DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

S. Alikhani

Saeid Alikhani

Department of Mathematical Sciences, Yazd University, 89195-741, Yazd, Iran.

email: alikhani@yazd.ac.ir

0000-0002-1801-203X

D. Bakhshesh

Davood Bakhshesh

Department of Computer Science,
University of Bojnord, Bojnord, Iran

email: d.bakhshesh@ub.ac.ir

0000-0002-8883-8312

H.R. Golmohammadi

Hamidreza Golmohammadi

Novosibirsk State University

email: h.golmohammadi@g.nsu.ru

0000-0003-0767-0755

E.V. Konstantinova

Elena V. V. Konstantinova

Sobolev Institute of Mathematics, Novosibirsk State University

email: e_konsta@math.nsc.ru

0000-0002-3457-645X

Title:

Connected coalitions in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-02-26 , Revised: 2023-07-08 , Accepted: 2023-07-09 , Available online: 2023-07-27 , https://doi.org/10.7151/dmgt.2509

Abstract:

Let $G = (V,E)$ be a graph, and define a connected coalition as a pair of disjoint vertex sets $U_{1}$ and $U_{2}$ such that $U_{1}\cup U_{2}$ forms a connected dominating set, but neither $U_{1}$ nor $U_{2}$ individually forms a connected dominating set. A connected coalition partition of $G$ is a partition $\Phi=\{U_1, U_2,\dots, U_k\}$ of the vertices such that each set $U_i \in \Phi$ either consists of only a single vertex with degree $n-1$, or forms a connected coalition with another set $U_j\in \Phi$ that is not a connected dominating set. The connected coalition number $CC(G)$ is defined as the largest possible size of a connected coalition partition for $G$. The objective of this study is to initiate an examination into the notion of connected coalitions in graphs and present essential findings. More precisely, we provide a thorough characterization of all graphs possessing a connected coalition partition. Moreover, we establish that, for any graph $G$ with order $n$, a minimum degree of $1$, and no full vertex, the condition $CC(G)<n$ holds. In addition, we prove that any tree $T$ achieves $CC(T)=2$. Lastly, we propose two polynomial-time algorithms that determine whether a given connected graph $G$ of order $n$ satisfies $CC(G)=n$ or $CC(G)=n-1$.

Keywords:

coalition, coalition partition, polynomial-time algorithm, corona product

References:

  1. S. Alikhani, D. Bakhshesh and H.R. Golmohammadi, Introduction to total coalitions in graphs.
    arXiv: 2211.11590
  2. S. Alikhani, H. Golmohammadi and E.V. Konstantinova, Coalition of cubic graphs of order at most $10$, Commun. Comb. Optim, in press.
    https://doi.org/10.22049/cco.2023.28328.1507
  3. S. Alikhani and S. Soltani, Distinguishing number and distinguishing index of natural and fractional powers of graphs, Bull. Iranian Math. Soc. 43 (2017) 2471–2482.
  4. D. Bakhshesh, M.A. Henning and D. Pradhan, On the coalition number of trees, Bull. Malays. Math. Sci. Soc. 46 (2023) 95.
    https://doi.org/10.1007/s40840-023-01492-4
  5. E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247–261.
    https://doi.org/10.1002/net.3230070305
  6. D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and Applications (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4614-5242-3
  7. B.L. Hartnell and D.F. Rall, Connected domatic number in planar graphs, Czechoslovak Math. J. 51 (2001) 173–179.
    https://doi.org/10.1023/A:1013770108453
  8. T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Introduction to coalitions in graphs, AKCE Int. J. Graphs Comb. 17 (2020) 653–659.
    https://doi.org/10.1080/09728600.2020.1832874
  9. T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory, in press.
    https://doi.org/10.7151/dmgt.2416
  10. T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Upper bounds on the coalition number, Australas. J. Combin. 80 (2021) 442–453.
  11. T.W. Haynes, S.T. Hedetniemi and M.A.Henning, Topics in Domination in Graphs (Dev. Math. 64 Springer, Cham, 2020).
    https://doi.org/10.1007/978-3-030-51117-3
  12. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Boca Ratan, CRC Press, New York, 1998).
    https://doi.org/10.1201/9781482246582
  13. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Routledge, Inc., New York, 1998).
    https://doi.org/10.1201/9781315141428
  14. E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607–613.
  15. B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983) 145–147, http://dml.cz/dmlcz/136324.
  16. B. Zelinka, On domatic numbers of graphs, Math. Slovaca 31 (1981) 91–95, http://dml.cz/dmlcz/132763.
  17. B. Zelinka, Connected domatic number of a graph, Math. Slovaca 36 (1986) 387–392, http://dml.cz/dmlcz/136430.

Close