C. Hence, w_1w_2 must be either a common edge of some two cells of C or a chord of some cell of C. This implies that both u_1u_2 and v_1v_2 are contained in a 8⁻-cycle of G-S, contradicting the assumption. Therefore, ϕ_0 can super-extend to G' by the minimality of G.

Given a plane graph, a good path is a path $P = v_1v_2v_3v_4$ of the boundary of some face such that the edge v_1v_2 is triangular and all the vertices of P are internal 3-vertices, see Figure 2.

Figure 2. Good path.

Lemma 22. G has no good paths.

Proof. Suppose to the contrary that G has a good path $P = v_1v_2v_3v_4$, using the same label for vertices as in Figure 2. Since $G \in \mathcal{G}$, all the vertices in Figure 2 are pairwise distinct except that t_3 and t_4 might coincide. Apply on G the following operation T: remove all the vertice of P and identify x with t_3 , obtaining a smaller plane graph G'.

Suppose that T creates a 6⁻-cycle or an ext-triangular 7- or 8-cycle. Thus, $G - v_4$ has a 12⁻-cycle C containing $xv_1v_2v_3t_3$ and additionally, if $|C| \in \{11, 12\}$ then the path $C - \{v_1, v_2, v_3\}$ is triangular. By planarity, $t_{12} \in V(C)$ or $t_{12} \in int(C)$ or $v_4 \in int(C)$. For the first case, between the two cycles formed by paths $C - v_1v_2$ and $v_1t_{12}v_2$, at least one is a triangular 6⁻-cycle, contradicting that $G \in \mathcal{G}$. For the last two cases, C is a bad cycle by Lemma 14. But now C is adjacent to two triangles, contradicting Lemma 17. So, the item (b) of Lemma 20 holds for T.

Suppose that T identifies two external vertices or create an edge connecting two external vertices. Thus, $xv_1v_2v_3t_3$ is contained in a splitting 4- or 5-path of D, which together with D forms a 9⁻-cycle by Lemma 19. Thus, T creates a 5⁻-cycle, a contradiction. Therefore, the item (a) of Lemma 20 holds for T.

Hence, ϕ_0 can super-extend to G' by Lemma 20 and further to G as follows. Nicely color v_4 and v_3 in turn, which for sure brings no defective segments. Clearly, x and t_3 receive the same color, say α . Denote by β and γ the colors of t_{12} and v_3 , respectively. We distinguish the following four cases.

(i) If $\alpha = I$, then color v_1 by F and color v_2 different from t_{12} , which brings no defective segments, we are done by Remark 11.

(ii) If $\alpha = F$ and $\beta = I$, then color both v_1 and v_2 by F, we are done. Notice that $xv_1v_2v_3t_3$ might be an F-path, which however brings neither F-cycle nor

splitting F-path of D since otherwise, identifying x with t_3 yields an F-cycle or a splitting F-path of D in G'.

(iii) If $\alpha = \beta = F$ and $\gamma = I$, then color v_1 by I and v_2 by F, we are done.

(iv) Let $\alpha = \beta = F$ and $\gamma = F$. Since identifying x with t_3 yields neither F-cycle nor splitting F-path of D in G', either (x, t_{12}) or (t_{12}, t_3) is not F-linked, for which case we color v_1 by F or by I respectively and color v_2 different from v_1 .

Lemma 23. For $k \in \{5,7\}$, the graph G has no k-face that contains k internal 3-vertices.

Proof. Suppose to the contrary that G has such a k-face $f = [v_1 \cdots v_k]$. Let t_i be the remaining neighbor of v_i for $i \in \{1, 2, \ldots, k\}$. Since $G \in \mathcal{G}$ and Lemma 22, these vertices t_1, \ldots, t_k are pairwise distinct.

Case 1. Let k = 5. Since $G \in \mathcal{G}$, f contains a vertex incident with two 7⁺-faces, without loss of generality, say v_2 . Apply on G the following operation T: remove V(f) and insert an edge between t_1 and t_3 , obtaining a smaller plane graph G'.

Suppose that T creates a 6⁻-cycle or an ext-triangle 7- or 8-cycle. Then $G - \{v_4, v_5\}$ has an 11⁻-cycle C containing the path $P = t_1v_1v_2v_3t_3$ and additionally, ext[C] has a triangle sharing an edge with C - E(P) when $|C| \in \{10, 11\}$. If C is a good cycle, then $t_2 \in V(C)$ and thus, v_2t_2 is a $(7^+, 7^+)$ -chord of a 11⁻-cycle C, a contradiction. So, C is a bad 11-cycle. By Lemma 16, C must contain t_2 inside and have a (3, 7, 7)-claw. Now, C is adjacent to two triangles in G, contradicting Lemma 17. Therefore, the item (b) of Lemma 20 holds for T.

If both t_1 and t_3 are external, then P is a splitting 4-path of D, which together with D forms a 5- or 7-cycle C by Lemma 19. Then T creates a 2- or 4-cycle, contradicting the truth of the item (b). Hence, the item (a) of Lemma 20 holds for T.

Hence, ϕ_0 can super-extend to G' by Lemma 20 and further to G as follows. Firstly, assume that all the vertices of $\{t_1, t_2, \ldots, t_5\}$ are of color F. If both the pairs (t_1, t_2) and (t_2, t_3) are F-linked, then t_1t_3 is contained in an F-cycle or a splitting F-path of D in G', a contradiction. Hence, at least one of the pairs (t_1, t_2) and (t_2, t_3) is not F-linked, without loss of generality, say (t_1, t_2) . Assign v_1, v_2, \ldots, v_5 with F, F, I, F, I, respectively. Note that the coloring of V(f) brings no defective segments, we are done by Remark 11. It remains to assume that there is a vertex from $\{t_1, t_2, \ldots, t_5\}$ of color I, say t_q . I-nicely color the path $f - v_q$ with any direction. Since not both t_1 and t_3 are of color I, the path $f - v_q$ is not an F-path. So, assigning v_q with color F brings no defective segments, we are done by Remark 11.

Case 2. Let k = 7. Apply on G the following operation T: remove all the vertice of f and insert an edge between t_1 and t_4 , obtaining a smaller plane graph G'.

Suppose that T creates a 6⁻-cycle or an ext-triangle 7- or 8-cycle. Then $G - \{v_5, v_6, v_7\}$ has a 12⁻-cycle C containing the path $P = t_1v_1v_2v_3v_4t_4$ and additionally, ext[C] has a triangle sharing an edge with C - E(P) when $|C| \in \{11, 12\}$. If C is a good cycle, then $t_2, t_3 \in V(C)$. Since $|C| \leq 12$, each edge of $v_1v_2v_3v_4$ is incident with a 5-face. Now |C| = 11, which implies that one of those 5-faces is adjacent to a triangle, a contradiction. So, C is a bad cycle. On one hand, C has a (5,5,7)-claw or (5,5,5,7)-biclaw by Lemma 17. On the other hand, either $v_5, v_6, v_7 \in int(C)$ or C contains t_2t_3 inside by planarity. A contradiction follows. So, the item (b) of Lemma 20 holds for T.

If both t_1 and t_4 are external vertices, then P is a splitting 5-path of D, which together with D forms a 9⁻-cycle by Lemma 19. Then T creates a 5⁻-cycle, contradicting the truth of the item (b). So, the item (a) of Lemma 20 holds for T.

Hence, ϕ_0 can super-extend to G' by Lemma 20 and further to G in a similar way as for *Case* 1.

A 3-7-face H consists of a 3-face [xzy] and a 7-face $[xzv_1 \cdots v_5]$ such that their common part is the edge xz, z is an internal 4-vertex, and all other vertices of H are internal 3-vertices, see Figure 3.

Figure 3. 3-7-face.

Lemma 24. G has no 3-7-faces.

Proof. Suppose to the contrary that G has a 3-7-face H, using the same label for vertices as in Figure 3. The pre-coloring ϕ_0 can super-extend to G - V(H) by the minimality of G and further to G as follows.

I-nicely color the directed path $\vec{P} = v_5 v_4 \cdots v_1 zy$. If at least one of y and z is of color I, then assign x with F, which brings no defective segments except that $[xzv_1v_2\cdots v_5]$ might be an F-cycle. For this exceptional case, the remaining neighbor of each vertex from $\{z, v_1, v_2, \ldots, v_5\}$ is of color I. Reassign x with I

and y with F, which obviously brings no defective segments, we are done. Hence, we may next assume that both y and z are of color F.

If v_5 is of color F, then assign x with I, we are done. So, let v_5 be of color I. Denote by y' the remaining neighbor of y. If y' is of color F, then reassign y with I and assign x with F, we are done. So, let y' be of color I. F-nicely recolor \vec{P} , which yields that both v_5 and y are of color F, but the color of z might be changed. Finally, color x different from z, which brings no defective segments, we are done.

A 7-7-face H consists of two 7-faces $[xu_6 \cdots u_1]$ and $[xv_1 \cdots v_6]$ such that their common part is the vertex x, u_1 is adjacent to v_1 , both x and u_1 are internal 4-vertices, and all other vertices of H are internal 3-vertices, see Figure 4.

Figure 4. 7-7-face.

Lemma 25. G has no 7-7-faces.

Proof. Suppose to the contrary that G has a 7-7-face H, using the same label for vertices as in Figure 4. The pre-coloring ϕ_0 can super-extend to G - V(H) by the minimality of G and further to G as follows. Let $\vec{P_1} = u_6 u_5 \cdots u_1$ and $\vec{P_2} = v_6 v_5 \cdots v_1$.

I-nicely color the directed path P_1 . If P_1 is an *F*-path, then *F*-nicely color $\vec{P_2}$. Note that v_6 must be of color *F*. Reassign v_1 with *F* if its color is not *F* and finally, assign *x* with *I*. Note that the coloring of $\{v_1, x\}$ brings no defective segments, we are done by Remark 11. Hence, we may next assume that P_1 is not an *F*-path.

I-nicely color the directed path $\vec{P_2}$. If P_2 is an *F*-path, then u_1 must be of color *I*. *F*-nicely recolor the path $\vec{P_1}$ regardless of the edge u_1v_1 , yielding both u_1 and u_6 of color *F*. So, we can assign x with *I*. It is easy to see that the edge u_1v_1 has both ends of color *F* but is not contained in any *F*-cycle or splitting *F*-path of *D*, we are done. Hence, we may next assume that P_2 is not an *F*-path.

If not both u_1 and v_1 are of color F, then assigning x with F brings no defective segments, we are done. So, let both u_1 and v_1 be of color F. If v_2 is of color F, then reassign v_1 with I and assign x with F, we are done. So, let v_2

be of color I. Denote by t_1 the neighbor of u_1 not in H. If t_1 is of color F, then F-nicely recolor the path $\vec{P_1}$ regardless of the edge u_1v_1 , yielding u_1 of color I. So, the edge u_1v_1 is contained in no defective segments, and assigning x with F brings no defective segments, we are done. Hence, let t_1 be of color I. F-nicely recolor $\vec{P_2}$, yielding v_6, v_2, v_1 of color F, F, I, respectively. Assign x with F, which might make $u_2u_1xv_6$ be contained in an F-cycle or a splitting F-path of D. For this case, remove the colors of x and v_1 and F-nicely recolor $\vec{P_1}$, yielding that u_2u_1 would be contained in no defective segments no matter what colors x and v_1 will receive. Assign x with I and v_1 with F, we are done.

An *M*-9-face is a 9-face $[v_1 \cdots v_9]$ such that the edges $v_1v_2, v_3v_4, v_4v_5, v_6v_7$ are triangular, $v_1, v_2, v_3, v_5, v_6, v_7$ are internal 3-vertices, and v_4 is an internal 4-vertex, see Figure 5.

Figure 5. M-9-face.

Lemma 26. G has no M-9-faces.

Proof. Suppose to the contrary that G has an M-9-face f, using the same label for vertices as in Figure 5. Let $S_1 = \{v_1, v_2, v_3\}$, $S_2 = \{v_5, v_6, v_7\}$, and $S = S_1 \cup S_2$. Apply on G the operation T as follows: remove all the vertices of S and identify the edges zv_4 with v_8v_9 so that z is identified with v_8 , obtaining a smaller plane graph G'. Denote by T_1 (respectively, T_2) the operation on G consisting of removing all the vertices of S and identifying z with v_8 (respectively, v_4 with v_9). Similarly as the proof of Lemma 22, we can deduce that both the items (a) and (b) hold for T_1 as well as T_2 . Moreover, notice that v_4z is contained in no 8^- -cycle of G - S.

By Lemma 21, the pre-coloring ϕ_0 can super-extend to G' and further to G as follows. Color the vertices of S_1 as well as S_2 in the same way as we did for good path in the proof of Lemma 22. Clearly, the coloring of S brings no I-edges. Hence, it remains to show that the coloring of S brings neither F-cycle nor splitting F-path of D. Otherwise, denote by H such a new F-cycle or splitting

F-path of *D* in *G*. The way we color S_1 and S_2 implies that $V(H) \cap S_1 \neq \emptyset$ and $V(H) \cap S_2 \neq \emptyset$, and the coloring of S_1 as well as S_2 belongs to case (ii) or (iv) of the proof of Lemma 22. Thus, all the four vertices we identified are of color *F* and so, v_5 is of color *I*. It follows that the coloring of S_2 belongs to case (ii), for which the coloring of S_2 brings neither *F*-cycle nor splitting *F*-path of *D*, contradicting that $V(H) \cap S_2 \neq \emptyset$.

3.2. Incompatibility of reducible configurations

By exactly the same discharging procedure as in the article [8], we can derive the incompatibility of reducible configurations as depicted in Lemmas 12 up to 26, which completes the proof of Theorem 10. More precisely, in Section 2.1 of [8], the authors prove reducible configurations for the minimal counterexample $H \in \mathcal{G}$, which are exactly the same as Lemmas 13 up to 26 of this paper. Subsection 2.2 of [8] are discharging procedure, which shows that these reducible configurations are incompatible for a graph of \mathcal{G} . For the seek of completeness, we provide the discharging part as appendix.

Acknowledgement

Yingli Kang is supported by National Natural Science Foundation of China (Grant No.: 11901258), Natural Science Foundation of Zhejiang Province of China (Grant No.: LY22A010016), and Department of Education of Zhejiang Province of China (Grant No.: FX2022084). Ligang Jin is supported by National Natural Science Foundation of China (Grant No.: 11801522) and Natural Science Foundation of Zhejiang Province of China (Grant No.: LY20A010014).

References

- O.V. Borodin and A.N. Glebov, On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph, Diskretn. Anal. Issled. Oper. 8(4) (2001) 34–53, in Russian.
- [2] O.V. Borodin, A.N. Glebov, A. Raspaud and M.R. Salavatipour, *Planar graphs without cycles of length from 4 to 7 are 3-colorable*, J. Combin. Theory Ser. B **93** (2005) 303–311. https://doi.org/10.1016/j.jctb.2004.11.001
- [3] O.V. Borodin, A.N. Glebov, M. Montassier and A. Raspaud, *Planar graphs without* 5- and 7-cycles and without adjacent triangles are 3-colorable, J. Combin. Theory Ser. B 99 (2009) 668–673. https://doi.org/10.1016/j.jctb.2008.11.001
- [4] V. Cohen-Addad, M. Hebdige, D. Král, Z. Li and E. Salgado, Steinberg's Conjecture is false, J. Combin. Theory Ser. B 122 (2017) 452–456. https://doi.org/10.1016/j.jctb.2016.07.006

- [5] L. Hu and X. Li, Every signed planar graph without cycles of length from 4 to 8 is 3-colorable, Discrete Math. 341 (2018) 513-519. https://doi.org/10.1016/j.disc.2017.09.019
- [6] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, NewYork, 1995). https://doi.org/10.1002/9781118032497
- [7] L. Jin, Y. Kang, M. Schubert and Y. Wang, Planar graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable, SIAM J. Discrete Math. 31 (2017) 1836–1847. https://doi.org/10.1137/16M1086418
- [8] Y. Kang, L. Jin and Y. Wang, The 3-colorability of planar graphs without cycles of length 4, 6 and 9, Discrete Math. **339** (2016) 299–307. https://doi.org/10.1016/j.disc.2015.08.023
- Y. Kang and E. Steffen, Circular coloring of signed graphs, J. Graph Theory 87 (2018) 135–148. https://doi.org/10.1002/jgt.22147
- [10] K. Kawarabayashi and C. Thomassen, Decomposing a planar graph of girth 5 into an independent set and a forest, J. Combin. Theory Ser. B 99 (2009) 674–684. https://doi.org/10.1016/j.jctb.2008.11.002
- [11] R. Liu and G. Yu, Planar graphs without short even cycles are near-bipartite, Discrete Appl. Math. 284 (2020) 626–630. https://doi.org/10.1016/j.dam.2020.04.017
- [12] F. Lu, M. Rao, Q. Wang and T. Wang, Planar graphs without normally adjacent short cycles, Discrete Math. 345(10) (2022) 112986. https://doi.org/10.1016/j.disc.2022.112986
- H. Lu, Y. Wang, W. Wang, Y. Bu, M. Montassier and A. Raspaud, On the 3colorability of planar graphs without 4-, 7- and 9-cycles, Discrete Math. 309 (2009) 4596-4607. https://doi.org/10.1016/j.disc.2009.02.030
- [14] E. Máčajová, A. Raspaud, M. Škoviera, The chromatic number of a signed graph, Electron. J. Combin. 23(1) (2016) #P1.14. https://doi.org/10.37236/4938
- [15] C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory Ser. B 65 (1995) 305-314. https://doi.org/10.1006/jctb.1995.1057
- [16] C. Thomassen, Decomposing a planar graph into an independent set and 3degenerate graph, J. Combin. Theory Ser. B 83 (2001) 262–271. https://doi.org/10.1006/jctb.2001.2056
- [17] W. Wang and M. Chen, Planar graphs without 4, 6, 8-cycles are 3-colorable, Sci. China Math. 50 (2007) 1552–1562. https://doi.org/10.1007/s11425-007-0106-4

[18] B. Xu, On 3-colorable plane graphs without 5- and 7-cycles, Discrete Math. Algorithms Appl. 1 (2009) 347–353. https://doi.org/10.1142/S1793830909000270

Appendix

A vertex incident with a triangle is called a *triangular vertex*. We say a vertex is *bad* if it is an internal triangular 3-vertex; *good* otherwise. A triangular 7-face is *light* if it contains no external vertices and every incident nontriangular vertex has degree 3.

Recall that G is a minimal counterexample to Theorem 10, f_0 is the unbounded face of G, and D is the boundary of f_0 . Let V = V(G), E = E(G), and F be the set of faces of G. Give initial charge ch(x) to each element x of $V \cup F$ as $ch(f_0) = |f_0| + 4$, ch(v) = d(v) - 4 for $v \in V$, and ch(f) = |f| - 4 for $f \in F \setminus \{f_0\}$. Discharge the elements of $V \cup F$ according to the following rules:

- R1. Every 3-face receives $\frac{1}{3}$ from each incident vertex.
- R2. Let v be an internal 3-vertex and f be a face containing v.
 - (1) v receives $\frac{1}{4}$ from f if |f| = 5.
 - (2) Suppose $|f| \ge 7$. Let *a* and *b* denote the lengths of other two faces containing *v* with $a \le b$. The vertex *v* receives from *f* charge $\frac{2}{3}$ if a = 3, charge $\frac{1}{2}$ if a = b = 5, charge $\frac{3}{8}$ if a = 5 and $b \ge 7$, and charge $\frac{1}{3}$ if $a \ge 7$.
- R3. Let v be an internal 4-vertex and f be a 7⁺-face containing v.
 - (1) If v is incident with precisely two 3-faces, then v receives $\frac{1}{3}$ from f.
 - (2) If v is incident with precisely one 3-face that is adjacent to f, then v receives $\frac{1}{6}$ from f.
- R4. Let f be a light 7-face adjacent to a 3-face T on edge xy, z be the vertex on T other than x and y, and h be the face containing edge yz other than T.
 - (1) If d(x) = 3 and $d(y) \ge 5$, then y sends $\frac{1}{24}$ to f.
 - (2) If $z \in V(D)$, then z sends $\frac{5}{24}$ to f through T.
 - (3) If d(x) = 3, d(y) = 4, $z \notin V(D)$, and $d(z) \ge 4$, then h sends $\frac{5}{24}$ to f through y.
- R5. The face f_0 sends $\frac{4}{3}$ to each incident vertex.
- R6. Let v be an external vertex and f be a 5⁺-face containing v other than f_0 .

- (1) If d(v) = 2, then v receives $\frac{2}{3}$ from f.
- (2) Suppose d(v) = 3. If v is triangular, then v receives $\frac{1}{12}$ from f; otherwise, v sends $\frac{1}{12}$ to f.
- (3) If $d(v) \ge 4$, then v sends $\frac{1}{3}$ to f.

Let $ch^*(x)$ denote the final charge of each element x of $V \cup F$ after discharging. On one hand, by Euler's formula |V| - |E| + |F| = 2, we can deduce that $\sum_{x \in V \cup F} ch(x) = 0$. Since charges are only moved around over $V \cup F$ in the discharging procedure, we have $\sum_{x \in V \cup F} ch^*(x) = 0$. On the other hand, we will show that $ch^*(x) \ge 0$ for each $x \in V \cup F$ and $ch^*(x_0) > 0$ for some vertex x_0 . Hence, this obvious contradiction completes the proof of Theorem 10.

Claim 27. $ch^*(f) \ge 0$ for $f \in F$.

Proof. Denote by V(f) the set of vertices of f.

First suppose that f contains no external vertices.

Let |f| = 3. By R1, we have $ch^*(f) = |f| - 4 + 3 \times \frac{1}{3} = 0$, we are done.

Let |f| = 5. Lemma 23 implies that f contains at most four 3-vertices. Hence, $ch^*(f) \ge |f| - 4 - 4 \times \frac{1}{4} = 0$ by R2(1).

Let |f| = 7. If G has no 3-face adjacent to f, then f sends at most $\frac{1}{2}$ to each incident 3-vertex by R2(2). Since Lemma 23 implies that f contains at most six 3-vertices, we have $ch^*(f) \ge |f| - 4 - 6 \times \frac{1}{2} = 0$. Hence, we may next assume that f is adjacent to a 3-face [xyz] on the edge xy with $d(x) \le d(y)$. Since G has no special 9-cycles, f is adjacent to no other 3-faces. Notice that now only rules R2(2), R3(2), and R4(3) might make f send charge out.

Suppose d(y) = 3. In this case, f sends $\frac{2}{3}$ to both x and y, and at most $\frac{1}{2}$ to each of other incident 3-vertices. Moreover, it follows from Lemma 22 that f contains at least two 4⁺-vertices. Hence, we have $ch^*(f) \ge |f| - 4 - 2 \times \frac{2}{3} - 3 \times \frac{1}{2} > 0$.

Suppose d(x) = 3 and d(y) = 4. In this case, f sends $\frac{2}{3}$ to x, $\frac{1}{6}$ to y, and at most $\frac{3}{8}$ to the neighbor of x on f other than y. If z is not an internal 3-vertex, then f receives charge $\frac{5}{24}$ either from z by R4(2) or from the face containing yz other than T by R4(3), yielding $ch^*(f) \ge |f| - 4 - \frac{2}{3} - \frac{1}{6} - \frac{3}{8} - 4 \times \frac{1}{2} + \frac{5}{24} = 0$. Hence, we may next assume that z is an internal 3-vertex. Since G has no 3-7-faces by Lemma 24, f is not light. So, $ch^*(f) \ge |f| - 4 - \frac{2}{3} - \frac{1}{6} - 4 \times \frac{1}{2} > 0$.

Lemma 24, f is not light. So, $ch^*(f) \ge |f| - 4 - \frac{2}{3} - \frac{1}{6} - 4 \times \frac{1}{2} > 0$. Suppose d(x) = 3 and $d(y) \ge 5$. In this case, f sends $\frac{2}{3}$ to x and at most $\frac{3}{8}$ to the neighbor of x on f other than y. By R4(1), f receives $\frac{1}{24}$ from y. Thus, we have $ch^*(f) \ge |f| - 4 - \frac{2}{3} - \frac{3}{8} + \frac{1}{24} - 4 \times \frac{1}{2} = 0$. It remains to suppose $d(x) \ge 4$. In this case, f might send charge out through the P4(2). If $f = d(x) \ge 4$.

It remains to suppose $d(x) \ge 4$. In this case, f might send charge out through x and y by R4(3). If f is not light, then $ch^*(f) \ge |f| - 4 - 2(\frac{1}{6} + \frac{5}{24}) - 4 \times \frac{1}{2} > 0$. Moreover, if $d(y) \ge 5$, then f sends nothing to y or through y, yielding $ch^*(f) \ge |f| - 4 - (\frac{1}{6} + \frac{5}{24}) - 5 \times \frac{1}{2} > 0$. Hence, we may next assume that f is light and d(x) = d(y) = 4. Since G has no 7-7-faces by Lemma 25, f sends nothing out

through x or y. It follows that $ch^*(f) \ge |f| - 4 - 2 \times \frac{1}{6} - 5 \times \frac{1}{2} > 0$. Let |f| = 8. Since f sends at most $\frac{1}{2}$ to each incident vertex by R2(2), we have $ch^*(f) \ge |f| - 4 - 8 \times \frac{1}{2} = 0.$

Let $|f| \ge 9$. We define

 $A(f) = \{v: uvw \text{ is a path on } f, \text{ both } u \text{ and } w \text{ are bad, and } v \text{ is good}\},\$ $B(f) = \{v: uvw \text{ is a path on } f, u \text{ is bad, and both } v \text{ and } w \text{ are good}\},\$ $C(f) = \{v: uvw \text{ is a path on } f, \text{ and all of } u, v, w \text{ are good}\},\$ $D(f) = \{v: v \text{ is a bad vertex on } f\}.$

Clearly, A(f), B(f), C(f), and D(f) are pairwise disjoint sets whose union is V(f). By our rules, f sends at most $\frac{1}{3}$ to each vertex in A(f), at most $\frac{3}{8}$ in total to and through each vertex in B(f), at most $\frac{1}{2}$ in total to and through each vertex in C(f), and $\frac{2}{3}$ to each vertex in D(f). Hence, we have

$$\begin{split} ch^*(f) &\geq |f| - 4 - \frac{1}{3}|A(f)| - \frac{3}{8}|B(f)| - \frac{1}{2}|C(f)| - \frac{2}{3}|D(f)| \\ &= |f| - 4 - \frac{1}{3}|A(f)| - \frac{3}{8}|B(f)| - \frac{1}{2}|C(f)| - \frac{2}{3}(|f| - |A(f)| - |B(f)| \\ &- |C(f)|) \\ *) &= \frac{1}{3}|A(f)| + \frac{7}{24}|B(f)| + \frac{1}{6}|C(f)| + \frac{1}{3}|f| - 4. \end{split}$$

Clearly, |B(f)| is always even, and if $B(f) = \emptyset$ then either $C(f) = \emptyset$ or $C(f) = \emptyset$ V(f).

Suppose |f| = 9. By the inequality (*), it suffices to consider the following three cases.

Case 1. Let $|A(f)| \leq 2$ and |B(f)| = |C(f)| = 0. By Lemma 22, one can deduce that |A(f)| = 2 (say $A(f) = \{u, v\}$), D(f) is divided by u and v as 3+4on the boundary of f, and $d(u), d(v) \ge 4$. Furthermore, by the drawing of 3-faces adjacent to f, we can apply Lemma 26 to get that $\max\{d(u), d(v)\} \ge 5$. Hence, $ch^*(f) \ge |f| - 4 - 7 \times \frac{2}{3} - \frac{1}{3} = 0.$

Case 2. Let |A(f)| = 1, |B(f)| = 2, and |C(f)| = 0. By Lemma 22, D(f) is divided by $B(f) \cup A(f)$ as 3+3 or 2+4 on the boundary of f.

For the case 3+3, let $A(f) = \{u\}$. By Lemma 22, $d(u) \ge 4$. Moreover, u is not a 4-vertex incident with two 3-faces by Lemma 26. Hence, u receives at most $\frac{1}{6}$ from f, which yields $ch^*(f) \ge |f| - 4 - 6 \times \frac{2}{3} - 2 \times \frac{3}{8} - \frac{1}{6} > 0$.

For the case 2+4, let $f = [u_1 \cdots u_9]$ with $A(f) = \{u_1\}$ and $B(f) = \{u_4, u_5\}$. Lemma 22 implies that $d(u_1), d(u_5) \ge 4$. If u_1 is not a 4-vertex incident with two 3-faces, then f sends at most $\frac{1}{6}$ to u_1 , which yields $ch^*(f) \ge |f| - 4 - 6 \times \frac{2}{3} - 2 \times \frac{1}{6}$

(

 $\frac{3}{8} - \frac{1}{6} > 0$; otherwise, the drawing of 3-faces adjacent to f shows that $d(u_4) \ge 4$ and f sends nothing through u_4 or u_5 and at most $\frac{1}{3}$ to each of them, yielding $ch^*(f) \ge |f| - 4 - 6 \times \frac{2}{3} - 3 \times \frac{1}{3} = 0.$

Case 3. Let |A(f)| = 0, |B(f)| = 2, and $|C(f)| \le 2$. It follows that f contains five consecutive bad vertices, which form a good path, contradicting Lemma 22.

Suppose $|f| \ge 10$. By the inequality (*), it suffices to consider two cases: (1) |B(f)| = 0 and 2|A(f)| + |C(f)| < 4; (2) |B(f)| = 2 and |A(f)| = |C(f)| = 0. For either case, f contains five consecutive bad vertices, contradicting Lemma 22.

Next suppose that f contains external vertices.

Since $|f_0| \leq 12$, if $f = f_0$ then by R5 we have $ch^*(f) = |f_0| + 4 - |f_0| \times \frac{4}{3} \geq 0$. Hence, we may assume $f \neq f_0$. By our rules, f sends at most $\frac{2}{3}$ to each incident vertex. Lemma 19 implies that if $|f| \leq 8$, then the external vertices on f are consecutive one by one. Furthermore, f has at most one 2-vertex if |f| = 5, and has at most two 2-vertices if $|f| \in \{7, 8\}$.

Let |f| = 3. We have $ch^*(f) = |f| - 4 + 3 \times \frac{1}{3} = 0$ by R1.

Let |f| = 5. If f has no 2-vertices, then f sends at most $\frac{1}{4}$ to each vertex, yielding $ch^*(f) \ge |f| - 4 - 4 \times \frac{1}{4} = 0$. Hence, we may assume f has precisely one 2-vertex. It follows that f has two external 3-vertices, both of which send at least $\frac{1}{12}$ to f by R6. Hence, we have $ch^*(f) \ge |f| - 4 - \frac{2}{3} + 2 \times \frac{1}{12} - 2 \times \frac{1}{4} = 0$.

Let |f| = 7. Note that f contains at most two bad vertices. First assume that f has precisely one external vertex, say u. Then u is a 4⁺-vertex, which sends $\frac{1}{3}$ to f by R6(3), yielding $ch^*(f) \ge |f| - 4 + \frac{1}{3} - 2 \times \frac{2}{3} - 4 \times \frac{1}{2} = 0$. It remains to assume that f has at least two external vertices. Then f has at least two external 3⁺-vertices, say u and v. If both u and v are not triangular, then they send $2 \times \frac{1}{12}$ in total to f, yielding $ch^*(f) \ge |f| - 4 + 2 \times \frac{1}{12} - 4 \times \frac{2}{3} - \frac{1}{2} = 0$; otherwise, one of u and v is triangular and the other is not, and f has at most one bad vertex, yielding $ch^*(f) \ge |f| - 4 + \frac{1}{12} - \frac{1}{12} - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$.

Let |f| = 8. Clearly, f contains no bad vertices. If f has no 2-vertices, then f sends at most $\frac{1}{2}$ to each incident vertex, yielding $ch^*(f) \ge |f| - 4 - 8 \times \frac{1}{2} = 0$. Hence, we may assume that f has precisely one or two 2-vertices. It follows that f has two external 3⁺-vertices, each of which sends at least $\frac{1}{12}$ to f. Thus, $ch^*(f) \ge |f| - 4 - 2 \times \frac{2}{3} + 2 \times \frac{1}{12} - 4 \times \frac{1}{2} > 0$.

It remains to suppose $|f| \ge 9$. If f has an external 4⁺-vertex, then f receives $\frac{1}{3}$ from this vertex by R6(3), yielding $ch^*(f) \ge |f| - 4 + \frac{1}{3} - (|f| - 1) \times \frac{2}{3} \ge 0$. Hence, we may assume that f has no external 4⁺-vertex, which implies f has at least two external 3-vertices. By R6, we have $ch^*(f) \ge |f| - 4 - 2 \times \frac{1}{12} - (|f| - 2) \times \frac{2}{3} > 0$.

Claim 28. $ch^*(v) \ge 0$ for $v \in V$.

Proof. First suppose that v is internal. We have $d(v) \ge 3$ by Lemma 13.

Let d(v) = 3. Since $G \in \mathcal{G}$, the list of lengths of the faces containing v is one of the followings: $\{3, 7^+, 7^+\}$, $\{5, 5, 7^+\}$, $\{5, 7^+, 7^+\}$, and $\{7^+, 7^+, 7^+\}$. We are done for each case by R1 and R2.

If d(v) = 4, then the charge v sends out equals to what v receives by R1 and R3, yielding that $ch^*(v) = d(v) - 4 = 0$.

It remains to suppose $d(v) \ge 5$. By R1 and R4(1), v sends $\frac{1}{3}$ to each incident 3-face and at most $\frac{1}{24}$ to each other incident face, which gives $ch^*(v) \ge d(v) - d(v)$ $4 - \frac{d(v)}{2} \times \frac{1}{3} - \frac{d(v)}{2} \times \frac{1}{24} > 0.$ Next suppose that v is external. Clearly, $d(v) \ge 2$.

By R1, R5 and R6, we have $ch^*(v) = d(v) - 4 + \frac{4}{3} + \frac{2}{3} = 0$ if d(v) = 2, $ch^*(v) = d(v) - 4 + \frac{4}{3} - \frac{1}{3} + \frac{1}{12} > 0$ if d(v) = 3 and v is triangular, and $ch^*(v) = d(v) - 4 + \frac{4}{3} - \frac{1}{12} - \frac{1}{12} > 0$ if d(v) = 3 and v is not triangular. It remains to suppose $d(v) \ge 4$. The vertex v receives $\frac{4}{3}$ from f_0 by R5, sends $\frac{1}{3}$ to each other incident face by R1 and R6(3), and might send $\frac{5}{24}$ out through each incident 2 from the vertex v throw the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v in the vertex v is the vertex v in the vertex v in the vertex v in the vertex v is the vertex v in the v

through each incident 3-face whose other two vertices are internal. It follows that $ch^*(v) \ge d(v) - 4 + \frac{4}{3} - (d(v) - 1) \times \frac{1}{3} - \frac{d(v) - 2}{2} \times \frac{5}{24} > 0.$

Claim 29. D contains a vertex x_0 such that $ch^*(x_0) > 0$.

Proof. Let x_0 be any 3^+ -vertex on D, as desired.

The proof of Theorem 10 is completed by Claims 27, 28 and 29.

Received 5 May 2023 Revised 20 September 2023 Accepted 20 September 2023 Available online 16 October 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/