DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

J. Deng

Jinghua Deng

Fuzhou University

email: jinghua_deng@163.com

J. Hou

Jianfeng Hou

Fuzhou University

email: jfhou@fzu.edu.cn

Q. Zeng

Qinghou Zeng

Fuzhou University

email: zengqh@fzu.edu.cn

Title:

The Turán number of three disjoint paths

PDF

Source:

Discussiones Mathematicae Graph Theory 44(4) (2024) 1513-1537

Received: 2022-12-26 , Revised: 2023-07-01 , Accepted: 2023-07-02 , Available online: 2023-07-27 , https://doi.org/10.7151/dmgt.2507

Abstract:

The Turán number of a graph $H$, ex$(n,H)$, is the maximum number of edges in an $n$-vertex graph that does not contain $H$ as a subgraph. Let $P_k$ denote the path on $k$ vertices and let $\bigcup_{i=1}^{m}P_{k_{i}}$ denote the disjoint union of $P_{k_i}$ for $1\le i\le m$; in particular, write $\bigcup_{i=1}^{m}P_{k_{i}}=mP_k$ if $k_i=k$ for all $1\le i\le m$. Yuan and Zhang determined ex$(n,\bigcup_{i=1}^{m}P_{k_{i}})$ for all integers $n$ if at most one of $k_{1},\dots,k_{m}$ is odd. Much less is known for all integers $n$ if at least two of $k_{1},\dots,k_{m}$ are odd. Partial results such as ex$(n,mP_3)$, ex$(n,P_{3}\cup P_{2\ell+1})$, $(n,2P_{5})$, ex$(n,2P_{7})$ and ex$(n,3P_{5})$ have been established by several researchers. In this paper, we develop new functions and determine ex$(n,3P_{7})$ and ex$(n,2P_{3}\cup P_{2\ell+1})$ for all integers $n$. We also characterize all the extremal graphs. Both results contribute to a conjecture of Yuan and Zhang.

Keywords:

Turán number, disjoint paths, extremal graph

References:

  1. P.N. Balister, E. Győri, J. Lehel and R.H. Schelp, Connected graphs without long paths, Discrete Math. 308 (2008) 4487–4494.
    https://doi.org/10.1016/j.disc.2007.08.047
  2. H. Bielak and S. Kieliszek, The Turán number of the graph $2P_5$, Discuss. Math. Graph Theory 36 (2016) 683–694.
    https://doi.org/10.7151/dmgt.1883
  3. N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837–853.
    https://doi.org/10.1017/S0963548311000460
  4. N. Bushaw and N. Kettle, Turán numbers for forests of paths in hypergraphs, SIAM J. Discrete Math. 28 (2014) 711–721.
    https://doi.org/10.1137/130913833
  5. V. Campos and R. Lopes, A proof for a conjecture of Gorgol, Discrete Appl. Math. 245 (2018) 202–207.
    https://doi.org/10.1016/j.dam.2017.04.012
  6. P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337–356.
    https://doi.org/10.1007/BF02024498
  7. R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150–160.
    https://doi.org/10.1016/0095-8956(75)90080-5
  8. L. Feng and Y. Hu, The Turán number of the graph $3P_{5}$, Filomat 34 (2020) 3395–3410.
    https://doi.org/10.2298/FIL2010395F
  9. Z. Füredi and T. Jiang, Hypergraph Turán numbers of linear cycles, J. Combin. Theory Ser. A 123 (2014) 252–270.
    https://doi.org/10.1016/j.jcta.2013.12.009
  10. Z. Füredi, T. Jiang and R. Seiver, Exact solution of the hypergraph Turán problem for $k$-uniform linear paths, Combinatorica 34 (2014) 299–322.
    https://doi.org/10.1007/s00493-014-2838-4
  11. I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661–667.
    https://doi.org/10.1007/s00373-010-0999-5
  12. R. Gu, X.-L. Li and Y.-T. Shi, Hypergraph Turán numbers of vertex disjoint cycles, Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 229–234.
    https://doi.org/10.1007/s10255-022-1056-x
  13. G.N. Kopylov, On maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR 234 (1977) 19–21.
  14. Y. Lan, Z. Qin and Y.-T. Shi, The Turán number of $2P_{7}$, Discuss. Math. Graph Theory 39 (2019) 805–814.
    https://doi.org/10.7151/dmgt.2111
  15. H. Liu, B. Lidický and C. Palmer, On the Turán number of forests, Electron. J. Combin. 20(2) (2013) #P62.
    https://doi.org/10.37236/3142
  16. J. Wang and W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291–294.
    https://doi.org/10.1016/j.dam.2018.07.014
  17. L.-T. Yuan and X.-D. Zhang, The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132–139.
    https://doi.org/10.1016/j.disc.2016.08.004
  18. L.-T. Yuan and X.-D. Zhang, Turán number for disjoint paths, J. Graph Theory 98 (2021) 499–524.
    https://doi.org/10.1002/jgt.22710

Close