THE TURÁN NUMBER OF THREE DISJOINT PATHS

Jinghua Deng, Jianfeng Hou
AND
Qinghou Zeng ${ }^{1}$
Center for Discrete Mathematics
Fuzhou University, Fujian 350003, China
e-mail: jinghua_deng@163.com
jfhou@fzu.edu.cn
zengqh@fzu.edu.cn

Abstract

The Turán number of a graph $H, \operatorname{ex}(n, H)$, is the maximum number of edges in an n-vertex graph that does not contain H as a subgraph. Let P_{k} denote the path on k vertices and let $\bigcup_{i=1}^{m} P_{k_{i}}$ denote the disjoint union of $P_{k_{i}}$ for $1 \leq i \leq m$; in particular, write $\bigcup_{i=1}^{m} P_{k_{i}}=m P_{k}$ if $k_{i}=k$ for all $1 \leq i \leq m$. Yuan and Zhang determined $\operatorname{ex}\left(n, \bigcup_{i=1}^{m} P_{k_{i}}\right)$ for all integers n if at most one of k_{1}, \ldots, k_{m} is odd. Much less is known for all integers n if at least two of k_{1}, \ldots, k_{m} are odd. Partial results such as $\operatorname{ex}\left(n, m P_{3}\right)$, ex $\left(n, P_{3} \cup P_{2 \ell+1}\right),\left(n, 2 P_{5}\right), \operatorname{ex}\left(n, 2 P_{7}\right)$ and ex $\left(n, 3 P_{5}\right)$ have been established by several researchers. In this paper, we develop new functions and determine $\operatorname{ex}\left(n, 3 P_{7}\right)$ and $\operatorname{ex}\left(n, 2 P_{3} \cup P_{2 \ell+1}\right)$ for all integers n. We also characterize all the extremal graphs. Both results contribute to a conjecture of Yuan and Zhang.

Keywords: Turán number, disjoint paths, extremal graph.
2020 Mathematics Subject Classification: 05C35, 05C38.

1. Introduction

The Turán number of a graph H, ex (n, H), is the maximum number of edges in an n-vertex graph that does not contain H as a subgraph. The study of Turán numbers plays a central role in extremal graph theory. One of the best known results in this area is the Erdős-Gallai Theorem [6] about the path P_{k} on k vertices.

[^0]Theorem 1 (Erdős and Gallai [6]). Let $n \geq k \geq 2$ and G be a graph with n vertices. If G does not contain P_{k} as a subgraph, then $e(G) \leq(k-2) n / 2$ with equality if and only if n is divisible by $k-1$ and G is isomorphic to the disjoint union of K_{k-1}.

Faudree and Schelp [7] further extended this theorem and determined ex $\left(n, P_{k}\right)$ for all integers n and k, and characterized all the extremal graphs. Given two graphs G_{1} and G_{2}, denote by $G_{1} \cup G_{2}$ the disjoint union of G_{1} and G_{2}, and by $k G_{1}$ the disjoint union of k copies of G_{1}. Let K_{n} denote the complete graph on n vertices.

Theorem 2 (Faudree and Schelp [7]). Let $n=t(k-1)+r$ for some integers $t \geq 0$ and $0 \leq r \leq k-2$. Then

$$
\operatorname{ex}\left(n, P_{k}\right)=t\binom{k-1}{2}+\binom{r}{2} .
$$

Moreover, the extremal graphs are characterized.
Remark. If k is odd, then the extremal graph in Theorem 2 is isomorphic to $t K_{k-1} \cup K_{r}$.

Let $\mathrm{ex}_{\mathrm{con}}(n, H)$ denote the maximum number of edges in an n-vertex connected graph that does not contain H as a subgraph. Kopylov [13] and Balister, Győri, Lehel and Schelp [1] determined $\operatorname{ex}_{\mathrm{con}}\left(n, P_{k}\right)$ and characterized all the extremal graphs. For two graphs G_{1} and G_{2}, let $G_{1}+G_{2}$ be the graph obtained from $G_{1} \cup G_{2}$ by joining each vertex of G_{1} to each vertex of G_{2}. Denote by \bar{G} the complement graph of G.

Theorem 3 (Kopylov [13]; Balister, Győri, Lehel and Schelp [1]). Let $n \geq k \geq 4$. Then

$$
\begin{aligned}
\operatorname{ex}_{\mathrm{con}}\left(n, P_{k}\right) & =\max \left\{\binom{k-2}{2}+(n-k+2),\binom{\left\lfloor\frac{k}{2}\right\rfloor-1}{2}\right. \\
& \left.+\left(\left\lfloor\frac{k}{2}\right\rfloor-1\right)\left(n-\left\lfloor\frac{k}{2}\right\rfloor+1\right)+c_{k}\right\},
\end{aligned}
$$

where $c_{k}=1$ if k is odd and $c_{k}=0$ if k is even. Moreover, the extremal graphs are characterized.

Remark. If k is odd, then the extremal graph in Theorem 3 is isomorphic to $K_{1}+\left(K_{k-3} \cup \overline{K_{n-k+2}}\right)$ for $n \leq(5 k-7) / 4$ and $K_{\lfloor k / 2\rfloor-1}+\left(K_{2} \cup \overline{K_{n-\lfloor(k+1) / 2\rfloor}}\right)$ for $n \geq(5 k-7) / 4$.

Let $\bigcup_{i=1}^{m} P_{k_{i}}$ denote the disjoint union of $P_{k_{i}}$ for $1 \leq i \leq m$; in particular, write $\bigcup_{i=1}^{m} P_{k_{i}}=m P_{k}$ if $k_{i}=k$ for all $1 \leq i \leq m$. Erdős and Gallai [6] determined $\operatorname{ex}\left(n, m P_{2}\right)$ for all integers n and m. Bushaw and Kettle [3] determined
ex $\left(n, m P_{k}\right)$ for sufficiently large n. Later, Lidický, Liu and Palmer [15] determined $\operatorname{ex}\left(n, \bigcup_{i=1}^{m} P_{k_{i}}\right)$ for sufficiently large n. However, for small n, much less is known for ex $\left(n, \bigcup_{i=1}^{m} P_{k_{i}}\right)$. Gorgol [11] first determined ex $\left(n, 2 P_{3}\right)$ and ex $\left(n, 3 P_{3}\right)$ for all integers n. Since then, Campos and Lopes [5], independently, Yuan and Zhang [17], determined ex $\left(n, m P_{3}\right)$ for all integers n and m. Recently, Yuan and Zhang [18] made a big step and determined $\operatorname{ex}\left(n, \bigcup_{i=1}^{m} P_{k_{i}}\right)$ for all integers n when at most one of k_{1}, \ldots, k_{m} is odd.

Definition (Yuan and Zhang [18]). Let $n \geq m \geq \ell \geq 2$ be three integers and $n=(m-1)+t(\ell-1)+r$ with $t \geq 0$ and $0 \leq r<\ell-1$. Define

$$
\phi(n, m, \ell)=\binom{m-1}{2}+t\binom{\ell-1}{2}+\binom{r}{2}
$$

and

$$
\psi(n, m)=\binom{\left\lfloor\frac{m}{2}\right\rfloor-1}{2}+\left(\left\lfloor\frac{m}{2}\right\rfloor-1\right)\left(n-\left\lfloor\frac{m}{2}\right\rfloor+1\right) .
$$

We mention that ex $(n, H)=\binom{n}{2}$ for any H on more than n vertices and K_{n} is the unique extremal graph. It follows that we may assume $n \geq|V(H)|$ when it comes to ex (n, H).
Theorem 4 (Yuan and Zhang [18]). Let $k_{1} \geq \cdots \geq k_{m} \geq 2$ and $n \geq \sum_{i=1}^{m} k_{i}$. If at most one of k_{1}, \ldots, k_{m} is odd, then

$$
\begin{aligned}
& \operatorname{ex}\left(n, \bigcup_{i=1}^{m} P_{k_{i}}\right) \\
& =\max \left\{\phi\left(n, k_{1}, k_{1}\right), \phi\left(n, k_{1}+k_{2}, k_{2}\right), \ldots, \phi\left(n, \sum_{i=1}^{m} k_{i}, k_{m}\right), \psi\left(n, \sum_{i=1}^{m} k_{i}\right)\right\} .
\end{aligned}
$$

Moreover, if k_{1}, \ldots, k_{m} are all even, then the extremal graphs are characterized.
If at least two of k_{1}, \ldots, k_{m} are odd, then there are only few partial results for all integers n. Bielak and Kieliszek [2], independently, Yuan and Zhang [18] determined ex $\left(n, 2 P_{5}\right)$; Lan, Qin and Shi [14] determined ex $\left(n, 2 P_{7}\right)$; and recently, Feng and $\mathrm{Hu}[8]$ determined ex $\left(n, 3 P_{5}\right)$. Let M_{n} be the graph consisting of $\lfloor n / 2\rfloor$ independent edges and one possible isolated vertex. Yuan and Zhang [18] also established the following theorem.

Theorem 5 (Yuan and Zhang [18]). Let $n \geq 2 \ell+4$ with $\ell \geq 2$. Then

$$
\operatorname{ex}\left(n, P_{3} \cup P_{2 \ell+1}\right)=\max \{\phi(n, 2 \ell+1,2 \ell+1), \phi(n, 2 \ell+4,3), \psi(n, 2 \ell+3)+1\} .
$$

Moreover, the extremal graph is isomorphic to either $t K_{2 \ell} \cup K_{r}, K_{2 \ell+3} \cup M_{n-2 \ell-3}$ or $K_{\ell}+\left(K_{2} \cup \overline{K_{n-\ell-2}}\right)$, where $n=t(2 \ell)+r$ with $0 \leq r \leq 2 \ell-1$.

The authors also suggested a general conjecture on disjoint union of paths as follows.

Conjecture 6 (Yuan and Zhang [18]). Let $k_{1} \geq \cdots \geq k_{m} \geq 2$ and $n \geq \sum_{i=1}^{m} k_{i}$. If at least one of k_{1}, \ldots, k_{m} is not three, then
$\operatorname{ex}\left(n, \bigcup_{i=1}^{m} P_{k_{i}}\right)$
$=\max \left\{\phi\left(n, k_{1}, k_{1}\right), \phi\left(n, k_{1}+k_{2}, k_{2}\right), \ldots, \phi\left(n, \sum_{i=1}^{m} k_{i}, k_{m}\right), \psi\left(n, 2 \sum_{i=1}^{m}\left\lfloor\frac{k_{i}}{2}\right\rfloor\right)+c\right\}$,
where $c=1$ if all of k_{1}, \ldots, k_{m} are odd, and $c=0$ otherwise.
For more results related to the Turán problem of graphs and hypergraphs on paths, forests or cycles, we refer the reader to $[4,9,10,12,16]$. In this paper, we consider the Turán number of three disjoint paths on odd number of vertices and prove the following results, which partially confirm the conjecture of Yuan and Zhang.

Theorem 7. Let $n \geq 21$ be an integer. Then

$$
\operatorname{ex}\left(n, 3 P_{7}\right)= \begin{cases}\phi(n, 21,7), & \text { if } n \leq 31, \\ 8 n-35, & \text { if } n \geq 32\end{cases}
$$

Moreover, the extremal graph is isomorphic to $K_{20} \cup K_{n-20}$ for $21 \leq n \leq 26$, $K_{20} \cup K_{6} \cup K_{n-26}$ for $27 \leq n \leq 31$ and $K_{8}+\left(K_{2} \cup \overline{K_{n-10}}\right)$ for $n \geq 32$.

Theorem 8. Let $n \geq 2 \ell+7$ with $\ell \geq 2$. Then

$$
\operatorname{ex}\left(n, 2 P_{3} \cup P_{2 \ell+1}\right)=\max \{\phi(n, 2 \ell+1,2 \ell+1), \phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+1\} .
$$

Moreover, the extremal graph is isomorphic to one of the graphs $t K_{2 \ell} \cup K_{r}, K_{2 \ell+6}$ $\cup M_{n-2 \ell-6}$ and $K_{\ell+1}+\left(K_{2} \cup \overline{K_{n-\ell-3}}\right)$, where $n=t(2 \ell)+r$ with $0 \leq r \leq 2 \ell-1$.

This paper is organized as follows. In the remainder of this section, we describe notation and terminology used in our proof. In Section 2, we develop new functions and prove Theorem 7. In Section 3, we give a proof of Theorem 8.
Notation. Let G be a simple graph. For a subset $S \subset V(G)$, let $G[S]$ be the subgraph of G induced by S and $G-S=G[V(G) \backslash S]$. For each $v \in V(G)$, denote $N_{S}(v)$ the set of neighbors of v contained in S and $d_{S}(v)$ the number of edges between v and $S \backslash\{v\}$. When $S=V(G)$, we simplify $N_{V(G)}(v)$ and $d_{V(G)}(v)$ as $N_{G}(v)$ and $d_{G}(v)$, respectively. For any $S, T \subseteq V(G)$, let $e_{G}(S)$ denote the number of edges of G with both ends in S, and $e_{G}(S, T)$ denote the number of
edges of G with one end in S and the other end in T. We will drop the reference to G when there is no danger of confusion. For $x, y \in V(G)$, we call that x hits y if $x y \in E(G)$ and x misses y if $x y \notin E(G)$. A graph is H-free if it contains no copy of H as a subgraph. Usually, we denote C_{k} a cycle of length k and write $[k]:=\{1, \ldots, k\}$.

2. Turán Number of the Graph $3 P_{7}$

2.1. Longest cycles in graphs

In this subsection, we mainly present some useful lemmas about longest cycles in graphs. First, we shall use the following upper bound, proved by Erdős and Gallai [6], on the maximum number of edges in graphs without long cycles.

Lemma 9 (Erdős and Gallai [6]). Let G be a graph with n vertices. If G does not contain any cycles of length more than ℓ, then $e(G) \leq \ell(n-1) / 2$, where the equality holds if and only if $n-1$ is divisible by $\ell-1$.

We also give a simple proposition on longest cycles, which is used frequently throughout Section 2. The proof details are omitted.

Proposition 10. Let G be a graph and $C_{\ell}=x_{0} x_{1} \cdots x_{\ell-1}$ be a longest cycle in G. For any $x \in V(G) \backslash V\left(C_{\ell}\right)$ and $0 \leq i \neq j \leq \ell-1$, if $x x_{i}, x x_{j} \in E(G)$, then $|i-j|>1$ and $x_{i+1} x_{j+1}, x_{i-1} x_{j-1} \notin E(G)$, where we take all the subscripts modulo ℓ.

Let G be a graph and $C_{\ell}=x_{0} x_{1} \cdots x_{\ell-1}(\ell>3)$ be a longest cycle in G. Define

$$
V^{*}=\left\{v \in V(G) \backslash V\left(C_{\ell}\right): d_{C_{\ell}}(v) \geq 1\right\} .
$$

Choose some vertex $f \in V^{*}$ such that $d_{C_{\ell}}(f)$ is maximum. Suppose that $N_{C_{\ell}}(f)=$ $\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ with $0 \leq i_{1}<\cdots<i_{s} \leq \ell-1$. For any $j \in[s]$, let t_{j} denote the number of vertices in C_{ℓ} between $x_{i_{j}}$ and $x_{i_{j+1}}$, and $s_{1}=\left|\left\{j \in[s]: t_{j}=1\right\}\right|$. We establish a useful lemma on the number of edges in $G\left[V\left(C_{\ell}\right)\right]$ in terms of s and s_{1}.

Lemma 11. Let $C_{\ell}=x_{0} x_{1} \cdots x_{\ell-1}$ be a longest cycle in G. Then

$$
e\left(G\left[V\left(C_{\ell}\right)\right]\right) \leq f_{\ell}\left(s, s_{1}\right):=\binom{\ell}{2}-\frac{-s_{1}^{2}+(2 s-\ell+1) s_{1}+(s-1) \ell}{2}
$$

Proof. For any $j \in[s]$ with $t_{j}=1$, it follows from Proposition 10 that

$$
d_{C_{\ell}}\left(x_{i_{j}+1}\right) \leq(\ell-1)-s-\left(s-s_{1}-1\right)=\ell-2 s+s_{1}
$$

For any $j \in[s]$ with $t_{j} \geq 2$, we claim that

$$
d_{C_{\ell}}\left(x_{i_{j}+1}\right)+d_{C_{\ell}}\left(x_{i_{j+1}-1}\right) \leq \ell-1+t_{j} .
$$

This follows from the fact that at most one of $x_{p} x_{i_{j}+1}$ and $x_{p+1} x_{i_{j+1}-1}$ belongs to $E(G)$ for any $p \geq i_{j+1}$ or $p \leq i_{j}-1$. Otherwise, $f x_{i_{j}} x_{i_{j}-1} \cdots x_{p+1} x_{i_{j+1}-1} x_{i_{j+1}-2} \cdots$ $x_{i_{j}+1} x_{p} \cdots x_{i_{j+1}} f$ is a $C_{\ell+1}$ in G, a contradiction. Note that $\sum_{t_{j} \geq 2} t_{j}=\ell-s-s_{1}$. Thus, we have

$$
\begin{aligned}
e\left(G\left[V\left(C_{\ell}\right)\right]\right) & \leq\binom{\ell}{2}-\frac{1}{2} \sum_{t_{j}=1}\left(\ell-1-d_{C_{\ell}}\left(x_{i_{j}+1}\right)\right) \\
& -\frac{1}{2} \sum_{t_{j} \geq 2}\left(2 \ell-2-d_{C_{\ell}}\left(x_{i_{j}+1}\right)-d_{C_{\ell}}\left(x_{i_{j+1}-1}\right)\right) \\
& \leq\binom{\ell}{2}-\frac{s_{1}\left(2 s-s_{1}-1\right)+\sum_{t_{j} \geq 2}\left(\ell-1-t_{j}\right)}{2}=f_{\ell}\left(s, s_{1}\right)
\end{aligned}
$$

This completes the proof.
Remark. For any fixed integer $s \geq 0, f_{\ell}\left(s, s_{1}\right)$ is increasing with respect to s_{1}. Note that $s_{1} \leq s$ and $2 s \leq \ell$. If $2 s=\ell$, then $f_{\ell}\left(s, s_{1}\right)=f_{\ell}(s, s)=\frac{s(3 s-1)}{2}$ as $s_{1}=s$; if $2 s<\ell$, then $f_{\ell}\left(s, s_{1}\right) \leq f_{\ell}(s, s-1)=\binom{\ell}{2}-\frac{(s-1)(s+2)}{2}$ as $s_{1} \leq s-1$ in this situation. The exact values of $f_{\ell}\left(s, s_{1}\right)$ for $15 \leq \ell \leq 19$ can be found in Appendix A.

Lemma 12. Let $C_{\ell}=x_{0} x_{1} \cdots x_{\ell-1}$ be a longest cycle in G and $P_{k}=f_{1} f_{2} \cdots f_{k}$ be any path in $G-C_{\ell}$ such that $\ell>2 k$ and $N_{C_{\ell}}\left(f_{1}\right) \neq \emptyset$. Then $d_{C_{\ell}}\left(f_{i}\right) \leq\lfloor\ell / 2\rfloor+1-i$ for each $i \in[k]$. In particular, if $d_{C_{\ell}}\left(f_{1}\right)=\lfloor\ell / 2\rfloor$, then $d_{C_{\ell}}\left(f_{i}\right)=0$ for each $i \geq 2$.

Proof. Suppose that $x_{0} f_{1} \in E(G)$. Since C_{ℓ} is a longest cycle in G, we have $x_{j} f_{i} \notin E(G)$ for any $i \in[k]$ and $j \in[i] \cup\{\ell-i, \ldots, \ell-1\}$. It follows that $d_{C_{\ell}}\left(f_{i}\right) \leq\lceil(\ell-2 i-1) / 2\rceil+1=\lfloor\ell / 2\rfloor+1-i$ as $\ell>2 k$. The second part is clearly true by the maximality of ℓ. Thus, we complete the proof.

2.2. Proof of Theorem 7

In this subsection, we give a proof of Theorem 7. Throughout this proof, we may assume that $n \geq 21$. Let $G^{*}=K_{20} \cup K_{n-20}$ for $21 \leq n \leq 26, G^{*}=$ $K_{20} \cup K_{6} \cup K_{n-26}$ for $27 \leq n \leq 31$ and $G^{*}=K_{8}+\left(K_{2} \cup \overline{K_{n-10}}\right)$ for $n \geq 32$ (see Table 1). It is easy to see that G^{*} is $3 P_{7}$-free.

Let G be any $3 P_{7}$-free graph with n vertices and $e(G) \geq e\left(G^{*}\right)$. Let $C_{\ell}=$ $x_{0} x_{1} \cdots x_{\ell-1}$ be a longest cycle in G and write $F=G-C_{\ell}$. It follows easily that $\ell \leq 20$ as G is $3 P_{7}$-free. We give all the possible values of ℓ for different n as shown in Table 1; otherwise, $e(G)<e\left(G^{*}\right)$ by Lemma 9 , a contradiction.

n	G^{*}	$e\left(G^{*}\right)$	ℓ
21	$K_{20} \cup K_{1}$	190	20
22	$K_{20} \cup K_{2}$	191	19,20
23	$K_{20} \cup K_{3}$	193	$18,19,20$
24	$K_{20} \cup K_{4}$	196	$18,19,20$
25	$K_{20} \cup K_{5}$	200	$17,18,19,20$
26	$K_{20} \cup K_{6}$	205	$17,18,19,20$
27	$K_{20} \cup K_{6} \cup K_{1}$	205	$16,17,18,19,20$
28	$K_{20} \cup K_{6} \cup K_{2}$	206	$16,17,18,19,20$
29	$K_{20} \cup K_{6} \cup K_{3}$	208	$15,16,17,18,19,20$
30	$K_{20} \cup K_{6} \cup K_{4}$	211	$15,16,17,18,19,20$
31	$K_{20} \cup K_{6} \cup K_{5}$	215	$15,16,17,18,19,20$
≥ 32	$K_{8}+\left(K_{2} \cup \overline{K_{n-10}}\right)$	$8 n-35$	$15,16,17,18,19,20$

Table 1. G^{*} and all the possible values of ℓ for different n.

For any couple of (a, b) as shown in Table 2 , it is easy to check that $a n+b<$ $e\left(G^{*}\right)$ for all integers $n \geq 21$. In what follows, we show that G is isomorphic to G^{*}, or we have $e(G) \leq a n+b$ for some couple of (a, b) as shown in Table 2. This leads to a contradiction. We proceed our proof by showing the following series of claims.

a	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8
b	135	120	105	90	75	59	44	28	12	-4	-20	-36

Table 2. a and b.

Claim 13. G is isomorphic to G^{*} for $\ell=20$ and $n \leq 31$; Otherwise, $15 \leq \ell \leq 19$ and $\max _{v \in V(F)} d_{C_{\ell}}(v) \geq 3$.

Proof. If $\ell=20$, then $d_{C_{\ell}}(v)=0$ for each $v \in V(F)$. It follows that $e(G) \leq$ $\binom{20}{2}+\operatorname{ex}\left(n-20, P_{7}\right)$. Since $\operatorname{ex}\left(n-20, P_{7}\right) \leq 5(n-20) / 2$ by Theorem 1 , this is a contradiction for $n \geq 32$. For $21 \leq n \leq 31$, we have $e(G)=e\left(G^{*}\right)=$ $\binom{20}{2}+\operatorname{ex}\left(n-20, P_{7}\right)$, implying that G is isomorphic to G^{*}, as desired.

If $d_{C_{\ell}}(v) \leq 2$ for any $v \in V(F)$, then $e(G) \leq\binom{\ell}{2}+2(n-\ell)+5(n-\ell) / 2=4.5 n+$ $\ell(\ell-10) / 2$. It follows easily that $e(G) \leq 4.5 n+\ell(\ell-10) / 2 \leq 4.5 n+72<e\left(G^{*}\right)$ for all $15 \leq \ell \leq 18$ by Table 2 , a contradiction. Thus, it suffices to check the case $\ell=19$. Since G is $3 P_{7}$-free, we know that the set I consisting of all the vertices that have neighbours in C_{19} is an independent set in F. This yields that $e(G) \leq\binom{ 19}{2}+2|I|+5(n-|I|-19) / 2 \leq 2.5 n+123.5<e\left(G^{*}\right)$ by Table 2 , a contradiction.

Suppose that $\hat{P}_{k}=f_{1} \cdots f_{k}$ is a longest path in F such that $N_{C_{\ell}}\left(f_{1}\right) \neq \emptyset$. Clearly, we have $k+\ell \leq 20$ as G is $3 P_{7}$-free. Without loss of generality, we may assume that $x_{0} f_{1} \in E(G)$. In the following proofs, we will often use the maximality of ℓ, k and the fact that G is $3 P_{7}$-free.

Claim 14. If $k=1$, then $e(G) \leq e\left(G^{*}\right)$. The equality holds if and only if G is isomorphic to G^{*} for $n \geq 32$.

Proof. Let f be a vertex in F such that $d_{C_{\ell}}(f)$ is maximum. Since $k=1$, we may choose $f_{1}=f$. Let V^{*}, s and s_{1} be defined as those in Subsection 2.1. By the maximality of k, we know that V^{*} is an independent set in G and $e\left(V^{*}, V(F) \backslash V^{*}\right)=0$. It follows that

$$
\begin{align*}
e(G) & \leq e\left(G\left[V\left(C_{\ell}\right)\right]\right)+\sum_{v \in V^{*}} e\left(v, V\left(C_{\ell}\right)\right)+\operatorname{ex}\left(n-\ell-\left|V^{*}\right|, P_{7}\right) \\
& \leq f_{\ell}\left(s, s_{1}\right)+s\left|V^{*}\right|+5\left(n-\ell-\left|V^{*}\right|\right) / 2 \leq f_{\ell}\left(s, s_{1}\right)+s(n-\ell), \tag{1}
\end{align*}
$$

where the last inequality follows from the fact $s \geq 3$ by Claim 13. Recall that $f_{\ell}\left(s, s_{1}\right) \leq f_{\ell}(s, s-1)$ for $2 s<\ell$. Clearly, $f_{\ell}(s, s-1)+s(n-\ell)$ is monotonically increasing with respect to s for $s \leq n-\ell$. Thus, by Lemma 11, we have

$$
\begin{align*}
e(G) & \leq f_{\ell}(s, s-1)+s(n-\ell) \\
& \leq f_{\ell}(\lfloor\ell / 2\rfloor,\lfloor\ell / 2\rfloor-1)+\lfloor\ell / 2\rfloor(n-\ell) \tag{2}\\
& \leq f_{\ell}(\lfloor\ell / 2\rfloor,\lfloor\ell / 2\rfloor)+\lfloor\ell / 2\rfloor(n-\ell) . \tag{3}
\end{align*}
$$

We use (2) if $2 s<\ell$, otherwise we use (3) in the coming inequalities. Therefore, we obtain the following: (i) $e(G) \leq 7 n-27$ for $\ell=15$ and $e(G) \leq 8 n-36$ for $\ell=16$, (ii) $e(G) \leq 7 n-10$ for $\ell=17$ and $s \leq 7$, (iii) $e(G) \leq 5 n+49$ for $\ell=18$ and $s \leq 5$, and (iv) $e(G) \leq 3 n+109$ for $\ell=19$ and $s \leq 3$. In particular, (v) $e(G) \leq 4 n+86$ for $\ell=19$ and $s=4$; (vi) $e(G) \leq 6 n+25$ for $\ell=18$ and $s=6$. Thus, we have $e(G)<e\left(G^{*}\right)$ for any of the above cases. In what follows, we consider the remaining cases when $17 \leq \ell \leq 19$.

Case 1. $\ell=19$ and $5 \leq s \leq 9$. Note that $N_{C_{19}}(v) \subseteq\left\{x_{0}, x_{2}, x_{3}, x_{5}, x_{7}, x_{9}, x_{10}\right.$, $\left.x_{12}, x_{14}, x_{16}, x_{17}\right\}$ for any $v \in V^{*} \backslash\{f\}$ as $x_{0} f \in E(G)$ and G is $3 P_{7}$-free. This implies that $d_{C_{19}}(v) \leq 8$ for any $v \in V^{*} \backslash\{f\}$ as at most one of x_{i} and x_{i+1} belongs to $N_{C_{19}}(v)$. Recall that $N_{C_{\ell}}(f)=\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ with $0 \leq i_{1}<\cdots<i_{s} \leq \ell-1$, and t_{j} denotes the number of vertices in C_{ℓ} between $x_{i_{j}}$ and $x_{i_{j+1}}$ for any $j \in[s]$. If $t_{j-1}>1$ and $t_{j+1}>1$ for any $j \in[s]$ with $t_{j}=1$, then $s_{1} \leq\lfloor s / 2\rfloor$. Thus

$$
\begin{aligned}
e(G) & \leq f_{19}\left(s, s_{1}\right)+s+\min \{8, s\}\left(\left|V^{*}\right|-1\right)+5\left(n-19-\left|V^{*}\right|\right) / 2 \\
& \leq \max \{5 n+48,6 n+23,7 n-8.5,8 n-35.5\}<e\left(G^{*}\right) .
\end{aligned}
$$

As a consequence, there exists $j \in[s]$ such that $t_{j}=t_{j+1}=1$. This means that $\left\{x_{i_{j}}, x_{i_{j}+2}, x_{i_{j}+4}\right\} \subseteq N_{C_{19}}(f)$. Without loss of generality, we might assume that $\left\{x_{0}, x_{17}, x_{15}\right\} \subseteq N_{C_{19}}(f)$, then we have $N_{C_{19}}(v) \subseteq\left\{x_{3}, x_{5}, x_{10}, x_{12}\right\}$ for any $v \in$ $V^{*} \backslash\{f\}$ since G is $3 P_{7}$-free. Thus, we conclude that $d:=\max _{v \in V^{*} \backslash\{f\}} d_{C_{\ell}}(v) \leq 4$. It follows that

$$
e(G) \leq f_{19}\left(s, s_{1}\right)+s+d\left(\left|V^{*}\right|-1\right)+5\left(n-19-\left|V^{*}\right|\right) / 2
$$

Choose $s_{1}=s-1$ and it is easy to check that $e(G) \leq 4 n+84.5<e\left(G^{*}\right)$ according to Table 2.

Case $2 . \ell=18$ and $7 \leq s \leq 9$. If $s \in\{7,8\}$, then we may assume that $s_{1} \geq 6$ and $\left|\left\{v \in V^{*}: d_{C_{18}}(v)=s\right\}\right| \geq 2$; otherwise,

$$
\begin{aligned}
e(G) & \leq \max \left\{f_{\ell}(s, 5)+s(n-18), f_{\ell}(s, s-1)+s+(s-1)(n-19)\right\} \\
& \leq \max \{6 n+19,7 n-7,8 n-39\}<e\left(G^{*}\right)
\end{aligned}
$$

Let $d_{C_{18}}\left(f^{\prime}\right)=d_{C_{18}}(f)=s$ for some $f^{\prime} \in V^{*} \backslash\{f\}, E_{1}=\bigcup_{x_{i}, x_{j} \in N_{C_{18}}(f)}\left\{x_{i+1} x_{j+1}\right.$, $\left.x_{i-1} x_{j-1}\right\}$ and $E_{2}=\bigcup_{x_{i}, x_{j} \in N_{C_{18}}\left(f^{\prime}\right)}\left\{x_{i+1} x_{j+1}, x_{i-1} x_{j-1}\right\}$. Clearly, $E_{i} \cap E(G)=\emptyset$ for any $i \in\{1,2\}$ by Proposition 10. We first consider the case $s=7$. We may assume that $N_{C_{18}}(f)=\left\{x_{0}, x_{2}, x_{4}, x_{6}, x_{8}, x_{10}, x_{12}\right\}$ as $s_{1} \geq 6$. If $N_{C_{18}}\left(f^{\prime}\right)=$ $N_{C_{18}}(f)$, then $N_{C_{18}}(v)=\left\{x_{15}\right\}$ for any $v \in V_{1} \backslash\left\{f, f^{\prime}\right\}$ as G is $3 P_{7}$-free. This means that $e(G) \leq f_{18}(7,6)+7 \times 2+5(n-20) / 2=2.5 n+90<e\left(G^{*}\right)$. Suppose that $N_{C_{18}}\left(f^{\prime}\right)=\left\{x_{j_{0}}, x_{i_{1}}, \ldots, x_{i_{6}}\right\}$ with $x_{j_{0}} \notin N_{C_{18}}(f)$. Therefore, at least one of $x_{j_{0}+1}$ and $x_{j_{0}-1}$ is not associated with the vertex pairs in E_{1}, say $x_{j_{0}+1}$. This implies $x_{j_{0}+1} x_{j_{i}+1} \in E_{2} \backslash E_{1}$ for each $i \in[6]$. It follows that $\left|E_{1}\right| \geq 27$ and $\left|E_{2} \backslash E_{1}\right| \geq 6$. Thus $e(G) \leq\binom{ 18}{2}-\left|E_{1}\right|-\left|E_{2} \backslash E_{1}\right|+7(n-18)=7 n-6<e\left(G^{*}\right)$. Now, we consider the case $s=8$. By symmetry, it is easy to check that $N_{C_{18}}(f)$ is one of the following five sets $M=X^{*} \cup\left\{x_{8}, x_{10}, x_{12}, x_{14}\right\}, A=X^{*} \cup$ $\left\{x_{8}, x_{10}, x_{12}, x_{15}\right\}, B=X^{*} \cup\left\{x_{8}, x_{10}, x_{13}, x_{15}\right\}, C=X^{*} \cup\left\{x_{8}, x_{11}, x_{13}, x_{15}\right\}, D=$ $X^{*} \cup\left\{x_{9}, x_{11}, x_{13}, x_{15}\right\}$, where $X^{*}=\left\{x_{0}, x_{2}, x_{4}, x_{6}\right\}$. If $N_{C_{18}}\left(f^{\prime}\right)=N_{C_{18}}(f) \in$ $\{M, A, B\}$, then $V^{*} \backslash\left\{f, f^{\prime}\right\}=\emptyset$. If $N_{C_{18}}\left(f^{\prime}\right)=N_{C_{18}}(f) \in\{C, D\}$, then $N_{C_{19}}(v) \subseteq$ $\left\{x_{2}, x_{4}, x_{11}, x_{13}\right\}$ for any $v \in V^{*} \backslash\left\{f, f^{\prime}\right\}$. Thus $e(G) \leq f_{18}(8,7)+8 \times 2+4(n-20)=$ $4 n+54<e\left(G^{*}\right)$. Suppose that $N_{C_{18}}\left(f^{\prime}\right)=\left\{x_{j_{0}}, x_{i_{1}}, \ldots, x_{i_{6}}\right\}$ with $x_{j_{0}} \notin N_{C_{18}}(f)$. If $N_{C_{18}}(f)=M$, then $j_{0} \neq 16$; otherwise, $N_{C_{18}}(v) \subseteq\left\{x_{0}, x_{16}, x_{14}\right\}$ for any $v \in V^{*} \backslash\left\{f, f^{\prime}\right\}$ and $e(G) \leq\binom{ 18}{2}+2 s+3\left(\left|V^{*}\right|-2\right)+5\left(n-18-\left|V^{*}\right|\right) / 2<e\left(G^{*}\right)$. Thus, we have $\left|E_{1}\right| \geq 35$ and $\left|E_{2} \backslash E_{1}\right| \geq 14$. If $N_{C_{18}}(f) \in\{A, B, C, D\}$, then $\left|E_{1}\right| \geq 41$ and $\left|E_{2} \backslash E_{1}\right| \geq 7$. In either case, we conclude that $e(G) \leq\binom{ 18}{2}-\left|E_{1}\right|-$ $\left|E_{2} \backslash E_{1}\right|+8(n-18)=8 n-39<e\left(G^{*}\right)$.

If $s=9$, then we may assume that $N_{C_{18}}(f)=\left\{x_{0}, x_{2}, x_{4}, x_{6}, x_{8}, x_{10}, x_{12}, x_{14}\right.$, $\left.x_{16}\right\}$. Note that if $v_{1} x_{i} \in E(G)$ for some $v_{1} \in V^{*} \backslash\{f\}$ and some $0 \leq i \leq \ell-1$, then $N_{C_{18}}(v) \subseteq\left\{x_{a}, x_{b}, x_{i}\right\}$ with $i+2 \equiv a(\bmod 18)$ and $i-2 \equiv b(\bmod 18)$ for any $v \in V^{*} \backslash\left\{f, v_{1}\right\}$. Thus $e(G) \leq f_{18}(9,9)+9 \times 2+3(n-20)=3 n+75<e\left(G^{*}\right)$.

Case 3. $\quad \ell=17$ and $s=8$. It follows from (1) that $e(G) \leq f_{17}(8,7)+$ $8(n-17)=8 n-35$, implying $e(G)<e\left(G^{*}\right)$ for any $21 \leq n \leq 31$. Thus, we have $e(G)=e\left(G^{*}\right)=8 n-35$ with $n \geq 32$. This means that (i) $s_{1}=$ 7, (ii) $e\left(G\left[C_{17}\right]\right)=f_{17}(8,7)=101$ and $\left|V^{*}\right|=n-17$, and (iii) $d_{C_{17}}(v)=8$ for each $v \in V^{*}$. Since $x_{0} f_{1} \in E(G)$ and $d_{C_{17}}\left(f_{1}\right)=8$, we may assume that $N_{C_{17}}\left(f_{1}\right)=\left\{x_{0}, x_{2}, x_{4}, x_{6}, x_{8}, x_{10}, x_{12}, x_{14}\right\}$. In view of the proof of Lemma 11, we conclude that $d_{C_{17}}\left(x_{i}\right)=\ell-2 s+s_{1}=8$ for any $i \in I_{1}:=\{1,3,5,7,9,11,13\}$ and $d_{C_{17}}\left(x_{15}\right)+d_{C_{17}}\left(x_{16}\right)=\ell-1+2=18$. Note also that $x_{i} x_{j} \notin E(G)$, except for $x_{15} x_{16} \in E(G)$, for any $i, j \in I_{1} \cup\{15,16\}$ by Proposition 10 . This means that $N\left(x_{15}\right)=N_{C_{17}}\left(f_{1}\right) \cup\left\{x_{16}\right\}, N\left(x_{16}\right)=N_{C_{17}}\left(f_{1}\right) \cup\left\{x_{15}\right\}$ and $N\left(x_{i}\right)=N_{C_{17}}\left(f_{1}\right)$ for any $i \in I_{1}$. Let $I_{2}:=\{0,2,4,6,8,10,12,14\}$. Clearly,

$$
\begin{aligned}
\sum_{i \in I_{2}} d_{C_{17}}\left(x_{i}\right) & =2 e\left(G\left[C_{17}\right]\right)-\sum_{i \in I_{1}} d_{C_{17}}\left(x_{i}\right)-\left(d_{C_{17}}\left(x_{15}\right)+d_{C_{17}}\left(x_{16}\right)\right) \\
& =202-7 \times 8-18=128 .
\end{aligned}
$$

This together with the fact that $d_{C_{17}}\left(x_{i}\right) \leq 16$ for each $i \in I_{2}$ implies that $N_{C_{17}}\left(x_{i}\right)=V\left(C_{17}\right) \backslash\left\{x_{i}\right\}$ for each $i \in I_{2}$. Thus, $N_{C_{17}}\left(f_{1}\right)$ forms a copy of K_{8} in G and $G\left[V\left(C_{17}\right)\right]=K_{8}+\left(K_{2} \cup \overline{K_{7}}\right)$. Moreover, it is easy to check that $N_{C_{17}}(v)=N_{C_{17}}\left(f_{1}\right)$ for each $v \in V^{*}$; otherwise, we obtain a cycle of length larger than 17 . Consequently, we obtain $G \cong G^{*}$ for $n \geq 32$, as desired.

Let V_{1} be the set of all vertices in $F_{1}=F-\hat{P}_{k}$ that have neighbours in C_{ℓ}; let V_{2} be the set of all vertices in $V\left(F_{1}\right) \backslash V_{1}$ that have neighbours in $V_{1} \cup V\left(\hat{P}_{k}\right)$; let V_{3} be the set of all vertices in $V\left(F_{1}\right) \backslash\left(V_{1} \cup V_{2}\right)$ that have neighbours in V_{2}; and let $V_{0}=V\left(F_{1}\right) \backslash\left(V_{1} \cup V_{2} \cup V_{3}\right)$. Thus

$$
e(G)=e\left(G\left[V\left(C_{\ell}\right)\right]\right)+\left(e\left(V\left(\hat{P}_{k}\right), V\left(C_{\ell}\right)\right)+e\left(G\left[V\left(\hat{P}_{k}\right)\right]\right)\right)
$$

$$
\begin{align*}
& +\left(e\left(V_{1}, V\left(C_{\ell}\right) \cup V\left(\hat{P}_{k}\right)\right)+e\left(G\left[V_{1}\right]\right)\right)+\left(e\left(V_{2}, V_{1} \cup V\left(\hat{P}_{k}\right)\right)+e\left(G\left[V_{2}\right]\right)\right) \tag{4}\\
& +\left(e\left(V_{3}, V_{2} \cup V_{0}\right)+e\left(G\left[V_{3}\right]\right)\right)+e\left(G\left[V_{0}\right]\right) .
\end{align*}
$$

By Lemma 12, we have

$$
e\left(V\left(\hat{P}_{k}\right), V\left(C_{\ell}\right)\right)+e\left(G\left[V\left(\hat{P}_{k}\right)\right]\right) \leq \sum_{i=1}^{k} d_{C_{\ell}}\left(f_{i}\right)+\binom{k}{2} \leq k\lfloor\ell / 2\rfloor-1 .
$$

Let $s:=\max _{v \in V_{1}} d_{C_{\ell}}(v)$ and s_{1} be defined as that in Subsection 2.1, where V_{1} plays the role of V^{*} in the following proof. We may assume that $s \geq 2$; otherwise,

$$
\begin{aligned}
e(G) & =e\left(G\left[V\left(C_{\ell}\right)\right]\right)+e\left(V_{1}, V\left(C_{\ell}\right)\right)+e\left(V\left(\hat{P}_{k}\right), V\left(C_{\ell}\right)\right)+e(F) \\
& \leq\binom{\ell}{2}+(n-\ell-k)+k\lfloor\ell / 2\rfloor-\binom{k}{2}+\frac{5}{2}(n-\ell) \\
& \leq \frac{7}{2} n+\frac{\ell+k-8}{2} \ell-\binom{k+1}{2}
\end{aligned}
$$

implying that $e(G) \leq 7 n / 2+6 \ell-3 \leq 7 n / 2+105<e\left(G^{*}\right)$ as $\ell+k \leq 20$ and $k \geq 2$, a contradiction.

Claim 15. For any $k \geq 2$, we have $e(G)<e\left(G^{*}\right)$.
Proof. We proceed our proof by considering the following several cases in terms of k. We mention that $2 \leq s \leq\lfloor\ell / 2\rfloor$.

Case 1. $k=2$ and $\ell \in\{15,16,17,18\}$. By the maximality of k, we obtain that (i) $G\left[V_{1}\right]$ is P_{3}-free and $e\left(V_{1},\left\{f_{1}, f_{2}\right\}\right)=0$; (ii) V_{2} is an independent set and $V_{3}=$ $\emptyset ;($ iii $) d_{V_{1} \cup\left\{f_{1}\right\}}(v) \leq 1$ and $v f_{2} \notin E(G)$ for each $v \in V_{2}$ and $e\left(V_{0}, V(F) \backslash V_{0}\right)=$ 0 . This together with Lemma 12 (for $k=2$) implies that $e\left(V_{1}, V\left(C_{\ell} \cup \hat{P}_{k}\right)\right)+$ $e\left(G\left[V_{1}\right]\right) \leq \min \{s+1 / 2,\lfloor\ell / 2\rfloor\}\left|V_{1}\right|$. Thus, by (4)

$$
\begin{align*}
e(G) & \leq f_{\ell}\left(s, s_{1}\right)+2\lfloor\ell / 2\rfloor-1+\min \{s+1 / 2,\lfloor\ell / 2\rfloor\}\left|V_{1}\right|+\left|V_{2}\right|+5\left|V_{0}\right| / 2 \\
& \leq f_{\ell}\left(s, s_{1}\right)+2\lfloor\ell / 2\rfloor-1+\min \{s+1 / 2,\lfloor\ell / 2\rfloor\}(n-\ell-2) \tag{5}
\end{align*}
$$

We first consider the case $\ell \leq 17$. If $s=8$, then $\ell \in\{16,17\}$ and by the remark after Lemma 11,

$$
\begin{aligned}
e(G) & \leq f_{\ell}\left(s, s_{1}\right)+8(n-\ell)-1 \\
& \leq \max \left\{\frac{s(3 s-1)}{2}+8(n-16)-1,\binom{17}{2}-\frac{(s-1)(s+2)}{2}+8(n-17)-1\right\} \\
& =8 n-36<e\left(G^{*}\right)
\end{aligned}
$$

If $s \leq 7$ by (5), then

$$
e(G) \leq\binom{\ell}{2}-\frac{(s-1)(s+2)}{2}+\ell-1+\left(s+\frac{1}{2}\right)(n-\ell-2)
$$

Note that $n \geq 25$ by Table 1. This implies that the last function is monotonically nondecreasing with respect to the integer $s \leq 6$. Thus, $e(G) \leq 6.5 n+\ell^{2} / 2-6 \ell-$ $34 \leq 6.5 n<e\left(G^{*}\right)$ for $s \leq 6$, and $e(G) \leq 7.5 n+\ell^{2} / 2-7 \ell-43 \leq 7.5 n-26<e\left(G^{*}\right)$ for $s=7$.

Now, we consider the case $\ell=18$. If $s=5$, then $e(G) \leq 5.5 n+43<e\left(G^{*}\right)$ by (5). If $s \leq 4$, then
$e(G) \leq\binom{ 18}{2}-\frac{(s-1)(s+2)}{2}+17+\left(s+\frac{1}{2}\right)(n-20) \leq 171-\frac{3}{2} s+\left(s+\frac{1}{2}\right)(n-20)$
as $s>1$. Note that $n \geq 23$ by Table 1 . This implies that the last function is monotonically increasing with respect to s. Thus, $e(G) \leq 4.5 n+75<e\left(G^{*}\right)$. It suffices to assume that $s \geq 6$. Let A_{1} be the set of all isolated vertices in V_{1} and $A_{2}=$ $V_{1} \backslash A_{1}$. Since G is $3 P_{7}$-free, we have $N_{C_{\ell}}(v) \subseteq\left\{x_{0}, x_{2}, x_{4}, x_{7}, x_{9}, x_{11}, x_{14}, x_{16}\right\}$ for any $v \in A_{1}$ and $N_{C_{\ell}}(v) \subseteq\left\{x_{0}, x_{4}, x_{7}, x_{11}, x_{14}\right\}$ for any $v \in A_{2}$. This implies that $s \leq 8, s_{1} \leq s-2$ and $e\left(V_{1}, V\left(C_{\ell} \cup \hat{P}_{k}\right)\right)+e\left(G\left[V_{1}\right]\right) \leq s\left|V_{1}\right|-(s-5.5)\left|A_{2}\right| \leq s\left|V_{1}\right|$. Thus

$$
\begin{aligned}
e(G) & \leq f_{\ell}\left(s, s_{1}\right)+2\lfloor\ell / 2\rfloor-1+s(n-\ell-2) \leq f(s, s-2)+17+s(n-20) \\
& =\binom{18}{2}-\frac{s^{2}+s+12}{2}+17+s(n-20)
\end{aligned}
$$

It follows that $e(G) \leq 7 n-4<e\left(G^{*}\right)$ for $s=7$ and $e(G) \leq 6 n+23<e\left(G^{*}\right)$ for $s=6$. In what follows, we check the case $s=8$ more carefully. We aim to show that $d_{C_{\ell}}\left(f_{1}\right)+d_{C_{\ell}}\left(f_{2}\right) \leq 12$, implying that $e(G) \leq f_{18}(8,6)+12+1+$ $8(n-20)=8 n-36<e\left(G^{*}\right)$. This is clearly true if $d_{C_{\ell}}\left(f_{1}\right)=9$ by Lemma 12 (for $k=2$). Suppose that $d_{C_{\ell}}\left(f_{1}\right) \leq 8$. Note that there exists $v \in V_{1} N_{C_{\ell}}(v)=$ $\left\{x_{0}, x_{2}, x_{4}, x_{7}, x_{9}, x_{11}, x_{14}, x_{16}\right\}$ as $s=8$. This together with the maximality of ℓ implies that $N_{C_{\ell}}\left(f_{2}\right) \subseteq\left\{x_{0}, x_{4}, x_{5}, x_{7}, x_{9}, x_{11}, x_{12}, x_{14}\right\}$ as $x_{0} f_{1} \in E(G)$, yielding that $d_{C_{\ell}}\left(f_{2}\right) \leq 6$. Note also that $d_{C_{\ell}}\left(f_{1}\right) \leq 6$ providing that $x_{0} f_{2} \in E(G)$ by the symmetry of f_{1} and f_{2}, as desired. Thus, we may assume that and $x_{0} \notin N_{C_{\ell}}\left(f_{2}\right)$ and $d_{C_{\ell}}\left(f_{2}\right) \leq 5$. Clearly, $d_{C_{\ell}}\left(f_{1}\right)+d_{C_{\ell}}\left(f_{2}\right) \leq 8+4=12$ if $d_{C_{\ell}}\left(f_{2}\right) \leq 4$. It suffices to check that $d_{C_{\ell}}\left(f_{1}\right) \leq 7$ if $d_{C_{\ell}}\left(f_{2}\right)=5$. This is definitely true by the maximality of ℓ as $N_{C_{\ell}}\left(f_{2}\right) \subseteq\left\{x_{4}, x_{5}, x_{7}, x_{9}, x_{11}, x_{12}, x_{14}\right\}$, as required.

Case 2. $k=3$ and $\ell \in\{15,16,17\}$. By the maximality of k, there is no P_{4} in F_{1} whose endpoints hit C_{ℓ} for any $\ell \in\{15,16,17\}$. Thus, we obtain that (i) both $G\left[V_{1}\right]$ is P_{4}-free and $G\left[V_{2}\right]$ is P_{3}-free, (ii) V_{3} is an independent set in G, and (iii) $e\left(u, V_{2}\right) \leq 1$ for each $u \in V_{3}$ and $e\left(V_{0}, V_{3}\right)=0$.

Let A_{1} be the set of all isolated vertices in V_{1} and $A_{2}=V_{1} \backslash A_{1}$. Note that $e\left(v, \hat{P}_{k}\right) \leq 1$ for each $v \in A_{1}$ and $e\left(A_{2}, \hat{P}_{k}\right)=0$ by the maximality of k. Let $A_{11}=\left\{v \in A_{1}: e\left(v, \hat{P}_{k}\right)=1\right\}$ and $A_{12}=A_{1} \backslash A_{11}$. Clearly, $e\left(V_{1}, V\left(\hat{P}_{k}\right)\right)=\left|A_{11}\right|$ and $e\left(G\left[V_{1}\right]\right) \leq\left|A_{2}\right|$ as $G\left[V_{1}\right]$ is P_{4}-free. Thus,

$$
e\left(V_{1}, V\left(C_{\ell}\right) \cup V\left(\hat{P}_{k}\right)\right)+e\left(G\left[V_{1}\right]\right) \leq s\left|V_{1}\right|+\left|A_{11}\right|+\left|A_{2}\right| .
$$

We also define $B_{1}=\left\{u \in V_{2}: d_{V_{1}}(u) \geq 3\right\}$. For any $u \in B_{1}$, it is easy to see that $N_{V_{1}}(u) \subset A_{12}$ and $N_{V_{1}}(u) \cap N_{V_{1}}\left(u^{\prime}\right)=\emptyset$ for any $u^{\prime} \in B_{1} \backslash\{u\} ;$ otherwise, we have a P_{4} starting at V_{1}, a contradiction. Let $A_{12}^{\prime}=\bigcup_{u \in B_{1}} N_{V_{1}}(u)$. It follows that $e\left(B_{1}, V_{1}\right)=\sum_{u \in B_{1}} d_{V_{1}}(u)=\left|A_{12}^{\prime}\right| \leq\left|A_{12}\right|$. Note also that $e\left(u, \hat{P}_{k}\right) \leq 1$ for each $v \in V_{2}$. Define $B_{0}=\left\{u \in V_{2}: e\left(u, \hat{P}_{k}\right)=1\right\}$. Clearly, $e\left(V_{2}, V\left(\hat{P}_{k}\right)\right)=\left|B_{0}\right|$. By the maximality of k, we deduce that $e\left(B_{0}, V_{1}\right)=0$. It follows that $e\left(V_{2}, V_{1}\right) \leq$
$2\left(\left|V_{2}\right|-\left|B_{1}\right|-\left|B_{0}\right|\right)+e\left(B_{1}, V_{1}\right) \leq 2\left|V_{2}\right|-\left|B_{0}\right|+\left|A_{12}^{\prime}\right|$. Thus, we conclude that $e\left(V_{2}, V_{1} \cup V\left(\hat{P}_{k}\right)\right)+e\left(G\left[V_{2}\right]\right) \leq\left(2\left|V_{2}\right|-\left|B_{0}\right|+\left|A_{12}^{\prime}\right|\right)+\left|B_{0}\right|+\left|V_{2}\right| / 2 \leq 5\left|V_{2}\right| / 2+\left|A_{12}^{\prime}\right|$.

Note that $\left|A_{11}\right|+\left|A_{2}\right|+\left|A_{12}^{\prime}\right| \leq\left|V_{1}\right|$. It follows from (4) that

$$
\begin{aligned}
e(G) & \leq f_{\ell}\left(s, s_{1}\right)+3\lfloor\ell / 2\rfloor-1+\left(s\left|V_{1}\right|+\left|A_{11}\right|+\left|A_{2}\right|\right) \\
& +\left(5\left|V_{2}\right| / 2+\left|A_{12}^{\prime}\right|\right)+\left|V_{3}\right|+5\left|V_{0}\right| / 2 \\
& \leq f_{\ell}\left(s, s_{1}\right)+3\lfloor\ell / 2\rfloor-1+(s+1)(n-\ell-3) .
\end{aligned}
$$

We first consider the case $\ell=17$. Clearly, $e(G) \leq f_{17}(5,4)+23+6(n-20)=$ $6 n+25<e\left(G^{*}\right)$ for any $s \leq 5$. Suppose that $s \geq 6$. Since G is $3 P_{7}$-free, $N_{C_{\ell}}(v) \subseteq\left\{x_{0}, x_{3}, x_{5}, x_{7}, x_{10}, x_{12}, x_{14}\right\}$ for any $v \in V_{1}$. This implies that $s \in\{6,7\}$ and $s_{1} \leq 4$. Thus, $e(G) \leq 7 n-7.5<e\left(G^{*}\right)$ for $s=6$ and $e(G) \leq 8 n-40<e\left(G^{*}\right)$ for $s=7$. Now, we consider the case $\ell \in\{15,16\}$. Suppose that $s \leq 7$. Recall that $n \geq 27$ by Table 1. It follows that the function $f(s, s-1)+3\lfloor\ell / 2\rfloor-1+$ $(s+1)(n-\ell-3)$ is monotonically increasing with respect to s. Thus, $e(G) \leq$ $8 n+\ell^{2} / 2-7 \ell-52 \leq 8 n-36<e\left(G^{*}\right)$ for $s \leq 7$. Suppose that $s=8$ and $\ell=16$. We bound $e\left(V_{1}, V\left(C_{\ell}\right)\right)$ more carefully. For any $v \in V_{1}$ with $d_{F_{1}}(v) \geq 1$, we have $N_{C_{\ell}}(v) \subseteq\left\{x_{0}, x_{2}, x_{3}, x_{6}, x_{7}, x_{9}, x_{10}, x_{13}, x_{14}\right\}$ for $\ell=16$. The maximality of ℓ implies that $d_{C_{16}}(v) \leq 5$ for any $v \in A_{2} \cup A_{12}^{\prime}$. Note also that $d_{C_{16}}(v) \leq 6$ for any $v \in A_{11}$ by Lemma 12. This implies that

$$
\begin{aligned}
e\left(V_{1}, V\left(C_{16}\right)\right) & \leq 8\left(\left|A_{12}\right|-\left|A_{12}^{\prime}\right|\right)+6\left|A_{11}\right|+5\left(\left|A_{2}\right|+\left|A_{12}^{\prime}\right|\right) \\
& =8\left|V_{1}\right|-3\left|A_{2}\right|-2\left|A_{11}\right|-3\left|A_{12}^{\prime}\right| .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
e(G) & \leq f_{\ell}\left(s, s_{1}\right)+3\lfloor\ell / 2\rfloor-1+8\left|V_{1}\right|-2\left|A_{2}\right|-\left|A_{11}\right|-2\left|A_{12}^{\prime}\right| \\
& +5\left|V_{2}\right| / 2+\left|V_{3}\right|+5\left|V_{0}\right| / 2 \\
& \leq f_{\ell}(8,8)+23+8(n-19)=8 n-37<e\left(G^{*}\right) .
\end{aligned}
$$

Case 3. $k=4$ and $\ell \in\{15,16\}$. Since G is $3 P_{7}$-free, F_{1} does not contain P_{3} whose endpoints hit $C_{\ell} \cup \hat{P}_{k}$. Thus we have (i) both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are P_{3}-free, (ii) V_{3} is an independent set in G, and (iii) $e\left(V_{0}, V_{3}\right)=0$. By the maximality of k, for any $v \in V_{1}$, we know $e\left(v, V\left(\hat{P}_{4}\right)\right)=0$ if $d_{V_{1}}(v) \geq 1$; otherwise, $e\left(v, V\left(\hat{P}_{4}\right)\right) \leq 1$. It follows that

$$
\sum_{v \in V_{1}} e\left(v, V\left(C_{\ell} \cup \hat{P}_{4}\right)\right)+e\left(G\left[V_{1}\right]\right) \leq(s+1)\left|V_{1}\right| .
$$

Similarly, we also have $e\left(u, V\left(\hat{P}_{4}\right)\right) \leq 2, e\left(u, V_{1}\right) \leq 1$ and $e\left(u, V_{3}\right) \leq 1$ for each $u \in$ V_{2}. It follows from (4) that Note that $N_{C_{16}}(v) \subseteq\left\{x_{0}, x_{2}, x_{4}, x_{5}, x_{7}, x_{9}, x_{11}, x_{12}\right.$, $\left.x_{14}\right\}$ for any $v \in V_{1}$ and $\ell=16$. This implies that $d_{C_{16}}(v) \leq 7$ for any $v \in V_{1}$. Thus, $s \leq 7$ for any $\ell \in\{15,16\}$. By (4)

$$
\begin{aligned}
e(G) & \leq f_{\ell}\left(s, s_{1}\right)+k\lfloor\ell / 2\rfloor-1+(s+1)\left|V_{1}\right|+3\left|V_{2}\right|+\left|V_{3}\right|+5\left|V_{0}\right| / 2 \\
& \leq f_{\ell}(s, s-1)+4\lfloor\ell / 2\rfloor-1+(s+1)(n-\ell-4) .
\end{aligned}
$$

Note that $n \geq 27$ by Table 1 . This implies that the last function is monotonically nondecreasing with respect to the integer $s \leq 7$. Thus, $e(G) \leq 8 n+\ell^{2} / 2-13 \ell / 2-$ $60 \leq 8 n-36<e\left(G^{*}\right)$.

Case 4. $k=5$ and $\ell=15$. Since G is $3 P_{7}$-free, we have (i) both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are P_{3}-free, (ii) V_{3} is an independent set in G, and (iii) $e\left(v, V_{1}\right) \leq 1$ for each $v \in V_{2}, e\left(u, V_{2}\right) \leq 1$ for each $u \in V_{3}$ and $e\left(V_{0}, V_{3}\right)=0$. Moreover, $e\left(v, V\left(\hat{P}_{k}\right)\right) \leq 2$ for any $v \in V_{1} \cup V_{2}$ by the maximality of k. Since G is $3 P_{7}$-free and $x_{0} f_{1} \in E(G)$, it is easy to see that $N_{C_{15}}(v) \subseteq\left\{x_{3}, x_{4}, x_{5}, x_{10}, x_{11}, x_{12}\right\}$ for any $v \in V_{1}$. This implies that $s \leq 4$. Thus

$$
\begin{aligned}
e(G) & \leq f_{\ell}(s, s-1)+k\lfloor\ell / 2\rfloor+(s+5 / 2)\left|V_{1}\right|+7\left|V_{2}\right| / 2+\left|V_{3}\right|+5\left|V_{0}\right| / 2 \\
& \leq\binom{ 15}{2}-\frac{(s-1)(s+2)}{2}+(s+5 / 2)(n-20) \leq 6.5 n+1<e\left(G^{*}\right) .
\end{aligned}
$$

This completes the proof of this claim.
In view of Claims 13,14 and 15 , we conclude that G is isomorphic to G^{*} if (i) $\ell=20$ and $n \leq 31$, or (ii) $\ell=17, k=1$ and $n \geq 32$; otherwise, we have $e(G)<e\left(G^{*}\right)$, a contradiction. Thus, we complete the proof of Theorem 7.

3. Turán Number of the Graph $2 P_{3} \cup P_{2 \ell+1}$

3.1. Lemmas

In this subsection, we give two lemmas used frequently in our proof of Theorem 8.
Lemma 16. For an integer $\ell \geq 2$, let G be a graph on n vertices that does not contain a copy of $P_{\ell} \cup P_{3}$ and $e(G) \geq \phi(n, \ell+3,3)$. If G contains a copy of either $C_{\ell+1}$ or $C_{\ell+2}$, then G is isomorphic to $K_{\ell+2} \cup M_{n-\ell-2}$.

Proof. Suppose that G does not contain a copy of $P_{3} \cup P_{\ell}$ and $e(G) \geq \phi(n, \ell+$ $3,3)$. If G contains a copy of $C_{\ell+2}$, then each vertex in $G-C_{\ell+2}$ cannot hit any vertex in $C_{\ell+2}$, and $G-C_{\ell+2}$ consists of independent edges and isolated vertices, which implies that G is isomorphic to $K_{\ell+2} \cup M_{n-\ell-2}$. If G contains a copy of $C_{\ell+1}$
and does not contain a copy of $C_{\ell+2}$, then there is at most one edge between any two consecutive vertices on $C_{\ell+1}$ and $G-C_{\ell+1}$. In addition, $G-C_{\ell+1}$ consists of independent edges and isolated vertices. Hence $e(G) \leq\binom{\ell+1}{2}+\left\lfloor\frac{\ell}{2}\right\rfloor+\left\lfloor\frac{n-\ell-1}{2}\right\rfloor<$ $\binom{\ell+2}{2}+\left\lfloor\frac{n-\ell-2}{2}\right\rfloor=\phi(n, \ell+3,3)$, a contradiction.

Lemma 17. For an integer $\ell \geq 2$, let G be a graph that does not contain a copy of $P_{\ell} \cup P_{3}$. Suppose that G contains a path $P=x_{1} \cdots x_{\ell+2}$ on $\ell+2$ vertices and $s=\max \left\{d_{P}(v): v \in V(G) \backslash V(P)\right\}$. Then (1) $d_{P}\left(x_{1}\right) \leq \ell+1-2 s$, (2) there exist $2 s$ distinct vertices $x_{\beta_{\tau}}, x_{\gamma_{\tau}}$ with $\tau \in[s]$ in P such that $d_{P}\left(x_{\beta_{\tau}}\right)+d_{P}\left(x_{\gamma_{\tau}}\right) \leq \ell+2$ with $\gamma_{\tau}>\beta_{\tau} \geq 2$, and (3) $e(P) \leq\binom{\ell+2}{2}-\left\lceil\frac{s \ell+2 s}{2}\right\rceil$. Moreover, (4) if G also does not contain $C_{\ell+1}$ and $C_{\ell+2}$, then $e(P) \leq\binom{\ell+2}{2}-\left\lceil\frac{s \ell \ell+1}{2}\right\rceil$.

Proof. Let $x \in V(G) \backslash V(P)$ be such that $N_{P}(x)=\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ with $i_{1}<$ $\cdots<i_{s}$. Note that G does not contain a copy of $P_{\ell} \cup P_{3}$. It follows that (i) x misses $x_{1}, x_{2}, x_{\ell+1}, x_{\ell+2}$; (ii) x hits at most one of x_{j} and x_{j+1} for $j \in[\ell+1]$, and (iii) x hits at most one of x_{j} and x_{j+4} for $j \in[\ell-2]$. Thus, we have $3 \leq i_{\alpha}<i_{\alpha+1}-1 \leq \ell-1$ and $i_{\alpha+1}-i_{\alpha} \neq 4$ for any $\alpha \in[s-1]$.
(1) Note that x_{1} misses $x_{i_{\alpha}+1}$ and $x_{i_{\alpha}+2}$ for each $\alpha \in[s]$. Otherwise, we have a copy of $P_{3} \cup P_{\ell}$ by choosing $x x_{i_{\alpha}} x_{i_{\alpha}-1}$ and $x_{i_{\alpha}-2} \cdots x_{1} x_{i_{\alpha}+1} \cdots x_{\ell+2}$ for $x_{1} x_{i_{\alpha}+1} \in$ $E(G)$, or choosing $x x_{i_{\alpha}} x_{i_{\alpha}+1}$ and $x_{i_{\alpha}-1} \cdots x_{1} x_{i_{\alpha}+2} \cdots x_{\ell+2}$ for $x_{1} x_{i_{\alpha}+1} \in E(G)$, a contradiction. In addition, we know that $i_{\alpha}+2<i_{\alpha+1}+1$ for each $\alpha \in[s-1]$. Thus $d_{P}\left(x_{1}\right) \leq \ell+1-2 s$.
(2) We first show that either $i_{\alpha}-2, i_{\alpha}+1, i_{\alpha+1}-2, i_{\alpha+1}+1$ or $i_{\alpha}-2, i_{\alpha}+$ $1, i_{\alpha+1}-1, i_{\alpha+1}+2$ are four distinct numbers. In fact, if $i_{\alpha+1}=i_{\alpha}+2$, then $i_{\alpha}-2<i_{\alpha+1}-2<i_{\alpha}+1<i_{\alpha+1}+1$; if $i_{\alpha+1} \geq i_{\alpha}+3$, then $i_{\alpha}-2<i_{\alpha}+1<$ $i_{\alpha+1}-1<i_{\alpha+1}+2$. Similarly, $i_{\alpha}-1, i_{\alpha}+2, i_{\alpha+1}-2, i_{\alpha+1}+1$ are four distinct numbers. In fact, if $2 \leq i_{\alpha+1}-i_{\alpha} \leq 3$, then $i_{\alpha}-1<i_{\alpha+1}-2<i_{\alpha}+2<$ $i_{\alpha+1}+1$; if $i_{\alpha+1}-i_{\alpha} \geq 4$, then $i_{\alpha}-1<i_{\alpha}+2<i_{\alpha+1}-2<i_{\alpha+1}+1$ as $i_{\alpha+1}-i_{\alpha} \neq 4$. Hence, there exist $t_{1}, \ldots, t_{s} \in\{1,2\}$ with $t_{1}=1$ such that $i_{1}-t_{1}, i_{1}+3-t_{1}, i_{2}-t_{2}, i_{2}+3-t_{2}, \ldots, i_{s}-t_{s}, i_{s}+3-t_{s}$ are $2 s$ distinct numbers.

Now, we claim that $d_{P}\left(x_{i_{\alpha}-1}\right)+d_{P}\left(x_{i_{\alpha}+2}\right) \leq \ell+2$ and $d_{P}\left(x_{i_{\alpha}-2}\right)+d_{P}\left(x_{i_{\alpha}+1}\right) \leq$ $\ell+2$ for $\alpha \in[s]$. In fact, if $x_{i_{\alpha}-1}$ hits a vertex x_{j} for $j<i_{\alpha}-1$, then $x_{i_{\alpha}+2}$ must miss x_{j+1}; and if $x_{i_{\alpha}-1}$ hits a vertex x_{j} for $j>i_{\alpha}+2$, then $x_{i_{\alpha}+2}$ must miss x_{j+1}. Otherwise, G contains a copy of $P_{\ell} \cup P_{3}$, a contradiction. In addition, $x_{i_{\alpha}-1}$ misses $x_{i_{\alpha}+2}$ and $x_{\ell+2}$, and $x_{i_{\alpha}+2}$ misses x_{1}. Hence, $d_{P}\left(x_{i_{\alpha}+2}\right) \leq$ $\ell+1-\left(d_{P}\left(x_{i_{\alpha}-1}\right)-2\right)-1$, implying the first inequality of our claim. A similar argument as above shows that the second inequality of our claim also holds.

For each $\tau \in[s]$, let $\beta_{\tau}=i_{\tau}-t_{\tau}$ and $\gamma_{\tau}=i_{\tau}+3-t_{\tau}$. Due to the above arguments, we have $2 s$ distinct vertices $x_{\beta_{\tau}}, x_{\gamma_{\tau}}$ with $\tau \in[s]$ in P such that $d_{P}\left(x_{\beta_{\tau}}\right)+d_{P}\left(x_{\gamma_{\tau}}\right) \leq \ell+2$ and $\gamma_{\tau}>\beta_{\tau} \geq 2$.
(3) Note that $2 e(P)=\sum_{i \in[\ell+2]} d_{P}\left(x_{i}\right) \leq(\ell+1-2 s)+s(\ell+2)+(\ell+2-$ $2 s-1)(\ell+1)$ in view of (1) and (2). It follows that $e(P) \leq\binom{\ell+2}{2}-\left\lceil\frac{s \ell+2 s}{2}\right\rceil$.
(4) It is easy to see that $d_{P}\left(x_{1}\right)+d_{P}\left(x_{\ell+1}\right) \leq \ell$ and $d_{P}\left(x_{1}\right)+d_{P}\left(x_{\ell+2}\right) \leq$ $\ell+1$. Otherwise, it follows from the proof of Dirac's theorem on Hamiltonian cycles that G must contain a copy of either $C_{\ell+1}$ or $C_{\ell+2}$, a contradiction. Note that $\beta_{1}>1$ and either $x_{\gamma_{s}} \neq x_{\ell+1}$ or $x_{\gamma_{s}} \neq x_{\ell+2}$. It follows from (2) that $2 e(P)=\sum_{i \in[\ell+2]} d_{P}\left(x_{i}\right) \leq(\ell+1)+s(\ell+2)+(\ell+2-2 s-2)(\ell+1)$, implying that $e(P) \leq\binom{\ell+2}{2}-\left\lceil\frac{s \ell+\ell+1}{2}\right\rceil$.

3.2. Proof of Theorem 8

In this subsection, we prove Theorem 8. For any integer $\ell \geq 2$, let G be a graph containing no $2 P_{3} \cup P_{2 \ell+1}$, and

$$
e(G) \geq \max \{\phi(n, 2 \ell+1,2 \ell+1), \phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+1\} .
$$

If G is $P_{2 \ell+1}$-free, then $e(G)=\phi(n, 2 \ell+1,2 \ell+1)$ and $G \cong t K_{2 \ell} \cup K_{r}$ by Theorem 2 , where $n=t(2 \ell)+r$ and $0 \leq r<2 \ell$. Thus, we may assume that G contains $P_{2 \ell+1}$ and

$$
\begin{aligned}
e(G) & \geq \max \{\phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+1\} \\
& =\max \left\{\binom{2 \ell+6}{2}+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor,\binom{\ell+1}{2}+(\ell+1)(n-\ell-1)+1\right\} .
\end{aligned}
$$

By Theorem 5, we know that G contains $P_{3} \cup P_{2 \ell+1}$. Note that G is $P_{3} \cup P_{2 \ell+4^{-}}$ free. By Lemma 16, if there exists a copy of $C_{2 \ell+6}$ or $C_{2 \ell+5}$ in G, then G is isomorphic to $K_{2 \ell+6} \cup M_{n-2 \ell-6}$. In what follows, we may assume that G does not contain $C_{2 \ell+6}$ and $C_{2 \ell+5}$.

Claim 18. G contains no $P_{2 \ell+6}$.
Proof. Suppose that G contains a path $P=x_{1} x_{2} \cdots x_{2 \ell+6}$ on $2 \ell+6$ vertices, and $Y=V(G) \backslash V(P)$. Let $s=\max \left\{d_{P}(v): v \in V(Y)\right\}$. Note that each $v \in Y$ misses $\left\{x_{1}, x_{2}, x_{4}, x_{5}, x_{7}, x_{2 \ell}, x_{2 \ell+2}, x_{2 \ell+3}, x_{2 \ell+5}, x_{2 \ell+6}\right\}$ as G is $2 P_{3} \cup P_{2 \ell+1}$-free. This implies that $s \leq \ell$ for any $\ell \geq 2$. Recall that G is also $P_{3} \cup P_{2 \ell+4}$-free containing no $C_{2 \ell+6}$ and $C_{2 \ell+5}$. By Lemma 17(4), we have $e(P) \leq\binom{ 2 \ell+6}{2}-\left\lceil\frac{s(2 \ell+4)+2 \ell+5}{2}\right\rceil$. Since $G[Y]$ is P_{3}-free and $e(G)=e(P)+e(P, Y)+e(Y)$, we conclude that
(6) $e(G) \leq\binom{ 2 \ell+6}{2}-\left\lceil\frac{s(2 \ell+4)+2 \ell+5}{2}\right\rceil+s(n-2 \ell-6)+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor$.

If $n \leq 3 \ell+9$, we have $-\lceil(s(2 \ell+4)+2 \ell+5) / 2\rceil+s(n-2 \ell-6) \leq-(\ell+2) s-\ell-$ $3+(\ell+3) s<0$, then $e(G)<\binom{2 \ell+6}{2}+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor=\phi(n, 2 \ell+7,3)$; If $n \geq 3 \ell+9$, then
right side of the inequality (4) is expanded at most $2 \ell^{2}+9 \ell+9+s(n-3 \ell-8)+n / 2 \leq$ $2 \ell^{2}+9 \ell+9+\ell(n-3 \ell-8)+n / 2$. So we can verify $e(G)<\binom{\ell+1}{2}+(\ell+1)(n-\ell-1)+1=$ $\psi(n, 2 \ell+4)+1$ for $\ell \geq 5$. This leads to a contradiction in either case. In what follows, we get a contradiction by checking more carefully for the remaining values of ℓ.

If $\ell=4$, then $N_{P}(y) \subseteq\left\{x_{3}, x_{6}, x_{9}, x_{12}\right\}$ for each $y \in Y$ as G is $2 P_{3} \cup P_{2 \ell+1}$-free. In addition, it is easy to check that (6) also holds unless $s=4$ and there exist at least two vertices $y_{1}, y_{2} \in Y$ satisfying $N_{P}\left(y_{i}\right)=\left\{x_{3}, x_{6}, x_{9}, x_{12}\right\}$ for $i \in[2]$. Thus, x_{2} misses any vertex in $\left\{x_{4}, x_{5}, x_{7}, x_{8}, x_{10}, x_{11}, x_{13}, x_{14}\right\}$ and x_{5} misses any vertex in $\left\{x_{1}, x_{2}, x_{7}, x_{8}, x_{10}, x_{11}, x_{13}, x_{14}\right\}$ as G is $2 P_{3} \cup P_{2 \ell+1}$-free, implying that $d_{P}\left(x_{2}\right)+d_{P}\left(x_{5}\right) \leq 12=(2 \ell+6)-2$. Note that $x_{\beta_{1}}=x_{2}$ and $x_{\gamma_{1}}=x_{5}$ by using Lemma 17(2) with $s=4$. According to Lemma 17(4), we have

$$
e(G) \leq\binom{ 2 \ell+6}{2}-\left\lceil\frac{s(2 \ell+4)+2 \ell+5}{2}\right\rceil-1+s(n-2 \ell-6)+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor
$$

Thus, $e(G)<\phi(n, 2 \ell+7,3)$ for $n<22$ and $e(G)<\binom{\ell+1}{2}+(\ell+1)(n-\ell-1)+1$ for $n \geq 22$, a contradiction.

If $\ell=3$, then $N_{P}(y) \subseteq\left\{x_{3}, x_{10}\right\}$ for each $y \in Y$. Clearly, $s \leq 2$. In view of (6), $e(G)<\phi(n, 2 \ell+7,3)$ for $n<20$ and $e(G)<\psi(n, 2 \ell+4)+1$ for $n \geq 20$, a contradiction.

If $\ell=2$, then $N_{P}(y) \subseteq\left\{x_{3}, x_{8}\right\}$ for each $y \in Y$, and $d_{P}\left(y^{\prime}\right)=0$ for each $y^{\prime} \in Y$ with $d_{Y}\left(y^{\prime}\right)>0$. It follows that $s \leq 2$ and

$$
e(G) \leq\binom{ 2 \ell+6}{2}-\left\lceil\frac{s(2 \ell+4)+2 \ell+5}{2}\right\rceil+s(n-2 \ell-6)
$$

Thus, $e(G)<\phi(n, 2 \ell+7,3)$ for $n<19$ and $e(G)<\binom{\ell+1}{2}+(\ell+1)(n-\ell-1)+1$ for otherwise, a contradiction.

Claim 19. G contains a copy of $P_{2 \ell+5}$.
Proof. Suppose that G is $P_{2 \ell+5}$-free. We claim that G is connected. Otherwise, if one of the components, say C with n_{1} vertices, contains $P_{3} \cup P_{2 \ell+1}$ and other components are disjoint edges or isolated vertices, then by Theorem 3

$$
\begin{aligned}
e(G) & =e(C)+e(G-C) \leq \operatorname{ex}_{\operatorname{con}}\left(n_{1}, P_{2 \ell+5}\right)+\left\lfloor\frac{n-n_{1}}{2}\right\rfloor \\
& \leq \max \left\{\binom{2 \ell+3}{2}+n_{1}-2 \ell-3,\binom{\ell+1}{2}+(\ell+1)\left(n_{1}-\ell-1\right)+1\right\} \\
& +\left\lfloor\frac{n-n_{1}}{2}\right\rfloor<\max \{\phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+1\},
\end{aligned}
$$

a contradiction; if one of the components, say C with n_{1} vertices, contains $P_{2 \ell+1}$ but is $P_{3} \cup P_{2 \ell+1}$-free and other components are $2 P_{3}$-free, which means $e(C) \leq$ $\operatorname{ex}\left(n_{1}, P_{3} \cup P_{2 \ell+1}\right)$ and $e(G-C) \leq \operatorname{ex}\left(n-n_{1}, 2 P_{3}\right)$, then by Theorem 5,

$$
\begin{aligned}
e(G) & =e(C)+e(G-C) \leq \operatorname{ex}\left(n_{1}, P_{3} \cup P_{2 \ell+1}\right)+\operatorname{ex}\left(n-n_{1}, 2 P_{3}\right) \\
& =\max \left\{\binom{2 \ell+3}{2}+\left\lfloor\frac{n_{1}-2 \ell-3}{2}\right\rfloor,\binom{\ell}{2}+\ell\left(n_{1}-\ell\right)+1\right\} \\
& +\max \left\{\binom{5}{2}+\left\lfloor\frac{n-n_{1}-5}{2}\right\rfloor, n-n_{1}\right\} \\
& <\max \{\phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+1\},
\end{aligned}
$$

a contradiction. Hence, G is connected. Since G is $P_{2 \ell+5}$-free and connected, it follows from Theorem 3 that

$$
\begin{aligned}
e(G) & \leq \operatorname{ex}_{\operatorname{con}}\left(n, P_{2 \ell+5}\right) \\
& =\max \left\{\binom{2 \ell+3}{2}+n-2 \ell-3,\binom{\ell+1}{2}+(\ell+1)(n-\ell-1)+1\right\} \\
& \leq \max \{\phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+1\},
\end{aligned}
$$

where the last inequality follows from $\binom{\ell+1}{2}+(\ell+1)(n-\ell-1)+1=\psi(n, 2 \ell+$ 4) $+1,\binom{2 \ell+3}{2}+n-2 \ell-3 \leq \psi(n, 2 \ell+4)+1$ for $n \geq \frac{5 \ell+9}{2}$, and $\binom{2 \ell+3}{2}+n-2 \ell-3<$ $\phi(n, 2 \ell+7,3)$ for $n<\frac{5 \ell+9}{2}$. Recall that $e(G) \geq \max \{\phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+$ $1\}$. This implies that

$$
\begin{aligned}
e(G) & =\max \left\{\binom{2 \ell+3}{2}+n-2 \ell-3, \psi(n, 2 \ell+4)+1\right\} \\
& =\max \{\phi(n, 2 \ell+7,3), \psi(n, 2 \ell+4)+1\} .
\end{aligned}
$$

Thus, we have $e(G)=\psi(n, 2 \ell+4)+1$ and $n \geq \frac{5 \ell+9}{2}$ in view of $\psi(n, 2 \ell+4)+1<$ $\binom{2 \ell+3}{2}+n-2 \ell-3<\phi(n, 2 \ell+7,3)$ for $n<\frac{5 \ell+9}{2}$. By Theorem 3, we know that G is isomorphic to $K_{\ell+1}+\left(K_{2} \cup \overline{K_{n-\ell-3}}\right)$.

Let $P=x_{1} x_{2} \cdots x_{2 \ell+5}$ be a path on $2 \ell+5$ vertices in G, and $Y=V(G) \backslash V(P)$. Choose $y^{*} \in Y$ such that $d_{P}\left(y^{*}\right)$ is maximum, and let $N_{P}\left(y^{*}\right)=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{s}}\right\}$. Clearly, $s \leq \ell+2$ as P is a longest path in G by Claim 18. If $s=\ell+2$, then $N_{P}\left(y^{*}\right)=\left\{x_{2}, x_{4}, \ldots, x_{2 \ell+4}\right\}$. It follows that $N_{P}(v)=\emptyset$ for any $v \in Y \backslash\left\{y^{*}\right\}$ as G is $2 P_{3} \cup P_{2 \ell+1}$-free. Then $e(G) \leq\binom{ 2 \ell+5}{2}+(\ell+2)+\left\lfloor\frac{n-2 \ell-5}{2}\right\rfloor<\binom{2 \ell+6}{2}+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor$, a contradiction. In addition, if $s=0$, then $e(G)=e(P)+e(Y) \leq\binom{ 2 \ell+5}{2}+\left\lfloor\frac{n-2 \ell-5}{2}\right\rfloor$, a contradiction. Hence, $1 \leq s \leq \ell+1$.

Claim 20. For each $v \in Y$, we have $x_{2} v, x_{2 \ell+4} v \notin E(G)$.

Proof. Suppose that there exists $v_{0} \in Y$ such that $x_{2} v_{0} \in E(G)$ or $x_{2 \ell+4} v_{0} \in$ $E(G)$, say $x_{2 \ell+4} v_{0} \in E(G)$. Let $P^{\prime}=x_{1} x_{2} \cdots x_{2 \ell+3}$ and $G^{\prime}:=G\left[V\left(P^{\prime}\right) \cup\right.$ $\left.\left(Y \backslash\left\{v_{0}\right\}\right)\right]$. Since G is $2 P_{3} \cup P_{2 \ell+1}$-free, we know that G^{\prime} is $P_{3} \cup P_{2 \ell+1}$-free. It follows that $s_{1}:=\max _{v \in Y \backslash\left\{v_{0}\right\}} d_{P^{\prime}}(v) \leq \ell-1$ for any $v \in Y \backslash\left\{v_{0}\right\}$.

If $N_{Y}\left(x_{2 \ell+4}\right)=\left\{v_{0}\right\}$, then $e\left(G^{\prime}\right) \geq e(G)-s-1-2(2 \ell+3)>\phi(n-3,2 \ell+4,3)$ as $N_{Y}\left(x_{2 \ell+5}\right)=\emptyset$. This implies that G^{\prime} does not contain $C_{2 \ell+2}$ and $C_{2 \ell+3}$ as subgraphs by Lemma 16. It follows from Lemma 17(4) that $e\left(P^{\prime}\right) \leq\binom{ 2 \ell+3}{2}-$ $\left\lceil\frac{s_{1}(2 \ell+1)+2 \ell+2}{2}\right\rceil$ and $e(P) \leq e\left(P^{\prime}\right)+1+2(2 \ell+3) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 \ell+2}{2}\right\rceil$. Hence
$e(G) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 \ell+2}{2}\right\rceil+s+s_{1}(n-2 \ell-6)+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor$,
yielding that $e(G)<\phi(n, 2 \ell+7,3)$ for $n<3 \ell+\frac{17}{2}+\frac{7}{\ell-1}$ and $e(G)<\psi(n, 2 \ell+4)+1$ for otherwise, a contradiction.

Suppose that there exists $v_{1} \in N_{Y}\left(x_{2 \ell+4}\right) \backslash\left\{v_{0}\right\}$. It follows that $G\left[V\left(P^{\prime}\right) \cup\right.$ $\left.\left\{x_{2 \ell+5}\right\}\right]$ is $P_{3} \cup P_{2 \ell+1}$-free. This implies that $d_{P^{\prime}}\left(x_{2 \ell+5}\right) \leq \ell-1$. Since G^{\prime} is also $P_{3} \cup P_{2 \ell+1}$-free, we have $e\left(P^{\prime}\right) \leq\binom{ 2 \ell+3}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil$ by Lemma 17(3) and $e(P) \leq e\left(P^{\prime}\right)+1+(2 \ell+3)+(\ell-1) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil-\ell-4$. Note also that $v x_{2 \ell+4} \notin E(G)$ for each $v \in Y$ with $d_{Y}(v)>0$ as P is a longest path in G. Hence

$$
e(G) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil-\ell-4+s+\left(s_{1}+1\right)(n-2 \ell-6),
$$

implying that $e(G)<\phi(n, 2 \ell+7,3)$ for $n<3 \ell+9+\frac{15}{2 \ell-1}$ and $e(G)<\psi(n, 2 \ell+4)+1$ for otherwise, a contradiction.

If $s=\ell+1$, then $N_{P}\left(y^{*}\right)=\left\{x_{3}, x_{5}, \ldots, x_{2 \ell+3}\right\}$ by Claim 20. Since G is $2 P_{3} \cup P_{2 \ell+1}$-free, for each $v \in Y \backslash\left\{y^{*}\right\}$, we have $N_{P}(v) \subseteq\left\{x_{3}, x_{2 \ell+3}\right\}$ if $\ell \geq 3$ and $N_{P}(v) \subseteq\left\{x_{3}, x_{5}, x_{7}\right\}$ if $\ell=2$. Let $s_{1}:=\max _{v \in Y \backslash\left\{y^{*}\right\}} d_{P}(v)$. Clearly, $s_{1} \leq 2$ if $\ell \geq 3$ and $s_{1} \leq 3$ if $\ell=2$. We may assume that $N_{P}\left(v_{1}\right) \neq \emptyset$ for some $v_{1} \in Y \backslash\left\{y^{*}\right\} ;$ otherwise, $e(G) \leq\binom{ 2 \ell+5}{2}+(\ell+1)+\left\lfloor\frac{n-2 \ell-5}{2}\right\rfloor<\binom{2 \ell+6}{2}+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor$. Suppose that $x_{i} \in N_{P}\left(v_{1}\right)$ for some $i \in\{3,2 \ell+3\}$ if $\ell \geq 3$ and $i \in\{3,5,7\}$ if $\ell=2$. Since $v_{1} x_{i} y^{*}$ forms a copy of P_{3}, we assert that $x_{i-1} x_{p}$ and $x_{i+1} x_{p+1}$ cannot coexist in G for $p>i+1$ or $p<i-1$; otherwise, $x_{1} \cdots x_{i-1} x_{p} \cdots x_{i+1} x_{p+1} \cdots x_{2 \ell+5}$ for $p>i+1$ or $x_{1} \cdots x_{p} x_{i-1} \cdots x_{p+1} \cdots x_{i+1} \cdots x_{2 \ell+5}$ for $p<i-1$ contains $P_{3} \cup P_{2 \ell+1}$ as a subgraph, a contradiction. An argument similar to Lemma 17(2) implies that $d_{P}\left(x_{i-1}\right)+d_{P}\left(x_{i+1}\right) \leq 2 \ell+5$. It follows that we can find s_{1} pairs of vertices $\left(x_{a_{j}}, x_{b_{j}}\right)$ satisfying $d_{P}\left(x_{a_{j}}\right)+d_{P}\left(x_{b_{j}}\right) \leq 2 \ell+5$ where $j \in\left[s_{1}\right]$ and $a_{j}, b_{j} \neq 2 \ell+5$. Note also that G does not contain $C_{2 \ell+5}$ as a subgraph. Thus, we conclude that
$e(P) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+3)+2 \ell+4}{2}\right\rceil$ as a similar argument to Lemma 17(4), yielding that
$e(G) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+3)+2 \ell+4}{2}\right\rceil+s+s_{1}(n-2 \ell-6)+\left\lfloor\frac{n-2 \ell-5}{2}\right\rfloor$.
If $s_{1} \leq 2$, then $e(G)<\phi(n, 2 \ell+7,3)$ for $n<4 \ell+10$ and $e(G)<\psi(n, 2 \ell+4)+1$ for otherwise. In particular, for $\ell=2$ and $s_{1}=3$, we have $N_{P}\left(x_{2}\right) \subseteq\left\{x_{1}, x_{3}, x_{5}, x_{8}\right\}$ and $N_{P}\left(x_{4}\right) \subseteq\left\{x_{3}, x_{5}, x_{7}\right\}$ as G is $2 P_{3} \cup P_{2 \ell+1}$-free. Meanwhile, we can get $N_{P}\left(x_{6}\right) \subseteq\left\{x_{3}, x_{5}, x_{7}\right\}$ and $N_{P}\left(x_{8}\right) \subseteq\left\{x_{2}, x_{5}, x_{7}, x_{9}\right\}$ by symmetry. In addition, $N_{P}\left(x_{1}\right) \subseteq\left\{x_{2}, x_{3}, x_{5}\right\}$ and $N_{P}\left(x_{9}\right) \subseteq\left\{x_{8}, x_{7}, x_{5}\right\}$ by symmetry. It follows that

$$
e(G) \leq\binom{ 9}{2}-2 \times 9-10+3+3(n-2 \times 2-6)+\left\lfloor\frac{n-2 \times 2-6}{2}\right\rfloor .
$$

Thus $e(G)<\phi(n, 2 \ell+7,3)$ for $n<22$ and $e(G)<\psi(n, 2 \ell+4)+1$ for $n \geq 22$.
In what follows, we may assume that $d_{P}\left(y^{*}\right)=s \leq \ell$. Suppose that neither $G\left[V(P) \backslash\left\{x_{i}, x_{i+1}\right\}\right]$ nor $G\left[V(P) \backslash\left\{x_{i}, x_{i-1}\right\}\right]$ contains a copy of $P_{2 \ell+3}$ for any $x_{i} \in$ $N_{P}\left(y^{*}\right)$. It follows that $d_{P}\left(x_{i-2}\right)+d_{P}\left(x_{i+1}\right) \leq 2 \ell+3$ and $d_{P}\left(x_{i-1}\right)+d_{P}\left(x_{i+2}\right) \leq$ $2 \ell+3$ for any $x_{i} \in N_{P}\left(y^{*}\right)$. Note also that $d_{P}\left(x_{1}\right) \leq 2 \ell+2-2 s$ as x_{1} misses x_{i+1}, x_{i+2} for any $x_{i} \in N_{P}\left(y^{*}\right)$. An argument similar to Lemma 17(3) implies that $e(P) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s(2 \ell+3)+2 s}{2}\right\rceil$. Hence

$$
e(G) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s(2 \ell+3)+2 s}{2}\right\rceil+s(n-2 \ell-5)+\left\lfloor\frac{n-2 \ell-5}{2}\right\rfloor .
$$

It follows that $e(G)<\phi(n, 2 \ell+7,3)$ for $n<3 \ell+\frac{19}{2}+\frac{4}{\ell}$ and $e(G)<\psi(n, 2 \ell+4)+1$ for otherwise, a contradiction.

Now, we assume that there exists $x_{i} \in N_{P}\left(y^{*}\right)$ such that either $G[V(P) \backslash$ $\left.\left\{x_{i}, x_{i+1}\right\}\right]$ or $G\left[V(P) \backslash\left\{x_{i}, x_{i-1}\right\}\right]$ contains a copy of $P_{2 \ell+3}$, say $G\left[V(P) \backslash\left\{x_{i}, x_{i-1}\right\}\right]$ contains $P_{2 \ell+3}$ as a subgraph, denoted by P^{\prime}. Let $s_{1}:=\max _{v \in Y \backslash\left\{y^{*}\right\}} d_{P^{\prime}}(v)$. Obviously, $G\left[V\left(P^{\prime}\right) \cup\{v\}\right]$ is $P_{3} \cup P_{2 \ell+1}$-free for any $v \in Y \backslash\left\{y^{*}\right\}$ as G is $2 P_{3} \cup$ $P_{2 \ell+1}$-free, implying that $s_{1} \leq \ell-1$ for $\ell \geq 3$ and $s_{1} \leq \ell$ for $\ell=2$. Let $G^{\prime}:=G\left[V\left(P^{\prime}\right) \cup\left(Y \backslash\left\{y^{*}\right\}\right)\right]$. Note that G^{\prime} is $P_{3} \cup P_{2 \ell+1}$-free as $y^{*} x_{i} x_{i-1}$ forms a P_{3}. Since P^{\prime} is a path of length $2 \ell+3$, it follows from Lemma $17(3)$ that $e\left(P^{\prime}\right) \leq\binom{ 2 \ell+3}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil$.

Suppose that there are two vertices $v_{1}, v_{2} \in Y$ (note that v_{1} or v_{2} is not necessarily y^{*}) and $x \in\left\{x_{i}, x_{i-1}\right\}$ such that $\left\{x, v_{1}, v_{2}\right\}$ forms a copy of P_{3}. It follows that $d_{P^{\prime}}\left(x_{i-1}\right) \leq \ell-1$ (if $\left.x=x_{i}\right)$ or $d_{P^{\prime}}\left(x_{i}\right) \leq \ell-1$ (if $x=x_{i-1}$) as $G[V(P) \backslash\{x\}]$ is $P_{3} \cup P_{2 \ell+1}$-free. This implies that $e(P) \leq e\left(P^{\prime}\right)+1+(2 \ell+3)+$

$$
\begin{aligned}
(\ell-1) \leq\binom{ 2 \ell+5}{2} & -\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil-\ell-4 . \text { Thus } \\
e(G) \leq & \binom{2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil \\
& -\ell-4+s+\left(s_{1}+1\right)(n-2 \ell-6)+\left\lfloor\frac{n-2 \ell-5}{2}\right\rfloor .
\end{aligned}
$$

If $\ell \geq 2$ and $s_{1} \leq \ell-1$, then $e(G)<\phi(n, 2 \ell+7,3)$ for $n<3 \ell+\frac{17}{2}+\frac{13}{2 \ell}$ and $e(G)<\psi(n, 2 \ell+4)+1$ for otherwise, a contradiction. If $\ell=2$ and $s_{1}=\ell$, then $e(P) \leq 23$ and $e(G) \leq 23+2+2(n-10)+\left\lfloor\frac{n-9}{2}\right\rfloor$. One can easily check that $e(G)<$ $\phi(n, 2 \ell+7,3)$ for $n<22$ and $e(G)<\psi(n, 2 \ell+4)+1$ for $n \geq 22$, a contradiction. Hence, we conclude that $d_{Y}\left(y^{*}\right)=0, d_{Y \backslash\left\{y^{*}\right\}}\left(x_{i}\right)=0$ and $d_{Y \backslash\left\{y^{*}\right\}}\left(x_{i-1}\right) \leq 1$ as $x_{i} y^{*} \in E(G)$. Note that $e(P) \leq e\left(P^{\prime}\right)+1+2(2 \ell+3) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil$. It follows that

$$
e(G) \leq\binom{ 2 \ell+5}{2}-\left\lceil\frac{s_{1}(2 \ell+1)+2 s_{1}}{2}\right\rceil+2 s+s_{1}(n-2 \ell-7)+\left\lfloor\frac{n-2 \ell-6}{2}\right\rfloor .
$$

If $s_{1} \leq \ell-1$, then $e(G)<\phi(n, 2 \ell+7,3)$ for $n<3 \ell+\frac{17}{2}+\frac{5}{\ell-1}$ and $e(G)<\psi(n, 2 \ell+$ 4) +1 for otherwise, a contradiction. It suffices to check $e(G)$ for the case $s_{1}=$ $\ell=2$. Let $P^{\prime}=y_{1} y_{2} \cdots y_{7}$. Recall that $s_{1}=\max _{v \in Y \backslash\left\{y^{*}\right\}} d_{P^{\prime}}(v)$. It follows from Lemma 17(1) and Lemma $17(2)$ that $d_{P^{\prime}}\left(y_{1}\right) \leq 2, d_{P_{7}^{\prime}}\left(y_{7}\right) \leq 2, d_{P^{\prime}}\left(y_{2}\right)+d_{P^{\prime}}\left(y_{5}\right) \leq$ 7 and $d_{P^{\prime}}\left(y_{3}\right)+d_{P^{\prime}}\left(y_{6}\right) \leq 7$, yielding that $e(P) \leq \sum_{i=1}^{7} d_{P^{\prime}}\left(y_{i}\right) / 2+2 \times 7+1=27$. Note that $N_{P^{\prime}}(v) \subseteq\left\{y_{3}, y_{5}\right\}$ for any $v \in Y \backslash\left\{y^{*}\right\}$ and G^{\prime} is $P_{3} \cup P_{5}$-free. This implies that $d_{P^{\prime}}\left(v_{1}\right)=d_{P^{\prime}}\left(v_{2}\right)=0$ for any $v_{1}, v_{2} \in Y \backslash\left\{y^{*}\right\}$ with $v_{1} v_{2} \in E(G)$. Therefore, $e(G) \leq 27+2(n-9)$. It follows that $e(G)<\phi(n, 2 \ell+7,3)$ for $n<21$ and $e(G)<\psi(n, 2 \ell+4)+1$ for $n \geq 21$, a contradiction.

This completes the proof of Theorem 8.

Acknowledgment

The authors would like to thank the referees for their careful reading and helpful comments. This work was supported by NSFC (Grant No. 12071077, 12001106), National Natural Science Foundation of Fujian Province (Grant No. 2021J05128).

References

[1] P.N. Balister, E. Győri, J. Lehel and R.H. Schelp, Connected graphs without long paths, Discrete Math. 308 (2008) 4487-4494.
https://doi.org/10.1016/j.disc.2007.08.047
[2] H. Bielak and S. Kieliszek, The Turán number of the graph $2 P_{5}$, Discuss. Math. Graph Theory 36 (2016) 683-694.
https://doi.org/10.7151/dmgt. 1883
[3] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837-853. https://doi.org/10.1017/S0963548311000460
[4] N. Bushaw and N. Kettle, Turán numbers for forests of paths in hypergraphs, SIAM J. Discrete Math. 28 (2014) 711-721. https://doi.org/10.1137/130913833
[5] V. Campos and R. Lopes, A proof for a conjecture of Gorgol, Discrete Appl. Math. 245 (2018) 202-207.
https://doi.org/10.1016/j.dam.2017.04.012
[6] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356. https://doi.org/10.1007/BF02024498
[7] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160. https://doi.org/10.1016/0095-8956(75)90080-5
[8] L. Feng and Y. Hu, The Turán number of the graph $3 P_{5}$, Filomat 34 (2020) 33953410. https://doi.org/10.2298/FIL2010395F
[9] Z. Füredi and T. Jiang, Hypergraph Turán numbers of linear cycles, J. Combin. Theory Ser. A 123 (2014) 252-270. https://doi.org/10.1016/j.jcta.2013.12.009
[10] Z. Füredi, T. Jiang and R. Seiver, Exact solution of the hypergraph Turán problem for k-uniform linear paths, Combinatorica 34 (2014) 299-322. https://doi.org/10.1007/s00493-014-2838-4
[11] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661-667.
https://doi.org/10.1007/s00373-010-0999-5
[12] R. Gu, X.-L. Li and Y.-T. Shi, Hypergraph Turán numbers of vertex disjoint cycles, Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 229-234. https://doi.org/10.1007/s10255-022-1056-x
[13] G.N. Kopylov, On maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR 234 (1977) 19-21.
[14] Y. Lan, Z. Qin and Y.-T. Shi, The Turán number of $2 P_{7}$, Discuss. Math. Graph Theory 39 (2019) 805-814.
https://doi.org/10.7151/dmgt. 2111
[15] H. Liu, B. Lidický and C. Palmer, On the Turán number of forests, Electron. J.
Combin. 20(2) (2013) \#P62.
https://doi.org/10.37236/3142
[16] J. Wang and W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291-294.
https://doi.org/10.1016/j.dam.2018.07.014
[17] L.-T. Yuan and X.-D. Zhang, The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132-139.
https://doi.org/10.1016/j.disc.2016.08.004
[18] L.-T. Yuan and X.-D. Zhang, Turán number for disjoint paths, J. Graph Theory 98 (2021) 499-524.
https://doi.org/10.1002/jgt. 22710

Appendix A. The Values of $f_{\ell}\left(s, s_{1}\right)$ for $15 \leq \ell \leq 19$

Received 26 December 2022
Revised 1 July 2023
Accepted 2 July 2023
Available online 27 July 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

[^0]: ${ }^{1}$ Corresponding author.

