DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

D. Gerbner

Dániel Gerbner

Rényi Institute of Mathematics

email: gerbner.daniel@renyi.mta.hu

Title:

On weakly Turán-good graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(4) (2024) 1539-1550

Received: 2022-12-27 , Revised: 2023-07-04 , Accepted: 2023-07-07 , Available online: 2023-08-22 , https://doi.org/10.7151/dmgt.2510

Abstract:

Given graphs $H$ and $F$ with $\chi(H)<\chi(F)$, we say that $H$ is weakly $F$-Turán-good if among $n$-vertex $F$-free graphs, a $(\chi(F)-1)$-partite graph contains the most copies of $H$. Let $H$ be a bipartite graph that contains a complete bipartite subgraph $K$ such that each vertex of $H$ is adjacent to a vertex of $K$. We show that $H$ is weakly $K_3$-Turán-good, improving a very recent asymptotic bound due to Grzesik, Győri, Salia and Tompkins. They also showed that for any $r$ there exist graphs that are not weakly $K_r$-Turán-good. We show that for any non-bipartite $F$ there exist graphs that are not weakly $F$-Turán-good. We also show examples of graphs that are $C_{2k+1}$-Turán-good but not $C_{2\ell+1}$-Turán-good for every $k>\ell$.

Keywords:

generalized Turán problem, extremal, Turán-good

References:

  1. N. Alon and C. Shikhelman, Many $T$ copies in $H$-free graphs, J. Combin. Theory Ser. B 121 (2016) 146–172.
    https://doi.org/10.1016/j.jctb.2016.03.004
  2. J.I. Brown and A. Sidorenko, The inducibility of complete bipartite graphs, J. Graph Theory 18 (1994) 629–645.
    https://doi.org/10.1002/jgt.3190180610
  3. P. Erdős, Some recent results on extremal problems in graph theory $($Results$)$, in: Theory of Graphs, Rosentstiehl (Ed(s)), (Gordon and Breach, New York 1967) 117–123.
  4. P. Erdős, On some new inequalities concerning extremal properties of graphs, in: Theory of Graphs, P. Erdős and G.O.H. Katona (Ed(s)), (Academic Press, New York 1968) 77–81.
  5. P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986) 113–121.
    https://doi.org/10.1007/BF01788085
  6. P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51–57.
  7. P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.
    https://doi.org/10.1090/S0002-9904-1946-08715-7
  8. D. Gerbner, On Turán-good graphs, Discrete Math. 344 (2021) 112445.
    https://doi.org/10.1016/j.disc.2021.112445
  9. D. Gerbner, Generalized Turán problems for small graphs, Discuss. Math. Graph Theory 43 (2023) 549–572.
    https://doi.org/10.7151/dmgt.2388
  10. D. Gerbner, Generalized Turán problems for double stars, Discrete Math. 346(7) (2023) 113395.
    https://doi.org/10.1016/j.disc.2023.113395
  11. D. Gerbner, Some stability and exact results in generalized Turán problems, Studia Sci. Math. Hungar. 60 (2023) 16–26.
    https://doi.org/10.1556/012.2023.01533
  12. D. Gerbner, Paths are Turán-good, Graphs Combin. 39 (2023) 56.
    https://doi.org/10.1007/s00373-023-02641-z
  13. D. Gerbner and C. Palmer, Counting copies of a fixed subgraph in $F$-free graphs, European J. Combin. 82 (2019) 103001.
    https://doi.org/10.1016/j.ejc.2019.103001
  14. D. Gerbner and C. Palmer, Some exact results for generalized Turán problems, European J. Combin. 103 (2022) 103519.
    https://doi.org/10.1016/j.ejc.2022.103519
  15. A. Grzesik, E. Győri, N. Salia and C. Tompkins, Subgraph densities in $K_r$-free graphs, Electron. J. Combin. 30(1) (2023) #P1.51.
    https://doi.org/10.37236/11329
  16. E. Győri, J. Pach and M. Simonovits, On the maximal number of certain subgraphs in $K_r$-free graphs, Graphs Combin. 7 (1991) 31–37.
    https://doi.org/10.1007/BF01789461
  17. E. Győri, R. Wang and S. Woolfson, Extremal problems of double stars, Discrete Math. Theor. Comput. Sci. 24(2) (2023) 4.
    https://doi.org/10.46298/dmtcs.8499
  18. D. Hei, X. Hou and B. Liu, Some exact results of the generalized Turán numbers for paths, European J. Combin. 110 (2023) 103682.
    https://doi.org/10.1016/j.ejc.2022.103682
  19. J. Ma and Y. Qiu, Some sharp results on the generalized Turán numbers, European J. Combin. 84 (2020) 103206.
    https://doi.org/10.1016/j.ejc.2019.103026
  20. K. Murphy and J.D. Nir, Paths of length three are $K_{r+1}$-Turán-good, Electron. J. Combin. 28(4) (2021) #P4.34.
    https://doi.org/10.37236/10225
  21. B. Qian, C. Xie and G. Ge, Some results on $k$-Turán-good graphs, Discrete Math. 344(9) (2021) 112509.
    https://doi.org/10.1016/j.disc.2021.112509
  22. M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, Graphs, P. Erdös and G.O.H. Katona Ed(s)), (Academic Press, New York 1968) 279–319.
  23. M. Simonovits, Extremal graph problems with symmetrical extremal graphs. Additional chromatic conditions, Discrete Math. 7 (1974) 349–376.
    https://doi.org/10.1016/0012-365X(74)90044-2
  24. P. Turán, Egy gráfelméleti szélsőérték-feladatról, Mat. Fiz. Lapok 48 (1941) 436–452.
  25. A.A. Zykov, On some properties of linear complexes, Mat. Sb. 24(66) (1949) 163–188.

Close