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Abstract

Let G be a graph and F be a family of graphs. We say G is F-free if it
does not contain F as subgraph for any F ∈ F . The Turán number ex(n,F)
is defined as the maximum number of edges in an F-free graph on n vertices.
Let Kr+1 denote the complete graph on r + 1 vertices and let Mk+1 denote
the graph on 2k + 2 vertices with k + 1 pairwise disjoint edges. By using
the alternating path technique and the Zykov symmetrization, we determine
that for n > 3k,

ex(n, {Mk+1,Kr+1}) = tr−1(k) + k(n− k),

where tr−1(k) is the number of edges in an (r − 1)-partite k-vertex Turán
graph. Let ν(G), τ(G) denote the matching number and the vertex cover
number of G, respectively. For n ≥ 2k, we prove that if ν(G) ≤ k and
τ(G) ≥ k + r, then

e(G) ≤ max

{(
2k + 1

2

)
,

(
k + r + 1

2

)
+ (k − r)(n− k − r − 1)

}
.
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1. Introduction

Let G(V,E) be a simple undirected graph with vertex set V (G) and edge set
E(G). We use e(G) to denote the size of E(G). For a graph H, if V (H) ⊆ V (G),
E(H) ⊆ E(G), then H is called a subgraph of G. Let F be a family of graphs.
If for every F ∈ F , G does not contain F as subgraph, then we say G is F-
free. The Turán number of F , denoted by ex(n,F), is defined as the maximum
number of edges in an F-free graph on n vertices. For F = {F}, we simply write
ex(n, F ). The study of the Turán numbers plays a central role in the extremal
graph theory. The Turán number of many graphs have been determined, see
[4, 10, 11, 15, 16, 18, 19, 22, 23, 24, etc.]

Let Tr(n) denote the Turán graph on n vertices, i.e., the complete r-partite
graph of order n with each partite of sizes dn/re or bn/rc. Note that for n < r,
Tr(n) represents the complete graph on n vertices. We use tr(n) to denote the
number of edges of Tr(n). In 1941, Turán [19] showed that the Turán graph Tr(n)
is the only Kr+1-free graph attaining the maximum number of edges.

Theorem 1.1 [19]. ex(n,Kr+1) = tr(n).

For any M ⊂ E(G), if the edges of M are pairwise disjoint, then M is called
a matching of G. The matching number ν(G) is the size of a maximum matching
in G. We often use Mk+1 to denote the graph on 2k + 2 vertices with k + 1
pairwise disjoint edges. In 1959, Erdős-Gallai [10] determined the Turán number
of Mk+1.

Theorem 1.2 [10]. For n ≥ 2k + 1,

ex(n,Mk+1) = max

{(
2k + 1

2

)
,

(
k

2

)
+ k(n− k)

}
.

It should be mentioned that by using the shifting technique, Akiyama and
Frankl [2] give a short proof of Theorem 1.2 and their proof also works for an
rainbow extension of Theorem 1.2. That is, if G1, G2, . . . , Gk+1 are k + 1 graphs

on the same vertex set of size n and e(Gi) > max
{(

2k+1
2

)
,
(
k
2

)
+ k(n− k)

}
for

i = 1, 2, . . . , k + 1, then there is a rainbow matching of size k + 1.
Let G1 and G2 be two disjoint subgraphs of G. We use G1∪G2 to denote the

union of G1 and G2 with the vertex set being V (G1) ∪ V (G2) and the edge set
being E(G1)∪E(G2). We use G1∨G2 to denote the join graph of G1 and G2 with
the vertex set being V (G1)∪V (G2) and the edge set being E(G1)∪E(G2)∪{xy :
x ∈ V (G1), y ∈ V (G2)}. Denote by En the empty graph on n vertices. It is easy
to see that one of K2k+1∪En−2k−1 and Kk∨En−k achieves the maximum number
of edges among all Mk+1-free graphs.

In this paper, we determine the Turán number of F = {Kr+1,Mk+1} for
n > 3k.
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Theorem 1.3. For n ≥ 3k + 1,

ex(n, {Mk+1,Kr+1}) = tr−1(k) + k(n− k).

Note that for r ≥ k + 1 and n ≥ 3k + 1, by Theorem 1.2 and Theorem 1.3
we infer

ex(n, {Mk+1,Kr+1}) =

(
k

2

)
+ k(n− k) = ex(n,Mk+1).

Obviously, Tr−1(k)∨En−k is an {Mk+1,Kr+1}-free graph that achieves the max-
imum number of edges.

For any K ⊆ V (G), K is called a vertex cover set of G if each edge of G
has at least one endpoint in K. A vertex cover set with the minimum size is
called a minimum vertex cover set. The vertex covering number τ(G) is defined
as the size of a minimum vertex cover set of G. In [12], Fǎnicǎ found the relation
between the matching number and the vertex covering number. In this paper,
we determine the maximum number of edges in a graph G with ν(G) ≤ k and
τ(G) ≥ k + r.

Theorem 1.4. Let G be an n-vertex graph with ν(G) ≤ k and τ(G) ≥ k+r. For
n ≥ 2k and r ≤ k,

e(G) ≤ max

{(
2k + 1

2

)
,

(
k + r + 1

2

)
+ (k − r)(n− k − r − 1)

}
.

For sets A1, A2, let A1 4 A2 denote the symmetric difference set of A1 and
A2, i.e., (A1 \A2) ∪ (A2 \A1).

Let us recall two techniques that are needed in our proofs. For self-contained-
ness, we give a formal definition of the alternating path used in [1, 6, 7].

Definition 1.5 [1, 6, 7]. Let G be a graph with ν(G) = s < n/2. Let M be a
maximum matching of G and let Y be the set of vertices that are not covered by
M . A directed path P = v0v1v2 · · · vm in G is called an M -alternating path if it
satisfies conditions (i), (ii) and (iii).

(i) v0 ∈ Y ;

(ii) vivi+1 ∈M for any odd i with 1 ≤ i ≤ m− 1;

(iii) vivi+1 /∈M for any even i with 0 ≤ i ≤ m− 1.

When it is clear from the context, we simply call P an alternating path.
Clearly, vm /∈ Y . Otherwise, E(P ) 4M will be a matching of size |M | + 1, a
contradiction.

An M -augmenting path is an M -alternating path whose origin v0 and ter-
minus vm are in Y . Clearly, if M is a maximum matching of G, then there is no
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M -augmenting path in G. Otherwise, let P be an M -augmenting path. Then
E(P )4M is a matching of size |M |+ 1, contradicting the maximality of |M |.

If a matching of G covers all the vertices, then it is called a perfect matching
of G. The Tutte-Berge formula is a central result concerning the maximum
matchings in graphs. Let odd(G) denote the number of connected components of
odd order in G. In 1947, Tutte [20] obtained a sufficient and necessary condition
for G to guarantee a perfect matching. That is, odd(G − A) ≤ |A| for all A ⊆
V (G). In other words, if odd(G−A) ≤ |A| holds for all A ⊆ V (G), then there is
a perfect matching of G.

In 1958, Berge extended Tutte’s result to graphs without perfect matchings
and determined a formula for the matching number of G.

Theorem 1.6 [6]. Let M be a maximum matching of G. Let G− A denote the
subgraph obtained from G by deleting vertices in A from G. Then

|M | = 1

2
min

A⊆V (G)
{|A| − odd(G−A) + |V (G)|} .

This result is known as the Tutte-Berge formula. For related researches please
see [5, 8, 9, 13, 14, 17, 21].

Another technique we need in the proofs is the Zykov symmetrization. In
1949, Zykov [25] invented this method to show that Tr(n) is the only Kr+1-free
graph of order n which maximizes the number of copies of Ks with 2 ≤ s ≤ r,
which is a generalized version of Theorem 1.1.

In our proofs, we also need the following lemma.

Lemma 1.7. For x ≥ 0, tr(x) is a convex function.

Proof. Note that

tr(x+ 1)− tr(x) = x+ 1−
⌈
x+ 1

r

⌉
, tr(x)− tr(x− 1) = x−

⌈x
r

⌉
.

It follows that

tr(x+ 1)− 2tr(x) + tr(x− 1) = 1−
(⌈

x+ 1

r

⌉
−
⌈x
r

⌉)
≥ 0.

Thus, tr(x) is a convex function for x ≥ 0.

Finally, let us recall some notations. For any X ⊆ V (G), we use G[X] to
denote the subgraph with vertex set X and edge set {uv ∈ E(G) : u, v ∈ X}.
When the content is clear, we often use e(X) to denote e(G[X]). Let G −X =
G[V (G) \X]. Let

NG(X) = {v ∈ V (G) \X : there exists a u ∈ X such that uv ∈ E(G)}.

For X = {x}, we simply write NG(x). We use degG(x) to denote the cardinality
of NG(x). We often omit subscripts when there is no confusion.
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2. Proof of Theorem 1.3

In this section, we study the Turán number of {Mk+1,Kr+1} by using the alter-
nating path technique and the Zykov symmetrization.

Proof of Theorem 1.3. Let G be an {Mk+1,Kr+1}-free graph with maximum
number of edges. Let

M = {x1y1, x2y2, . . . , xsys}

be a maximum matching of G. Since G is Mk+1-free, we infer s ≤ k. Let

X = {x1, y1, x2, y2, . . . , xs, ys}, Y = V (G) \X.

Obviously, Y is an independent set.

Now let us partition V (G) into four classes by the alternating path method.
For every M -alternating path P = v0v1v2 · · · v2m, label vertices v1, v3, . . . , v2m−1
with the symbol l, label vertices v0, v2, . . . , v2m with the symbol b. Then the
vertices in G are partitioned into four types: vertices labeled l, vertices labeled
b, vertices labeled l and b and unlabeled vertices. If a vertex is labeled l and b,
we also say that it is labeled lb. We use L, B, LB and Φ to denote the set of
these four types of vertices, respectively. Obviously (L,B,Φ, LB) is a partition
of V (G) and Y ⊂ B.

Claim 1. B is an independent set.

Proof. Suppose for contradiction that xy ∈ E(G[B]). Note that by x, y ∈ B,
x, y are both labeled b. Since Y is an independent set, {x, y} ∩ (B \ Y ) 6= ∅.
Without loss of generality, we assume that x ∈ B \ Y . Let P1 = v0v1 · · · v2mx′x
be an alternating path with terminal vertex x. Clearly x′x ∈ M . If y is not in
V (P1), then P = P1y is an alternating path. It implies that y is also labeled l,
which contradicts y ∈ B. Thus y is in V (P1). But then let P2 be the sub-path
of P1 with terminal vertex y. It follows that P2x is an alternating path. By the
label of y, we infer that x is labeled l as well, contradicting x ∈ B. �

The following claim is a well known result (see, e.g., [7]). Here we give a
proof for self-containedness.

Claim 2. There are three kinds of connected components of G− L.

(I) An isolated vertex in B.

(II) A connected component consisting of even number of vertices in Φ.

(III) A connected component consisting of a vertex in B and even number of
vertices in LB.

Proof. Let C ⊂ V (G) be a connected component of G− L.
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(I) By Claim 1, B is an independent set. If C ⊂ B, then C contains exactly
one vertex.

(II) Suppose that C contains some unlabeled vertex. Let x be such a vertex.
Note that all the vertices in Y are labeled b. It follows that x ∈ X. To show (II),
it suffices to show that all the neighbors of x are also unlabeled. Let xy ∈ M .
Clearly y is also unlabeled. For any z ∈ NC(x)\{y}, if z is labeled then z is labeled
either b or lb. In either case there exists an alternating path P = v0v1 · · · v2mz′z
with terminal vertex z and z′z ∈ M . Since x is unlabeled, x /∈ V (P ). Then Px
is also an alternating path. It follows that x is labeled l, a contradiction. Thus
all the neighbors of x are also unlabeled. Obviously, if one endpoint of some edge
in M is unlabeled, so is the other endpoint and they have to fall into the same
component of G−L. Therefore, C is an connected component with even number
of unlabeled vertices.

(III) If there is a vertex in C labeled lb, noting that the vertices with label
lb appear in pairs (two endpoints of a matching edge), we see that the number of
vertices in C with label lb is even.

Let xx′ ∈ M with x, x′ ∈ C ∩ LB. First we show that there is a vertex in
C labeled b. Let P = v0v1 · · · v2mx′x be an alternating path. Clearly v0 ∈ Y
is labeled b. Let vi be the last vertex on P that is not labeled lb. Since C is a
connected component of G−L, vi+1, . . . , v2m ∈ V (C). Since the vertices labeled
lb appear in pairs in P , vi ∈ B. Moreover, if i ≥ 1 then vi−1vi ∈M and vi−1 ∈ L.
Thus vi ∈ V (C) ∩B.

We are left to show that |V (C)∩B| = 1. First we show that one can choose
a vertex y ∈ V (C) ∩ B and an alternating path P0 with terminal vertex y such
that V (P0) ∩ V (C) = y. If V (C) ∩ Y 6= ∅ then choose y ∈ V (C) ∩ Y and simply
set P0 = y. If V (C) ∩ Y = ∅ then choose z ∈ V (C) ∩ B. Since z ∈ B \ Y , there
is an alternating path P = u0u1 · · ·u2p−1u2pz′z. Choose y be the first vertex
on P that is in V (C) and let P0 be the sub-path of P with terminal vertex y.
Clearly V (P0) ∩ V (C) = {y}. Since C is a connected component in G − L, the
predecessor of y on P0 has to be in L. It follows that y ∈ B. Thus we find a
vertex y ∈ V (C)∩B and an alternating path P0 with terminal vertex y satisfying
V (P0) ∩ V (C) = {y}.

Let S be the set of all vertices x in V (C) so that there exists an alternating
path P = P0P

′x and V (P ′) ⊂ V (C). Clearly y ∈ S. We claim that every vertex
in S \ {y} is labeled lb. Indeed, otherwise there exists x ∈ S ∩ B. Let x′x ∈ M
and let P0P1x be an alternating path. Since x′ ∈ L, x′ is not a vertex on path
P0P1x. It follows that x has to be labeled l on P0P1x, contradicting x ∈ B. Thus
y is the unique vertex in S that is labeled b.

Since C is connected, there exists x ∈ NC(y). Note that B is an independent
set. It follows that x ∈ LB. Thus S ∩ LB 6= ∅. Next we show that for each
x, x′ ∈ S ∩LB with xx′ ∈M , there exist alternating paths P0P1xx

′ and P0P
′
1x
′x
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such that V (P1) ⊂ V (C) and V (P ′1) ⊂ V (C). Since x, x′ ∈ S, by symmetry
there is an alternating path P0P1xx

′ with V (P1) ⊂ V (C). We are left to find
an alternating path ending with x′x. Since x, x′ are labeled lb, there exists an
alternating path P = v0v1 · · · v2px′x. Let z′ be the last vertex on P that is
not in V (C) and let z be the successor of z′ on P . Then clearly z′z ∈ M
and z ∈ B ∩ V (C). Let P2x

′x be the sub-path of P with start vertex z. If
V (P2)∩V (P1) = ∅ then P0P1xx

′P−12 is an alternating path with terminal vertex
z, where P−12 is the reverse path of P2. It follows that z ∈ S, contradicting
S ∩B = {y}. Hence V (P2) ∩ V (P1) 6= ∅.

If z = y then P0P2x
′x is an alternating path ending with x′x. Thus we

assume z 6= y. Note that V (P2) ∩ V (P1) 6= ∅ implies that P1 and P2 intersect in
a matching edge in C whose endpoints are both labeled lb. Let ww′ be the first
edge appeared in both P1 and P2. Now by symmetry there are two cases: (a)
P1 = P11ww

′P12, P2 = P21ww
′P22 and (b) P1 = P11ww

′P12, P2 = P21w
′wP22.

For case (a), P11ww
′P22x

′x is an alternating path ending with x′x. For case (b)
P11ww

′P−121 is an alternating path connecting y and z. It implies that z ∈ S,
contradicting S ∩ B = {y}. Thus, for each x, x′ ∈ S ∩ LB with xx′ ∈ M ,
there exist alternating paths P0P1xx

′ and P0P
′
1x
′x such that V (P1) ⊂ V (C) and

V (P ′1) ⊂ V (C).

Finally, we show that S = V (C). Suppose to the contrary that there exist
z ∈ S and w ∈ V (C) \ S such that zw ∈ E(G). Let zz′ ∈ M . Clearly z′ ∈
S. It follows that zw /∈ M . Since there exists an alternating path P0P1z

′z
with V (P1) ⊂ V (C), P0P1z

′zw is an alternating path. It implies that w ∈ S,
contradicting our assumption that w /∈ S. Thus S = V (C). Together with
S ∩B = {y}, we conclude that (III) holds. �

Definition 2.1. For any u, v ∈ V (G), define G[u← v] as a new graph obtained
from G by removing edges adjacent to u and adding all edges in {ux : x ∈ NG(v)}.

Claim 3. If G is {Mk+1,Kr+1}-free, then for any u, v ∈ L, G[u ← v] is also
{Mk+1,Kr+1}-free.

Proof. Let G′ = G[u ← v]. Suppose to the contrary that G[u ← v] is not
{Mk+1,Kr+1}-free. Then G[u ← v] has either a copy of Kr+1 or a matching of
size k + 1.

If there exists some R ⊂ V (G′) such that G′[R] ∼= Kr+1, then u ∈ R. Since
uv /∈ E(G′), v /∈ R. Since the neighbors of u in G′ are also neighbors of v in G, it
follows that G[R \ {u}∪{v}] ∼= Kr+1, a contradiction. Therefore G′ is Kr+1-free.

Since u, v ∈ L, we see that E(G) and E(G′) differ only in edges with at
least one endpoint in L. It implies that G′ − L = G− L. According to Claim 2,
there are only three types of connected components of G′ − L: isolated vertices
in B, connected components consisting of even number of vertices in Φ, and odd
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connected components consisting of a vertex in B and even number of vertices in
LB. Consequently,

ν(G′) ≤ |Φ|
2

+
|LB|

2
+ |L| = ν(G) ≤ k,

that is, G′ is Mk+1-free, a contradiction. Thus the claim holds. �

Claim 4. G[L] is a complete multi-partite graph.

Proof. Let G be a {Kr+1,Mk+1}-free graph with maximal number of edges. We
define a binary relation ∼ on L. For any u, v ∈ L, u ∼ v if and only if uv /∈ E(G).
We claim that ∼ is an equivalence relation. For any u ∈ L, uu /∈ E(G), so ∼ is
reflexive. If vu /∈ E(G), then uv /∈ E(G), so ∼ is symmetric.

Now we prove ∼ is transitive. Otherwise, suppose there are u, v, w ∈ L such
that vu, uw /∈ E(G), then vw ∈ E(G).

Case 1. dG(u) < dG(v) or dG(u) < dG(w). By symmetry, assume that
dG(u) < dG(v). Let G′ = G[u ← v]. By Claim 3, we know that G′ is also
{Mk+1,Kr+1}-free and e(G′) > e(G), contradicting the maximality of e(G).

Case 2. dG(u) ≥ dG(v) and dG(u) ≥ dG(w). Let G′′ = G[v ← u][w ← u]. By
Claim 3 again, G′′ is also {Mk+1,Kr+1}-free and e(G′′) > e(G), a contradiction.

Thus, the relation ∼ on L is an equivalence relation and G[L] is a complete
multi-partite graph. �

Let |L| = x, 0 ≤ x ≤ s. Since G is Kr+1-free, by Theorem 1.1 we infer
e(L) ≤ tr(x). By Claim 2, there are three types of connected components inG−L.
Let t be the number of connected components of type (II) and let y1, y2, . . . , yt
be the number of vertices in these connected components, respectively. Clearly,
|Φ| = y = y1 + y2 + · · ·+ yt.

For y1, y2 > 0, the following inequality can be checked directly:

(2.1)

(
y1
2

)
+

(
y2
2

)
≤
(
y1 + y2

2

)
.

Applying (2.1) repeatedly, we obtain that

(2.2) e(Φ) ≤
(
y1
2

)
+

(
y2
2

)
+ · · ·+

(
yt
2

)
≤
(
y

2

)
.

Let p be the number of connected components of type (III) and let 2z1 +
1, 2z2 + 1, . . . , 2zp + 1 be the number of vertices in these connected components,
respectively. Let B0 be the set of vertices labeled b in the union of connected
components of type (III). Since each connected components of type (III) has
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exactly one vertex labeled b, we infer |B0| = p and |LB| = 2(z1 + z2 + · · ·+ zp) =
2s− 2x− y.

For z1, z2 ≥ 1, it is easy to verify that

(2.3)

(
2z1 + 1

2

)
+

(
2z2 + 1

2

)
≤
(

2z1 + 2z2 + 1

2

)
.

Let LB ∪ B0 be the union of connected components of type (III). By applying
(2.3) repeatedly, we get

(2.4)

e(LB ∪B0) ≤
(

2z1 + 1

2

)
+

(
2z2 + 1

2

)
+ · · ·+

(
2zp + 1

2

)
≤
(

2(z1 + · · ·+ zp) + 1

2

)
=

(
2s− 2x− y + 1

2

)
.

By Claim 4, G[L] is a complete multi-partite graph. Since G is Kr+1-free, G[L]
is t-paritite with t ≤ r. We distinguish two cases according to t.

Case 1. t ≤ r− 1. Since G[L] is a complete t-partite graph and t ≤ r− 1, we
see that e(L) ≤ tr−1(x). By (2.2) and (2.4), we obtain that

e(G) = e(L) + e(LB ∪B0) + e(Φ) + e(L, V (G) \ L)

≤ tr−1(x) +

(
2s− 2x− y + 1

2

)
+

(
y

2

)
+ |L|(n− |L|)

≤ tr−1(x) +

(
2s− 2x− y + 1

2

)
+

(
y

2

)
+ x(n− x).

By (2.1) we infer that

e(G) ≤ tr−1(x) +

(
2s− 2x+ 1

2

)
+ x(n− x) =: g(x).(2.5)

By Lemma 1.7 we know that tr−1(x) is a convex function. Since both tr−1(x)
and

(
2s−2x+1

2

)
+x(n−x) are convex functions, we infer that g(x) is also a convex

function for 0 ≤ x ≤ s ≤ k. Hence,

e(G) ≤ max{g(0), g(k)} = max

{(
2s+ 1

2

)
, tr−1(k) + k(n− k)

}
≤ max

{(
2k + 1

2

)
, tr−1(k) + k(n− k)

}
.

For n ≥ 3k + 1, we conclude that(
2k + 1

2

)
= k(2k + 1) ≤ k(n− k) < tr−1(k) + k(n− k),
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and Theorem 1.3 holds.

Case 2. t = r. Let L1, L2, . . . , Lr be r partite sets of G[L]. It is obvious that
|L| = x ≥ r. Since G[L] is a complete r-partite graph, for any u ∈ V (G)\L there
exists some i such that Li ∩ NG(u) = ∅. Otherwise if there exists vi ∈ Li such
that uvi ∈ E(G) for each i = 1, 2, . . . , r, then {u, v1, v2, . . . , vr} spans a copy of
Kr+1, a contradiction. By symmetry, assume that |L1| ≤ |L2| ≤ · · · ≤ |Lr|. Let
|L1| = z. Clearly 1 ≤ z ≤ bx/rc. Then

e(L, V (G) \ L) ≤ (n− |L|)(|L| − z) = (n− x)(x− z).

Note that |B| = n − 2s + x and |B0| ≤ |LB|/2 ≤ s − |L| = s − x. By (2.2) and
(2.4), we infer that

e(G) = e(L) + e(LB ∪B0) + e(Φ) + e(L, V (G) \ L) ≤ |L1|(|L| − |L1|)

+ tr−1(|L| − |L1|) +

(
2s− 2x− y + 1

2

)
+

(
y

2

)
+ (n− x)(x− z)

= z(x− z) + tr−1(x− z) +

(
2s− 2x− y + 1

2

)
+

(
y

2

)
+ (n− x)(x− z)

= (n− x+ z)(x− z) + tr−1(x− z) +

(
2s− 2x− y + 1

2

)
+

(
y

2

)
.

By (2.1), we infer that

e(G) ≤ (n− x+ z)(x− z) + tr−1(x− z) +

(
2s− 2x+ 1

2

)
=: g(x, z).(2.6)

Since for r ≤ x ≤ s ≤ k, n ≥ 2k and 1 ≤ z ≤ bx/rc, g(x, z) is a decreasing
function with respect to z. Using z ≥ 1, we get

g(x, z) ≤ g(x, 1) = (n− x+ 1)(x− 1) + tr−1(x− 1) +

(
2s− 2x+ 1

2

)
≤ (n− x+ 1)(x− 1) + tr−1(x− 1) +

(
2k − 2x+ 1

2

)
=: h(x).

It is easy to verify that h(x) is also a convex function for 1 ≤ r ≤ x ≤ s ≤ k.
Therefore,

e(G) ≤ max{h(1), h(k)} = max

{(
2k − 1

2

)
, (n− k + 1)(k − 1) + tr−1(k − 1)

}
.

Note that for n ≥ 3k,

tr−1(k) + k(n− k)− h(k) = tr−1(k) + k(n−k)− tr−1(k−1)− (n−k + 1)(k−1)

= n− 2k + 1 + k −
⌈

k

r − 1

⌉
≥ n− 2k − (r − 2)k

r − 1
> 0.
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It follows that h(k) ≤ tr−1(k) + k(n− k).
For n ≥ 3k − 2, we have

tr−1(k) + k(n− k)−
(

2k − 1

2

)
> kn− k2 − 2k2 + 3k − 1 ≥ 0.

It follows that h(1) ≤ tr−1(k) + k(n− k).
Consequently e(G) ≤ tr−1(k) + k(n − k) for n ≥ 3k + 1 and the theorem

holds.

3. Proof of Theorem 1.4

By a similar approach as in the proof of Theorem 1.3, we determine the maximum
number of edges in a graph with ν(G) ≤ k and τ(G) ≥ k + r.

Proof of Theorem 1.4. Let M be a maximal matching in G and let L,LB,Φ, B
be the partition of V (G) obtained by the alternating path method.

By Claim 1, we infer that L∪LB∪Φ is a vertex cover of G. Since τ(G) ≥ k+r,
it follows that |L|+ |LB|+ |Φ| ≥ k + r. By Claim 2, for any xy ∈ M , there are
three possibilities: one of x, y is labeled l and the other is labeled b, or x, y are
both labeled lb, or x, y are both unlabeled. Since ν(G) ≤ k implies |L|+ |LB|/2+
|Φ|/2 ≤ k, it follows that |LB|/2+|Φ|/2 ≥ r and |L| ≤ k−|LB|/2−|Φ|/2 ≤ k−r.

Let |L| = x and |Φ| = y. Then 0 ≤ x ≤ k− r, 0 ≤ y ≤ 2k− 2x. By (2.2) and
(2.4), we obtain that

(3.1)

e(G) = e(L) + e(Φ) + e(LB ∪B0) + e(L, V (G) \ L)

≤
(
|L|
2

)
+

(
y

2

)
+

(
2k − 2x− y + 1

2

)
+ |L|(n− |L|)

≤
(
x

2

)
+

(
y

2

)
+

(
2k − 2x− y + 1

2

)
+ x(n− x).

By (2.1), we have

e(G) ≤
(

2k − x+ 1

2

)
+ x(n− x) =: f(x).(3.2)

It is easy to verify that f(x) is a convex function for 0 ≤ x ≤ k − r. Therefore,

e(G) ≤ max {f(0), f(k − r)}

= max

{(
2k + 1

2

)
,

(
k + r + 1

2

)
+ (k − r)(n− k − r − 1)

}
,

and Theorem 1.4 holds.
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Remark. Very recently, Alon and Frankl [3] determined ex(n, {Mk+1,Kr+1})
for all values of n by a very nice argument.
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