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Abstract

Let G = (V,E) be a graph, and define a connected coalition as a pair of
disjoint vertex sets U1 and U2 such that U1∪U2 forms a connected dominat-
ing set, but neither U1 nor U2 individually forms a connected dominating
set. A connected coalition partition of G is a partition Φ = {U1, U2, . . . , Uk}
of the vertices such that each set Ui ∈ Φ either consists of only a single
vertex with degree n − 1, or forms a connected coalition with another set
Uj ∈ Φ that is not a connected dominating set. The connected coalition
number CC(G) is defined as the largest possible size of a connected coali-
tion partition for G. The objective of this study is to initiate an examination
into the notion of connected coalitions in graphs and present essential find-
ings. More precisely, we provide a thorough characterization of all graphs
possessing a connected coalition partition. Moreover, we establish that, for
any graph G with order n, a minimum degree of 1, and no full vertex, the
condition CC(G) < n holds. In addition, we prove that any tree T achieves
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CC(T ) = 2. Lastly, we propose two polynomial-time algorithms that deter-
mine whether a given connected graph G of order n satisfies CC(G) = n or
CC(G) = n− 1.

Keywords: coalition, coalition partition, polynomial-time algorithm, corona
product.
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1. Introduction

Consider a simple graph G = (V,E), where V represents the vertex set and E
the edge set. The open neighborhood of a vertex v in V is defined as the set of
adjacent vertices, denoted by N(v), while the closed neighborhood, represented by
N [v], includes v itself. The degree of a vertex v, denoted by deg(v), is the number
of vertices in its open neighborhood. A vertex v in G is referred to as a pendant
vertex if it has only one adjacent vertex in its open neighborhood, which is called
its support vertex, represented by spo(v). An edge is considered pendant if one of
its endpoints is a pendant vertex. In a tree T , a vertex with degree one is called
a leaf, while the adjacent vertex is referred to as the support vertex. The set of
leaves in T is denoted by L(T ), and its size by l(T ). A vertex with degree n−1 in
a graph G with n vertices is called a full or universal vertex, while a vertex with
degree 0 is an isolate. The minimum and maximum degrees of G are represented
by δ(G) and ∆(G), respectively. A subset Vi ⊆ V is called one-element if it has
only one element, and more-element if it has more than one element.

Within the context of a graph G, a subset S of vertices is classified as a dom-
inating set if for each vertex in the complement set V \ S, there exists at least
one vertex in S that is adjacent to it. A dominating set S is designated as con-
nected if the subgraph induced by the vertices in S is connected. The minimum
size of a connected dominating set in G is denoted as the connected domination
number, represented by γc(G) [6]. This concept was initially introduced in 1979
by Sampathkumar and Walikar, with the guidance of Hedetniemi [14]. Con-
nected domination has been of substantial interest in recent years, particularly
in the Wireless Sensor Networks domain, due to its crucial applications [11–13].
For further in-depth information on this subject, readers are referred to relevant
literature.

A domatic partition refers to a partition of a vertices of the graph into domi-
nating sets. Similarly, a connected domatic partition is a partition into connected
dominating sets. The domatic number d(G) of a graph G is the size of a do-
matic partition with the largest size. On the other hand, the maximum size of a
connected domatic partition is denoted by dc(G) and is known as the connected
domatic number. The domatic number was first introduced by Cockayne and
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Hedetniemi in their seminal paper [5]. Zelinka later introduced the concept of
connected domatic number in [17]. Further information on these concepts can be
found in authoritative sources such as [7, 15–17].

In the seminal work [8], the concept of coalitions and coalition partitions
was first introduced and subsequently explored in the field of graph theory, as
evidenced by notable contributions such as [2, 4, 9, 10]. Although initially based
on general graph properties, the focus of these investigations has primarily been
on their relationship to the fundamental concept of dominating sets. A coalition
in a graph G is defined as the union of two disjoint sets of vertices U1 and U2, such
that neither U1 nor U2 individually dominates G, but their union does. The sets
U1 and U2 are referred to as coalition partners. On the other hand, a coalition
partition Φ = {U1, U2, . . . , Uk} of G is a partition of its vertex set where each Ui

in Φ is either a one-element dominating set of G or a non-dominating set that
forms a coalition with another non-dominating set Uj ∈ Φ. The coalition number
C(G) of a graph G is the maximum number of sets that can be present in a
coalition partition of G.

For every coalition partition Φ of a graph G, there is a corresponding graph
called the coalition graph of G with respect to Φ, denoted as CG(G,Φ). The ver-
tices of this graph correspond one-to-one with the sets of Φ, and two vertices are
adjacent in CG(G,Φ) if and only if their corresponding sets form a coalition. The
study of coalition graphs, particularly for paths, cycles, and trees, was conducted
in [9]. The concept of total coalition was introduced and explored in [1], while the
coalition parameter for cubic graphs of order at most 10 was investigated in [2].

According to Section 4 of reference [8], there are open problems and areas for
future research which suggest exploring connected coalition partition. Inspired by
this, our focus is on the examination of connected coalitions and their partitions.

In Section 2, we define and discuss some properties of connected coalitions.
In Section 3, we determine the connected coalition number of graphs with at least
one pendant edge. Furthermore, we consider the connected coalition of trees in
Section 4. In Section 5, we present two polynomial-time algorithms that take a
graph G with n vertices and determine whether CC(G) = n or CC(G) = n− 1.
Finally, we present some open problems for future works in Section 6.

2. Introduction to Connected Coalition

Definition 1 (Connected coalition). For a graph G with vertex set V , two sets
U1, U2 ⊆ V form a connected coalition, if neither U1 nor U2 is a connected
dominating set but U1 ∪ U2 is a connected dominating set in G.

Definition 2 (Connected coalition partition). Let G be a graph. A connected
coalition partition of G is a partition Φ = {U1, U2, . . . , Uk} of the vertex set of G
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such that each set Ui in Φ is either a connected dominating set comprising a single
vertex with degree n− 1, or forms a connected coalition with another set Uj ∈ Φ
that is not a connected dominating set. We define the connected coalition number
of G, denoted by CC(G), as the maximum cardinality of a connected coalition
partition in G. A partition of G into CC(G) connected sets is referred to as a
CC(G)-partition.

Considering the graph G should be connected, we have the following trivial
observation.

Observation 3. For any disconnected graph G of order n ≥ 2, we have CC(G)
= 0.

We can use the following result to describe the graphs G for which CC(G)=1.

Lemma 4. For any graph G, CC(G) = 1 if and only if G = K1.

Proof. If CC(G) = 1, then {V } is a CC(G)-partition. By Definition 2, we must
have |V | = 1. So, it is clear that G = K1. Conversely, if G = K1, clearly we have
CC(G) = 1.

Now, we prove the following lemma.

Lemma 5. If G is a connected graph of order n > 1 with no full vertex, then
CC(G) ≥ 2dc(G).

Proof. Let G be a graph that does not have any full vertices and has a con-
nected domatic partition C = {C1, C2, . . . , Cs}, where s is equal to the connected
domatic number dc(G). Since G does not contain any universal vertices, all the
sets Ci are not one-element sets. We assume that the sets {C1, C2, . . . , Cs−1}
are minimal connected dominating sets, and if any set Ci is not minimal and
connected, we find a subset C ′i ⊆ Ci that is a minimal connected dominating set,
and add the remaining vertices to Cs. It is important to note that if we partition
a more-element, minimal connected dominating set into two non-empty sets, we
create two non-connected dominating sets that form a connected coalition when
combined. As a result, we divide each more-element set Ci into two sets, namely
Ci,1 and Ci,2, that together form a connected coalition. This gives us a new par-
tition C′ = {C1,1, C1,2, C2,1, C2,2, . . . , Cs−1,1, Cs−1,2} consisting of non-connected
dominating sets that pair with another non-connected dominating set in C′ to
form a coalition. We then examine the connected dominating set Cs. If Cs is
a minimal connected dominating set, we also divide it into two non-connected
dominating sets, add these sets to C′, and obtain a connected coalition partition
of cardinality at least 2s. Then, since s = dc(G), CC(G) ≥ 2dc(G).

If Cs is not a minimal connected dominating set, we aim to identify a subset
C ′s ⊆ Cs that fulfills this condition. We then partition C ′s into two non-connected
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dominating sets, which together form a connected coalition. Afterwards, we
define C ′′s as the complement of C ′s in Cs, and we append C ′s,1 and C ′s,2 to the
collection C′. If C ′′s can merge with any non-connected dominating set to form
a connected coalition, we can obtain a connected coalition partition of G with
a cardinality of at least at least 2s + 1 by adding C ′′s to C′. Then, CC(G) ≥
2dc(G) + 1. However, if C ′′s cannot form a connected coalition with any set in
C′, we eliminate C ′s,2 from C′ and add the set C ′s,2 ∪ C ′′s to C′. This leads to a
connected coalition partition of a cardinality at least 2s. Then, CC(G) ≥ 2dc(G).

Due to the above arguments, we easily conclude that CC(G) ≥ 2dc(G). This
completes the proof.

It is remarkable that for any graph G, dc(G) ≥ 1. Based on Lemma 5, we
have the following result.

Theorem 6. If G is a connected graph of order n > 1 with no full vertex, then
CC(G) ≥ 2.

By Theorem 6, we immediately conclude the following result.

Corollary 7. If G is a connected graph with CC(G) < 2, then G contains at
least one full vertex.

The primary objective of this research is to examine the plausibility of a
connected c-partition’s existence in a given graph G. To achieve this goal, we
introduce a family of graphs, denoted as F , as follows. For any two graphs G and
H, their join G+H is defined as a graph formed by linking every vertex of G to
every vertex of H using disjoint copies of G and H. The subsequent definition is
stated below.

Definition 8. A family F of graphs is constructed as follows.

Step 1. We add all disconnected graphs G of order n ≥ 2 into F .

Step 2. For any graph G ∈ F , we add G+K1 into F .

It is remarkable that the family F contains both many disconnected graphs
and many connected graphs. For instance, Figure 1 shows the connected graph
(2K2 + K1) + K1 belonging to F . As another example, consider the friendship
graphs Fn which is a graph with 2n+ 1 vertices and 3n edges, formed by the join
of K1 + nK2. Based on Definition 8, we have Fn ∈ F .

Now, we prove the following Lemma.

Lemma 9. For any graph G, if G ∈ F , then CC(G) = 0.
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Figure 1. The connected graph (2K2 +K1) +K1 belonging to F .

Proof. Using induction on the number of full vertices of G, we prove that
CC(G) = 0. For the base step, if G has no full vertex, then since G ∈ F , G
is a disconnected graph of order n ≥ 2. By Observation 3, we have CC(G) = 0.
As the inductive hypothesis, suppose that for any graph H ∈ F such that the
number of its full vertices is less than the number of full vertices of G, it holds
that CC(H) = 0. For induction step, suppose that G = H +K1, where H ∈ F .
Let u be the vertex of K1. By induction hypothesis, we have CC(H) = 0. Now, if
CC(G) 6= 0, then by applying Lemma 4 since G 6= K1, it follows that CC(G) ≥ 2.
Since u is the full vertex of G, the set {u} belongs to any CC(G)-partition Φ.
Now, by removing {u} of Φ, we obtain a connected coalition partition for H with
CC(H) ≥ 1, which is a contradiction. Thus, CC(G) = 0.

The next theorem shows a necessary and sufficient condition for the existence
of a connected coalition partition of a graph G.

Theorem 10. For any graph G, CC(G) = 0 if and only if G ∈ F .

Proof. Based on Corollary 7, under the assumption that CC(G) < 2, it follows
that G must possess at least one universal vertex. Now, if G ∈ F , by Lemma
9, we have CC(G) = 0, Conversely, suppose that CC(G) = 0. To prove G ∈ F ,
we use the induction on the number of full vertices of G. For the base step,
we assume that G contains exactly one full vertex u. Now, consider the graph
G′ = G[V \{u}]. If G′ is a connected graph, then, since G′ does not have any
isolated vertices, by applying Theorem 6, we can conclude that CC(G′) ≥ 2.
Hence, using a CC(G′)-partition and the one-element set {u}, we can construct
a CC(G)-partition with CC(G) ≥ 3, which is a contradiction. Hence, G′ must
be disconnected. Hence, by the definition of F , we have G ∈ F .

For induction hypothesis, we assume that if G′ is a connected graph with
CC(G′) = 0 such that the number of its full vertices is less than G, then G′ ∈ F .

Now, we prove the induction step. Let u be the full vertex of G. Consider
the graph G′ = G[V \{u}]. Now, we have two cases.

Case 1. G′ is disconnected. Then, by the definition of F , G ∈ F .
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Case 2. G′ is connected. Because CC(G) = 0, we can conclude that CC(G′)
= 0 as well. Otherwise, following similar reasoning to the previous arguments,
we could use a CC(G′)-partition and the one-element set u to create a CC(G)-
partition with CC(G) ≥ 3, which would contradict the initial assumption. Now,
since G′ is connected and has CC(G′) = 0, the application of Corollary 7 implies
that G′ must have at least one full vertex. It is clear that the number of full
vertices of G′ is less than the number of full vertices of G. Then, by induction
hypothesis, G′ ∈ F . Hence, by the definition of F , we can see G ∈ F . This
completes the proof.

By Theorem 10 and Lemma 4, we conclude the following result.

Corollary 11. If G 6∈ F is a connected graph, then 1 ≤ CC(G) ≤ n.

As previously demonstrated, the lower bound of Corollary 11 is achieved by
the graph K1, while the upper bound is reached by complete graphs Kn and
complete bipartite graphs Kr,s where 2 ≤ r ≤ s and r + s = n.

Corollary 12. If G is a connected graph of order n and with k universal vertices
such that G 6∈ F and G 6= Kn, then CC(G) ≥ k + 2 ≥ 3.

3. Graphs with Pendant Edges

In the this section, we will discuss about the connected coalition number of graphs
with δ(G) = 1. First we have the following results.

Lemma 13. For a connected graph G, assume that Φ is a CC(G)-partition.
Let x be a pendant vertex and y = spo(x). Let A ∈ Φ with y ∈ A. If any two sets
C,D ∈ Φ form a connected coalition, then C = A or D = A.

Proof. Suppose on contrary that C 6= A and D 6= A. Since C and D form a
connected coalition, then C ∪D is a connected dominating set. If C ∪D has no
neighbor of x, then x is not dominated by C ∪D. Hence, C and D do not form
a connected coalition, which is a contradiction. So, C = A or D = A.

Lemma 14. Let G = (V,E) be a connected graph with no full vertex and with
δ(G) = 1 and CC(G) ≥ 3. Let x be a pendant vertex and y = spo(x). Let Φ be
a CC(G)-partition. If A ∈ Φ with y ∈ A, then for any pendant vertex w ∈ V , it
holds that spo(w) ∈ A.

Proof. Assuming G is a graph and w is a pendant vertex of G, let z denote
its pendant neighbor. If z is an element of set A, then the task is complete.
Otherwise, we proceed by selecting a set B ∈ Φ that contains z. Suppose x is
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not a member of set A. Then, there must exist a set X ∈ Φ that contains x.
According to Lemma 13, sets X and A form a connected coalition. However,
since z belongs to B and in accordance with Lemma 13, sets X and A cannot
form a connected coalition, leading to a contradiction. Consequently, we deduce
that x is an element of A. Additionally, Lemma 13 asserts that if sets C and
D form a connected coalition, and z is an element of set B, then either C is
equivalent to B or D is equivalent to B. Furthermore, Lemma 13 indicates that
since y belongs to set A, either C is equivalent to A or D is equivalent to A if
sets C and D form a connected coalition. By extension, it follows that CC(G)
cannot be greater than or equal to three, and in fact, it must be two. This is a
contradiction since we initially assumed that CC(G) ≥ 3. Thus, it must be the
case that z is a member of set A.

We recall the definition of corona product of graphs. The corona product
of two graphs H1 and H2, denoted by H1 ◦H2, is defined as the graph obtained
by taking one copy of H1 and |V (H1)| copies of H2 and joining the i-th vertex
of H1 to every vertex in the i-th copy of H2. In the following, we compute the
connected coalition number of connected graphs of the form H ◦K1. To aid our
discussion, we state and prove the following theorem.

Theorem 15. If G is a connected graph of the form H ◦K1, then CC(G) = 2.

Proof. Let Φ be a CC(G)-partition of G. By Theorem 6, we have CC(G) ≥ 2.
It suffices to prove that CC(G) ≤ 2. Suppose on the contrary that CC(G) ≥ 3.
Let x be a pendant vertex and y = spo(x). Let Φ be a CC(G)-partition. Let
A ∈ Φ with y ∈ A. Then, by Lemma 14, for any pendant vertex w ∈ V , it holds
that spo(w) ∈ A. Hence, all vertices v of G with deg(v) ≥ 2 lie in A. Then, A is
a connected dominating set of G, which is a contradiction. Hence, CC(G) ≤ 2,
and since CC(G) ≥ 2, we have CC(G) = 2.

We close this section with the following result.

Theorem 16. If G is a connected graph of order n with δ(G) = 1 and with no
universal vertex, then CC(G) < n.

Proof. Assume Φ is a CC(G)-partition of G into connected coalitions and v is
a leaf vertex of G with neighbor u. Suppose that CC(G) = n, which implies
that Φ is a partition where every set Ui ∈ Φ for 1 ≤ i ≤ n contains only one
vertex. Thus, Φ must include {v} and {u}. If {v} and {u} form a connected
coalition, then u is adjacent to all other vertices, making it a universal vertex,
which contradicts the assumption that G has no universal vertex. It is impossible
for {v} and {u} to not form a connected coalition, as u is the only neighbor of v.
Therefore, CC(G) < n.
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4. Trees

In this section, we determine the connected coalition number for trees. First we
have the following theorem.

Theorem 17. For any tree T of order n with no full vertex, we have CC(T ) = 2.

Proof. By Theorem 6, we have CC(T ) ≥ 2. It suffices to prove that CC(T ) ≤ 2.
Suppose on the contrary that CC(T ) ≥ 3. Now we may assume that a and b
are two vertices of T such that a is a leaf and b is a support vertex of a. Let Φ
be a CC(T )-partition, and suppose that V1 ∈ Φ with b ∈ V1. Since CC(T ) ≥ 3,
without loss of generality, assume that V2, V3 ∈ Φ are two distinct sets such that
V2 6= V1 and V3 6= V1. By Lemma 13, each of V2 and V3 form a connected coalition
with V1, however, V2 and V3 do not form a connected coalition. Now, we consider
the following cases.

Case 1. T [V1] is connected. By Definition 2, V1 is not a dominating set.
Then, there exists a vertex u 6∈ V1 with no neighbors in V1. Hence, if any set
A ∈ Φ is in connected coalition with V1, then A∩N [u] 6= ∅. Assume, without loss
of generality, that u ∈ V3. Let u1 ∈ N(u) and assume, without loss of generality,
that u1 ∈ V2. Since T [V1 ∪ V2] is connected, there is a path Pu1x between u1
and x for some vertex x ∈ V1. Note that all vertices on Pu1x are inside V1 ∪ V2.
Also, since T [V1∪V3] is connected, there is a path Qyu between y and u for some
vertex y ∈ V1. Note that all vertices on Qyu are inside V1 ∪ V3 (see Figure 2).
Since T [V1] is connected, there is a path Rxy between x and y inside V1. Since
u1 ∈ N(u), there is a cycle uu1Pu1xRxyQyu in T , which is a contradiction.

V1

V2 V3

u

x y

u1

Figure 2. The case that T [V1] is connected.

Case 2. T [V1] is not connected. Assume that x, y ∈ V1 such that there is no
path between them in G[V1]. Since G[V1 ∪ V2] is connected, there is a path Px,y

between x and y that lies in G[V1∪V2]. Also, since G[V1∪V3] is connected, there
is a path Qx,y between x and y that lies in G[V1 ∪ V3]. Hence, it is clear that
there are two paths between x and y in T , which is a contradiction.
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E =



1 1 1 0 0 1
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1


Figure 3. The edge-dominated matrix E for C6.

u1 u2

u3

u4u5

u6

Figure 4. C6.

As an immediate consequence of Theorem 17, we have the following result
for the paths.

Corollary 18. For any path Pn of order n, where n 6= 3, we have CC(Pn) = 2.

5. Graphs G with CC(G) = n and CC(G) = n− 1

For a given graph G, computing CC(G) seems to be an NP-hard problem, and
therefore, computing CC(G) for a class of graphs in polynomial time seems to be
interesting. In this section, we present two polynomial-time algorithms that for
a given connected graph G of order n determine whether it holds CC(G) = n or
CC(G) = n− 1. For the sake of simplicity, we assume that G has no full vertex.

5.1. Graphs with CC(G) = n

Let epq be an edge of G with two end vertices p and q. A vertex x ∈ V is called
edge-dominated by the edge epq, if x is adjacent to p or q. Now, we define the
edge-domination matrix Em×n with m rows and n columns on the graph G, where
m is number of the edges of G. The definition is as follows.

E(epq, x) =

{
1 if the vertex x is edge-dominated by the edge epq,
0 otherwise.

For example, the matrix E depicted in Figure 3 is the edge-dominated matrix of
the graph C6 depicted in Figure 4.

For the graph G, the incidence matrix VEm×n with m rows and n columns
is defined as follows.

VE(e, x) =

{
1 if the vertex x is incident to the edge e,
0 otherwise.

Now, we prove the following theorem.
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Theorem 19. For any connected graph G of order n and with no full vertex,
CC(G) = n if and only if for any vertex x ∈ V , there is an edge e with VE(e, x)
= 1 such that ∑

v∈V
E(e, v) = n.

Proof. Let V = {v1, . . . , vn} be the vertices of G. Suppose that CC(G) = n.
Then, there is a CC(G)-partition Φ = {{v1}, . . . , {vn}} in such a way that any
set {vi} has a connected coalition partner {vj} where j 6= i. Let x ∈ V be an
arbitrary vertex. Since {x} ∈ Φ, there is a vertex u ∈ V such that {u} ∈ Φ forms a
connected coalition with {x}. By the definition, {x, u} is a connected dominating
set. Then, e = (x, u) is an edge of G, and all vertices of G is dominated by
{x, u}. Therefore, VE(e, x) = 1 and E(e, v) = 1 for any vertex v ∈ V . Hence,∑

v∈V E(e, v) = n. The proof of the converse, is straightforward.

Now, we will describe the algorithm. The algorithm first computes the ma-
trices E and VE for the graph G. Then, for all vertices x ∈ V the following oper-
ations is applied. For all edges e, the algorithm checks whether VE(e, x) = 1. If
VE(e, x) = 1 and

∑
v∈V E(e, v) = n, then we consider f = 1, and the algorithm

checks another vertex of V . In the algorithm, we used two variables f and flag to
determine which vertices satisfy the conditions of Theorem 19. For more details,
see Algorithm 1.

Now, we compute the time complexity of algorithm CheckCCGn(G,V,E).
It is clear that the computations of the matrices E and VE take O(mn) times.
Then, since we have three foreach loops, the algorithm implies that the overall
running time of three loops is O(n2m). Hence, the overall running time of the
algorithm is O(n2m) + O(nm) = O(n2m). Since m ∈ O(n2), then the time
complexity of the algorithm is O(n4). Hence, we have the following theorem.

Theorem 20. The worst-case time complexity of algorithm CheckCCGn(G,
V,E) is O(n4).

5.2. Graphs with CC(G) = n − 1

Let p = (a, b, c) be a triple of vertices a, b and c. A vertex x ∈ V is called
three-vertex-dominated by p, if x is dominated by {a, b, c}. Now, we define three-
vertex-dominated matrix H as follows.

H ({a, b, c}, x) =

{
1 if the vertex x is dominated by {a, b, c},
0 otherwise.

Now, we prove the following theorem.

Theorem 21. For any connected graph G of order n and with no full vertex,
CC(G) = n − 1 if and only if there are two vertices u, v ∈ V such that for any
vertex x ∈ V \{u, v},
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Algorithm 1: CheckCCGn(G,V,E)
input: A connected graph G with no full vertex, and with vertex set V and the edge set E.

1 Computes the martices E and VE;
2 f = 0;
3 s := 0;
4 foreach x ∈ V do
5 foreach e ∈ E do
6 if VE(e, x) == 1 then
7 foreach v ∈ V do
8 s = s+ E(e, v);
9 end

10 if s == n then
11 f = 1;
12 break;

13 end

14 end

15 end
16 if f = 0 then
17 flag := 0;
18 break;

19 end
20 else
21 flag := 1;
22 f = 0;

23 end

24 end
25 if flag = 1 then
26 return yes;
27 end
28 else
29 return no;
30 end

1. there is an edge e = (p, q) with p, q 6∈ {u, v} and VE(e, x) = 1 such that∑
v∈V E(e, v) = n, or

2. G[x, u, v] is connected and
∑

w∈V H({x, u, v}, w) = n,

and there is a vertex y ∈ V \{u, v} such that G[y, u, v] is connected and∑
w∈V
H({y, u, v}, w) = n.

Proof. Let V = {v1, . . . , vn} be the vertices of G. Suppose that CC(G) =
n − 1. Then, there is a CC(G)-partition Φ = {{w1}, . . . , {wn−2}, {u, v}}. Let
C ∈ Φ be an arbitrary set. Suppose that C = {x} is one-element. If C forms
a connected coalition with a set {a} ∈ Φ, then by the definition, {x, a} is a
connected dominating set. Then, e = (x, a) is an edge of G, and all vertices of G
is dominated by {x, a}. Therefore, VE(e, x) = 1 and E(e, v) = 1 for any vertex
v ∈ V . Hence,

∑
v∈V E(e, v) = n. Now, if C forms a connected coalition with the

set {u, v} ∈ Φ, then by the definition, {x, u, v} is a connected dominating set.
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Therefore, G[x, u, v] is connected, and
∑

w∈V H({x, u, v}, w) = n.

Now, suppose that C = {u, v}. Then, there is a vertex {y} ∈ Φ that forms a
connected coalition with C. Therefore, by the definition, {y, u, v} is a connected
dominating set. Then, G[y, u, v] is connected, and

∑
w∈V H({y, u, v}, w) = n.

The proof of the converse, is straightforward.

Now, our second algorithm depicted in Algorithm 2. The algorithm is based
on Theorem 21.

Algorithm 2: CheckCCG2(G,V,E)
input: A connected graph G with no full vertex, and with vertex set V and the edge set E.

1 Computes the martices H, E, and VE;
2 f = 0;
3 s := 0;
4 foreach u ∈ V do
5 foreach v ∈ V with u 6= v do
6 foreach x ∈ V \{u, v} do
7 foreach e ∈ E with VE(e, x) = 1 do
8 if G[{x, u, v}] is connected and

∑
w∈V H({x, u, v}, w) = n, or∑

w∈V E(e, w) = n then
9 f = 1;

10 break;

11 end

12 end
13 if f = 0 then
14 flag := 0;
15 break;

16 end
17 else
18 flag = 1;
19 f = 0;

20 end

21 end
22 if flag = 1 then
23 return yes;
24 end

25 end
26 if flag = 1 then
27 return yes;
28 end

29 end
30 if flag = 1 then
31 return yes;
32 end
33 else
34 return no;
35 end

It is not hard to see that algorithm CheckCCG2(G,V,E) has four foreach
loops and two summations. Then, the overall running time of the algorithm is
O(n6). Now, we have the following result.
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Theorem 22. The worst-case time complexity of algorithm CheckCCG2(G,
V,E) is O(n6).

6. Conclusion and Future Works

This paper presents the notion of connected coalition in graphs and investigates
several properties of the connected coalition number. We characterized all graphs
that have a connected coalition partition. We have shown that for any graph
G with δ(G) = 1 and with no full vertex, CC(G) ≤ n − 1. Also we proved
that for any tree T , CC(T ) = 2. Finally, we have presented two polynomial-
time algorithms that take a graph G with n vertices and determine whether
CC(G) = n or CC(G) = n− 1.

There are many open problems in study of the connected coalition number
of a graph that we state and close the paper with some of them.

1. What is the connected coalition number of graph operations, such as corona,
Cartesian, join, lexicographic, and so on?

2. What is the connected coalition number of natural and fractional powers of
a graph (see e.g. [3])?

3. What are the effects on CC(G) when G is modified by operations on vertex
and edge of G?

4. Similar to the coalition graph of G, it is natural to define and study the con-
nected coalition graph of G for connected coalition partition Φ, which can
be denoted by CCG(G,Φ), and is defined as follows. Corresponding to any
connected coalition partition Φ = {V1, V2, . . . , Vk} in a graph G, a connected
coalition graph CCG(G,Φ) is associated in which there is a one-to-one cor-
respondence between the vertices of CCG(G,Φ) and the sets V1, V2, . . . , Vk
of Φ, and two vertices of CCG(G,Φ) are adjacent if and only if their corre-
sponding sets in Φ form a connected coalition.
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