DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

L. Fu

Lingting Fu

Taiyuan University of Technology

email: ltfu925@163.com

J. Wang

Jian Wang

Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024

email: wangjian01@tyut.edu.cn

W. Yang

Weihua Yang

Department of Mathematics, Taiyuan University of Technology, Shanxi Taiyuan-030024

email: yangweihua@tyut.edu.cn

Title:

The maximum number of edges in a $\{K_{r+1},M_{k+1}\}$-free graph

PDF

Source:

Discussiones Mathematicae Graph Theory 44(4) (2024) 1617-1629

Received: 2022-09-20 , Revised: 2023-07-30 , Accepted: 2023-08-03 , Available online: 2023-09-19 , https://doi.org/10.7151/dmgt.2515

Abstract:

Let $G$ be a graph and $\mathcal{F}$ be a family of graphs. We say $G$ is $\mathcal{F}$-free if it does not contain $F$ as subgraph for any $F\in\mathcal{F}$. The Turán number $\textrm{ex}(n,\mathcal{F})$ is defined as the maximum number of edges in an $\mathcal{F}$-free graph on $n$ vertices. Let $K_{r+1}$ denote the complete graph on $r+1$ vertices and let $M_{k+1}$ denote the graph on $2k+2$ vertices with $k+1$ pairwise disjoint edges. By using the alternating path technique and the Zykov symmetrization, we determine that for $n>3k$, $$ \textrm{ex}(n, \{M_{k+1},K_{r+1}\})= t_{r-1}(k)+k(n-k), $$ where $t_{r-1}(k)$ is the number of edges in an $(r-1)$-partite $k$-vertex Turán graph. Let $\nu(G)$, $\tau(G)$ denote the matching number and the vertex cover number of $G$, respectively. For $n\geq 2k$, we prove that if $\nu(G)\leq k$ and $\tau(G)\geq k+r$, then $$ e(G)\leq \max\left\{\binom{2k+1}{2}, \binom{k+r+1}{2}+(k-r)(n-k-r-1)\right\}. $$

Keywords:

Turán number, alternating path, Zykov symmetrization

References:

  1. H.L. Abbott, D. Hanson and N. Sauer, Intersection theorems for systems of sets, J. Combin. Theory Ser. A 12 (1972) 381–389.
    https://doi.org/10.1016/0097-3165(72)90103-3
  2. J. Akiyama and P. Frankl, On the size of graphs with complete-factors, J. Graph Theory 9 (1985) 197–201.
    https://doi.org/10.1002/jgt.3190090117
  3. N. Alon and P. Frankl, Turán graphs with bounded matching number (2022).
    arXiv: 2210.15076
  4. N. Alon, M. Krivelevich and B. Sudakov, Turán numbers of bipartite graphs and related Ramsey-type questions, Combin. Probab. Comput. 12 (2003) 477–494.
    https://doi.org/10.1017/S0963548303005741
  5. I. Anderson, Perfect matching of a graph, J. Combin. Theory. Ser. B 10 (1971) 183–186.
    https://doi.org/10.1016/0095-8956(71)90041-4
  6. C. Berge, Sur le couplage maximum d'un graphe, C.R. Acad. Sci. Paris 247 (1958) 2–29.
  7. C. Berge, The Theory of Graphs and its Applications (Methuen, London and Wiley, New York, 1962).
  8. J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
  9. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank and A. Schrijver, Combinatorial Optimization (Wiley, 1998).
    https://doi.org/10.1002/9781118033142
  10. P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta. Math. Hungar. 10 (1959) 337–356.
    https://doi.org/10.1007/BF02024498
  11. Z. Füredi, On a Turán type problem of Erdős, Combinatorica 11 (1991) 75–79.
    https://doi.org/10.1007/BF01375476
  12. F. Gavril, Testing for equality between maximum matching and minimum node covering, Inform. Process. Lett. 6 (1977) 199–202.
    https://doi.org/10.1016/0020-0190(77)90068-0
  13. P. Hall, On representatives of subsets, in: Classic Papers in Combinatorics, I. Gessel and G.-C. Rota (Ed(s)), (Modern Birkkäuser Classic 1987) 58–62.
    https://doi.org/10.1007/978-0-8176-4842-8_4
  14. D. König, Theorie der endlichen und unendlichen Graphen (Akademischen Verlagsgesellchaft, Leipig, 1936).
  15. P. Kővári, V.T. Sós and P. Turán, On a problem of Zarankiewicz, Colloq. Math. 3 (1954) 50–57.
  16. W. Mantel, Problem $28$, Wiskundige Opgaven 10 (1907) 60–61.
  17. M.D. Plummer and L. Lovász, Matching Theory (Elsevier, 1986).
  18. A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (1995) 179–199.
    https://doi.org/10.1007/BF01929486
  19. P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
  20. W.T. Tutte, The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947) 107–111.
    https://doi.org/10.1112/jlms/s1-22.2.107
  21. D.B. West, A short proof of the Berge-Tutte Formula and the Gallai-Edmonds Structure Theorem, European J. Combin. 32 (2011) 674–676.
    https://doi.org/10.1016/j.ejc.2011.01.009
  22. L.-T. Yuan, Extremal graphs for the k-flower, J. Graph Theory 89 (2018) 26–39.
    https://doi.org/10.1002/jgt.22237
  23. L.-T. Yuan, Extremal graphs for odd wheels, J. Graph Theory 98 (2021) 691–707.
    https://doi.org/10.1002/jgt.22727
  24. L.-T. Yuan, Extremal graphs for edge blow-up of graphs, J. Combin. Theory. Ser. B. 152 (2022) 379–398.
    https://doi.org/10.1016/j.jctb.2021.10.006
  25. A.A. Zykov, On some properties of linear complexes, Mat. Sb. (N.S.) 24(66) (1949) 163–188, in Russian.

Close