DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Goedgebeur

Jan Goedgebeur

KU Leuven

email: jan.goedgebeur@kuleuven.be

0000-0001-8984-2463

T. Gringore

Thomas Gringore

ENSTA Paris - Institut Polytechnique de Paris

email: thomas.gringore@ensta-paris.fr

C.T. Zamfirescu

Carol Zamfirescu

Ghent University

email: czamfirescu@gmail.com

0000-0002-9673-410X

Title:

On non-hamiltonian polyhedra without cubic vertices and their vertex-deleted subgraphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2022-11-29 , Revised: 2023-08-09 , Accepted: 2023-08-09 , Available online: 2023-09-10 , https://doi.org/10.7151/dmgt.2514

Abstract:

Thomassen proved in 1978 that if in an $n$-vertex planar graph $G$ whose minimum degree is at least 4, all vertex-deleted subgraphs of $G$ are hamiltonian, then $G$ is hamiltonian. It was recently shown that in the preceding sentence, ``all'' can be replaced by ``at least $n - 5$''. In this note we prove that, even if 3-connectedness is assumed, it cannot be replaced by $n - 24$ (or any other integer greater than 24). The exact threshold remains unknown. We show that the same conclusion holds for triangulations and use computational means to prove that, under a natural restriction, this result is best possible.

Keywords:

non-hamiltonian, vertex-deleted subgraph, polyhedron, planar triangulation, computation

References:

  1. G. Brinkmann and B.D. McKay, Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem. 58 (2007) 323–357.
  2. K. Coolsaet, S. D'hondt and J. Goedgebeur, House of Graphs $2.0:$ A database of interesting graphs and more, Discrete Appl. Math. 325 (2023) 97–107.
    https://doi.org/10.1016/j.dam.2022.10.013
  3. I. Fabrici, T. Madaras, M. Timková, N. Van Cleemput and C.T. Zamfirescu, Non-hamiltonian graphs in which every edge-contracted subgraph is hamiltonian, Appl. Math. Comput. 392 (2021) 125714.
    https://doi.org/10.1016/j.amc.2020.125714
  4. J. Goedgebeur, B. Meersman and C.T. Zamfirescu, Graphs with few hamiltonian cycles, Math. Comp. 89 (2020) 965–991.
    https://doi.org/10.1090/mcom/3465
  5. J. Goedgebeur, A. Neyt and C.T. Zamfirescu, Structural and computational results on platypus graphs, Appl. Math. Comput. 386 (2020) 125491.
    https://doi.org/10.1016/j.amc.2020.125491
  6. B. Grünbaum, Vertices missed by longest paths or circuits, J. Combin. Theory Ser. A 17 (1974) 31–38.
    https://doi.org/10.1016/0097-3165(74)90025-9
  7. D.A. Holton and J. Sheehan, The Petersen Graph, Chapter 7: Hypohamiltonian graphs (Cambridge University Press, New York, 1993).
    https://doi.org/10.1017/CBO9780511662058.008
  8. D.A. Nelson, Hamiltonian Graphs, Master's Thesis (Vanderbilt University, 1973).
  9. N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (2023).
    https://oeis.org
  10. C. Thomassen, Hypohamiltonian graphs and digraphs, in: Theory and Aplications of Graphs, Lecture Notes in Math. 642, Y. Alavi and D.R. Lick (Ed(s)), (Springer, Berlin, Heidelberg 1978) 557–571.
    https://doi.org/10.1007/BFb0070410
  11. C. Thomassen, Planar cubic hypohamiltonian and hypotraceable graphs, J. Combin. Theory Ser. B 30 (1981) 36–44.
    https://doi.org/10.1016/0095-8956(81)90089-7
  12. W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99–116.
    https://doi.org/10.1090/S0002-9947-1956-0081471-8
  13. C.T. Zamfirescu, Cubic vertices in planar hypohamiltonian graphs, J. Graph Theory 90 (2019) 189–207.
    https://doi.org/10.1002/jgt.22388
  14. C.T. Zamfirescu, Vertex degrees and $2$-cuts in graphs with many hamiltonian vertex-deleted subgraphs, Inform. Process. Lett. 174 (2022) 106192.
    https://doi.org/10.1016/j.ipl.2021.106192
  15. C.T. Zamfirescu, On the hamiltonicity of a planar graph and its vertex-deleted subgraphs, J. Graph Theory 102 (2023) 180–193.
    https://doi.org/10.1002/jgt.22864

Close