DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Chen

Jie Chen

Lanzhou University

email: chenjie21@lzu.edu.cn

0000-0002-8199-9965

Y.-P. Liang

Yi-Ping Liang

Lanzhou University

email: liangyp18@lzu.edu.cn

0000-0003-2287-190X

S.-J. Xu

Shou-Jun Xu

Lanzhou University

email: shjxu@lzu.edu.cn

0000-0002-2046-3040

Title:

Semitotal domination in claw-free graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-02-07 , Revised: 2023-07-20 , Accepted: 2023-07-21 , Available online: 2023-09-02 , https://doi.org/10.7151/dmgt.2512

Abstract:

In an isolate-free graph $G$, a subset $S$ of vertices is a semitotal dominating set of $G$ if it is a dominating set of $G$ and every vertex in $S$ is within distance 2 of another vertex of $S$. The semitotal domination number of $G$, denoted by $\gamma_{t2}(G)$, is the minimum cardinality of a semitotal dominating set in $G$. We prove that if $G$ is a connected claw-free graph of order $n$ with minimum degree $\delta(G)\geqslant 2$ and is not one of fourteen exceptional graphs (ten of which are cycles), then $\gamma_{t2}(G) \leqslant \frac{3}{7}n$, and we also characterize the graphs achieving equality, which are an infinite family of graphs. In particular, if we restrict $\delta(G) \geqslant 3$ and $G\neq K_4$, then we can improve the result to $\gamma_{t2}(G) \leqslant \frac{2}{5}n$, solving the conjecture for the case of claw-free graphs, proposed by Goddard, Henning and McPillan in [Semitotal domination in graphs, Util. Math. 94 (2014) 67–81].

Keywords:

semitotal domination, minimum degree, claw-free graphs

References:

  1. J. Chen and S.-J. Xu, A characterization of $3$-$\gamma$-critical graphs which are not bicri-tical, Inform. Process. Lett. 166 (2021) 106062.
    https://doi.org/10.1016/j.ipl.2020.106062
  2. Y. Dong, E. Shan, L. Kang and S. Li, Domination in intersecting hypergraphs, Discrete Appl. Math. 251 (2018) 155–159.
    https://doi.org/10.1016/j.dam.2018.05.039
  3. W. Goddard, M.A. Henning and C.A. McPillan, Semitotal domination in graphs, Util. Math. 94 (2014) 67-81.
  4. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (CRC Press, Boca Raton, 1998).
    https://doi.org/10.1201/9781482246582
  5. M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4614-6525-6
  6. M.A. Henning, Bounds on domination parameters in graphs: a brief survey, Discuss. Math. Graph Theory 42 (2022) 665–708.
    https://doi.org/10.7151/dmgt.2454
  7. M.A. Henning and A.J. Marcon, On matching and semitotal domination in graphs, Discrete Math. 324 (2014) 13–18.
    https://doi.org/10.1016/j.disc.2014.01.021
  8. M.A. Henning, Edge weighting functions on semitotal dominating sets, Graphs Combin. 33 (2017) 403–417.
    https://doi.org/10.1007/s00373-017-1769-4
  9. M.A. Henning and A. Pandey, Algorithmic aspects of semitotal domination in graphs, Theoret. Comput. Sci. 766 (2019) 46–57.
    https://doi.org/10.1016/j.tcs.2018.09.019
  10. E. Zhu, Z. Shao and J. Xu, Semitotal domination in claw-free cubic graphs, Graphs Combin. 33 (2017) 1119–1130.
    https://doi.org/10.1007/s00373-017-1826-z

Close