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Abstract

The Turán number of a graph H, ex(n,H), is the maximum number of
edges in an n-vertex graph that does not contain H as a subgraph. Let Pk

denote the path on k vertices and let
⋃m

i=1 Pki denote the disjoint union
of Pki

for 1 ≤ i ≤ m; in particular, write
⋃m

i=1 Pki
= mPk if ki = k

for all 1 ≤ i ≤ m. Yuan and Zhang determined ex(n,
⋃m

i=1 Pki
) for all

integers n if at most one of k1, . . . , km is odd. Much less is known for all
integers n if at least two of k1, . . . , km are odd. Partial results such as
ex(n,mP3), ex(n, P3 ∪P2`+1), (n, 2P5), ex(n, 2P7) and ex(n, 3P5) have been
established by several researchers. In this paper, we develop new functions
and determine ex(n, 3P7) and ex(n, 2P3 ∪ P2`+1) for all integers n. We also
characterize all the extremal graphs. Both results contribute to a conjecture
of Yuan and Zhang.
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1. Introduction

The Turán number of a graph H, ex(n,H), is the maximum number of edges
in an n-vertex graph that does not contain H as a subgraph. The study of
Turán numbers plays a central role in extremal graph theory. One of the best
known results in this area is the Erdős-Gallai Theorem [6] about the path Pk on
k vertices.
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Theorem 1 (Erdős and Gallai [6]). Let n ≥ k ≥ 2 and G be a graph with n
vertices. If G does not contain Pk as a subgraph, then e(G) ≤ (k − 2)n/2 with
equality if and only if n is divisible by k − 1 and G is isomorphic to the disjoint
union of Kk−1.

Faudree and Schelp [7] further extended this theorem and determined ex(n,Pk)
for all integers n and k, and characterized all the extremal graphs. Given two
graphs G1 and G2, denote by G1 ∪ G2 the disjoint union of G1 and G2, and by
kG1 the disjoint union of k copies of G1. Let Kn denote the complete graph on
n vertices.

Theorem 2 (Faudree and Schelp [7]). Let n = t(k − 1) + r for some integers
t ≥ 0 and 0 ≤ r ≤ k − 2. Then

ex(n, Pk) = t

(
k − 1

2

)
+

(
r

2

)
.

Moreover, the extremal graphs are characterized.

Remark. If k is odd, then the extremal graph in Theorem 2 is isomorphic to
tKk−1 ∪Kr.

Let excon(n,H) denote the maximum number of edges in an n-vertex con-
nected graph that does not contain H as a subgraph. Kopylov [13] and Balister,
Győri, Lehel and Schelp [1] determined excon(n, Pk) and characterized all the ex-
tremal graphs. For two graphs G1 and G2, let G1 + G2 be the graph obtained
from G1 ∪ G2 by joining each vertex of G1 to each vertex of G2. Denote by G
the complement graph of G.

Theorem 3 (Kopylov [13]; Balister, Győri, Lehel and Schelp [1]). Let n ≥ k ≥ 4.
Then

excon(n, Pk) = max

{(
k − 2

2

)
+ (n− k + 2),

(⌊k
2

⌋
− 1

2

)
+

(⌊
k

2

⌋
− 1

)(
n−

⌊
k

2

⌋
+ 1

)
+ ck

}
,

where ck = 1 if k is odd and ck = 0 if k is even. Moreover, the extremal graphs
are characterized.

Remark. If k is odd, then the extremal graph in Theorem 3 is isomorphic to
K1 +

(
Kk−3 ∪Kn−k+2

)
for n ≤ (5k − 7)/4 and Kbk/2c−1 +

(
K2 ∪Kn−b(k+1)/2c

)
for n ≥ (5k − 7)/4.

Let
⋃m
i=1 Pki denote the disjoint union of Pki for 1 ≤ i ≤ m; in particular,

write
⋃m
i=1 Pki = mPk if ki = k for all 1 ≤ i ≤ m. Erdős and Gallai [6] deter-

mined ex(n,mP2) for all integers n and m. Bushaw and Kettle [3] determined
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ex(n,mPk) for sufficiently large n. Later, Lidický, Liu and Palmer [15] deter-
mined ex(n,

⋃m
i=1 Pki) for sufficiently large n. However, for small n, much less is

known for ex(n,
⋃m
i=1 Pki). Gorgol [11] first determined ex(n, 2P3) and ex(n, 3P3)

for all integers n. Since then, Campos and Lopes [5], independently, Yuan and
Zhang [17], determined ex(n,mP3) for all integers n and m. Recently, Yuan and
Zhang [18] made a big step and determined ex(n,

⋃m
i=1 Pki) for all integers n when

at most one of k1, . . . , km is odd.

Definition (Yuan and Zhang [18]). Let n ≥ m ≥ ` ≥ 2 be three integers and
n = (m− 1) + t(`− 1) + r with t ≥ 0 and 0 ≤ r < `− 1. Define

φ (n,m, `) =

(
m− 1

2

)
+ t

(
`− 1

2

)
+

(
r

2

)
and

ψ(n,m) =

(⌊m
2

⌋
− 1

2

)
+
(⌊m

2

⌋
− 1
)(

n−
⌊m

2

⌋
+ 1
)
.

We mention that ex(n,H) =
(
n
2

)
for any H on more than n vertices and Kn

is the unique extremal graph. It follows that we may assume n ≥ |V (H)| when
it comes to ex(n,H).

Theorem 4 (Yuan and Zhang [18]). Let k1 ≥ · · · ≥ km ≥ 2 and n ≥
∑m

i=1 ki. If
at most one of k1, . . . , km is odd, then

ex

(
n,

m⋃
i=1

Pki

)

= max

{
φ(n, k1, k1), φ(n, k1 + k2, k2), . . . , φ(n,

m∑
i=1

ki, km), ψ

(
n,

m∑
i=1

ki

)}
.

Moreover, if k1, . . . , km are all even, then the extremal graphs are characterized.

If at least two of k1, . . . , km are odd, then there are only few partial results
for all integers n. Bielak and Kieliszek [2], independently, Yuan and Zhang [18]
determined ex(n, 2P5); Lan, Qin and Shi [14] determined ex(n, 2P7); and recently,
Feng and Hu [8] determined ex(n, 3P5). Let Mn be the graph consisting of bn/2c
independent edges and one possible isolated vertex. Yuan and Zhang [18] also
established the following theorem.

Theorem 5 (Yuan and Zhang [18]). Let n ≥ 2`+ 4 with ` ≥ 2. Then

ex(n, P3 ∪ P2`+1) = max{φ(n, 2`+ 1, 2`+ 1), φ(n, 2`+ 4, 3), ψ(n, 2`+ 3) + 1}.

Moreover, the extremal graph is isomorphic to either tK2`∪Kr, K2`+3∪Mn−2`−3
or K` +

(
K2 ∪Kn−`−2

)
, where n = t (2`) + r with 0 ≤ r ≤ 2`− 1.
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The authors also suggested a general conjecture on disjoint union of paths as
follows.

Conjecture 6 (Yuan and Zhang [18]). Let k1 ≥ · · · ≥ km ≥ 2 and n ≥
∑m

i=1 ki.
If at least one of k1, . . . , km is not three, then

ex

(
n,

m⋃
i=1

Pki

)

= max

{
φ(n, k1, k1), φ(n, k1+k2, k2), . . . , φ(n,

m∑
i=1

ki, km),ψ

(
n, 2

m∑
i=1

⌊
ki
2

⌋)
+ c

}
,

where c = 1 if all of k1, . . . , km are odd, and c = 0 otherwise.

For more results related to the Turán problem of graphs and hypergraphs on
paths, forests or cycles, we refer the reader to [4, 9, 10, 12, 16]. In this paper,
we consider the Turán number of three disjoint paths on odd number of vertices
and prove the following results, which partially confirm the conjecture of Yuan
and Zhang.

Theorem 7. Let n ≥ 21 be an integer. Then

ex(n, 3P7) =

{
φ(n, 21, 7), if n ≤ 31,

8n− 35, if n ≥ 32.

Moreover, the extremal graph is isomorphic to K20 ∪ Kn−20 for 21 ≤ n ≤ 26,
K20 ∪K6 ∪Kn−26 for 27 ≤ n ≤ 31 and K8 +

(
K2 ∪Kn−10

)
for n ≥ 32.

Theorem 8. Let n ≥ 2`+ 7 with ` ≥ 2. Then

ex(n, 2P3 ∪ P2`+1) = max{φ(n, 2`+ 1, 2`+ 1), φ(n, 2`+ 7, 3), ψ(n, 2`+ 4) + 1}.

Moreover, the extremal graph is isomorphic to one of the graphs tK2`∪Kr, K2`+6

∪Mn−2`−6 and K`+1 +
(
K2 ∪Kn−`−3

)
, where n = t (2`) + r with 0 ≤ r ≤ 2`− 1.

This paper is organized as follows. In the remainder of this section, we
describe notation and terminology used in our proof. In Section 2, we develop
new functions and prove Theorem 7. In Section 3, we give a proof of Theorem 8.

Notation. Let G be a simple graph. For a subset S ⊂ V (G), let G[S] be the
subgraph of G induced by S and G−S = G[V (G)\S]. For each v ∈ V (G), denote
NS(v) the set of neighbors of v contained in S and dS(v) the number of edges
between v and S \ {v}. When S = V (G), we simplify NV (G)(v) and dV (G)(v)
as NG(v) and dG(v), respectively. For any S, T ⊆ V (G), let eG(S) denote the
number of edges of G with both ends in S, and eG(S, T ) denote the number of
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edges of G with one end in S and the other end in T . We will drop the reference
to G when there is no danger of confusion. For x, y ∈ V (G), we call that x hits
y if xy ∈ E(G) and x misses y if xy /∈ E(G). A graph is H-free if it contains no
copy of H as a subgraph. Usually, we denote Ck a cycle of length k and write
[k] := {1, . . . , k}.

2. Turán Number of the Graph 3P7

2.1. Longest cycles in graphs

In this subsection, we mainly present some useful lemmas about longest cycles
in graphs. First, we shall use the following upper bound, proved by Erdős and
Gallai [6], on the maximum number of edges in graphs without long cycles.

Lemma 9 (Erdős and Gallai [6]). Let G be a graph with n vertices. If G does
not contain any cycles of length more than `, then e(G) ≤ `(n− 1)/2, where the
equality holds if and only if n− 1 is divisible by `− 1.

We also give a simple proposition on longest cycles, which is used frequently
throughout Section 2. The proof details are omitted.

Proposition 10. Let G be a graph and C` = x0x1 · · ·x`−1 be a longest cycle
in G. For any x ∈ V (G)\V (C`) and 0 ≤ i 6= j ≤ ` − 1, if xxi, xxj ∈ E(G),
then |i− j| > 1 and xi+1xj+1, xi−1xj−1 /∈ E(G), where we take all the subscripts
modulo `.

Let G be a graph and C` = x0x1 · · ·x`−1 (` > 3) be a longest cycle in G.
Define

V ∗ = {v ∈ V (G)\V (C`) : dC`(v) ≥ 1} .

Choose some vertex f ∈ V ∗ such that dC`(f) is maximum. Suppose thatNC`(f) =
{xi1 , . . . , xis} with 0 ≤ i1 < · · · < is ≤ ` − 1. For any j ∈ [s], let tj denote the
number of vertices in C` between xij and xij+1 , and s1 = |{j ∈ [s] : tj = 1}| . We
establish a useful lemma on the number of edges in G[V (C`)] in terms of s and s1.

Lemma 11. Let C` = x0x1 · · ·x`−1 be a longest cycle in G. Then

e(G[V (C`)]) ≤ f` (s, s1) :=

(
`

2

)
− −s

2
1 + (2s− `+ 1) s1 + (s− 1) `

2
.

Proof. For any j ∈ [s] with tj = 1, it follows from Proposition 10 that

dC`(xij+1) ≤ (`− 1)− s− (s− s1 − 1) = `− 2s+ s1.
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For any j ∈ [s] with tj ≥ 2, we claim that

dC`(xij+1) + dC`(xij+1−1) ≤ `− 1 + tj .

This follows from the fact that at most one of xpxij+1 and xp+1xij+1−1 belongs to
E(G) for any p ≥ ij+1 or p ≤ ij−1. Otherwise, fxijxij−1 · · ·xp+1xij+1−1xij+1−2 · · ·
xij+1xp · · ·xij+1f is a C`+1 in G, a contradiction. Note that

∑
tj≥2 tj = `−s−s1.

Thus, we have

e(G[V (C`)]) ≤
(
`

2

)
− 1

2

∑
tj=1

(
`− 1− dC`(xij+1)

)
− 1

2

∑
tj≥2

(
2`− 2− dC`(xij+1)− dC`(xij+1−1)

)
≤
(
`

2

)
−
s1 (2s− s1 − 1) +

∑
tj≥2 (`− 1− tj)

2
= f` (s, s1) .

This completes the proof.

Remark. For any fixed integer s ≥ 0, f`(s, s1) is increasing with respect to s1.

Note that s1 ≤ s and 2s ≤ `. If 2s = `, then f`(s, s1) = f`(s, s) = s(3s−1)
2 as

s1 = s; if 2s < `, then f`(s, s1) ≤ f`(s, s − 1) =
(
`
2

)
− (s−1)(s+2)

2 as s1 ≤ s − 1
in this situation. The exact values of f`(s, s1) for 15 ≤ ` ≤ 19 can be found in
Appendix A.

Lemma 12. Let C` = x0x1 · · ·x`−1 be a longest cycle in G and Pk = f1f2 · · · fk be
any path in G−C` such that ` > 2k and NC`(f1) 6= ∅. Then dC`(fi) ≤ b`/2c+1−i
for each i ∈ [k]. In particular, if dC`(f1) = b`/2c, then dC`(fi) = 0 for each i ≥ 2.

Proof. Suppose that x0f1 ∈ E(G). Since C` is a longest cycle in G, we have
xjfi /∈ E(G) for any i ∈ [k] and j ∈ [i] ∪ {` − i, . . . , ` − 1}. It follows that
dC`(fi) ≤ d(`−2i−1)/2e+1 = b`/2c+1− i as ` > 2k. The second part is clearly
true by the maximality of `. Thus, we complete the proof.

2.2. Proof of Theorem 7

In this subsection, we give a proof of Theorem 7. Throughout this proof, we
may assume that n ≥ 21. Let G∗ = K20 ∪ Kn−20 for 21 ≤ n ≤ 26, G∗ =
K20 ∪K6 ∪Kn−26 for 27 ≤ n ≤ 31 and G∗ = K8 +

(
K2 ∪Kn−10

)
for n ≥ 32 (see

Table 1). It is easy to see that G∗ is 3P7-free.
Let G be any 3P7-free graph with n vertices and e(G) ≥ e(G∗). Let C` =

x0x1 · · ·x`−1 be a longest cycle in G and write F = G−C`. It follows easily that
` ≤ 20 as G is 3P7-free. We give all the possible values of ` for different n as
shown in Table 1; otherwise, e(G) < e(G∗) by Lemma 9, a contradiction.
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n G∗ e(G∗) `

21 K20 ∪K1 190 20

22 K20 ∪K2 191 19,20

23 K20 ∪K3 193 18,19,20

24 K20 ∪K4 196 18,19,20

25 K20 ∪K5 200 17,18,19,20

26 K20 ∪K6 205 17,18,19,20

27 K20 ∪K6 ∪K1 205 16,17,18,19,20

28 K20 ∪K6 ∪K2 206 16,17,18,19,20

29 K20 ∪K6 ∪K3 208 15,16,17,18,19,20

30 K20 ∪K6 ∪K4 211 15,16,17,18,19,20

31 K20 ∪K6 ∪K5 215 15,16,17,18,19,20

≥ 32 K8 +
(
K2 ∪Kn−10

)
8n− 35 15,16,17,18,19,20

Table 1. G∗ and all the possible values of ` for different n.

For any couple of (a, b) as shown in Table 2, it is easy to check that an+ b <
e(G∗) for all integers n ≥ 21. In what follows, we show that G is isomorphic to
G∗, or we have e(G) ≤ an+ b for some couple of (a, b) as shown in Table 2. This
leads to a contradiction. We proceed our proof by showing the following series of
claims.

a 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

b 135 120 105 90 75 59 44 28 12 −4 −20 −36

Table 2. a and b.

Claim 13. G is isomorphic to G∗ for ` = 20 and n ≤ 31; Otherwise, 15 ≤ ` ≤ 19
and maxv∈V (F ) dC`(v) ≥ 3.

Proof. If ` = 20, then dC`(v) = 0 for each v ∈ V (F ). It follows that e(G) ≤(
20
2

)
+ ex(n − 20, P7). Since ex(n − 20, P7) ≤ 5(n − 20)/2 by Theorem 1, this

is a contradiction for n ≥ 32. For 21 ≤ n ≤ 31, we have e(G) = e(G∗) =(
20
2

)
+ ex(n− 20, P7), implying that G is isomorphic to G∗, as desired.

If dC`(v) ≤ 2 for any v ∈ V (F ), then e(G) ≤
(
`
2

)
+2(n−`)+5(n−`)/2 = 4.5n+

`(`− 10)/2. It follows easily that e(G) ≤ 4.5n+ `(`− 10)/2 ≤ 4.5n+ 72 < e(G∗)
for all 15 ≤ ` ≤ 18 by Table 2, a contradiction. Thus, it suffices to check the
case ` = 19. Since G is 3P7-free, we know that the set I consisting of all the
vertices that have neighbours in C19 is an independent set in F . This yields that
e(G) ≤

(
19
2

)
+ 2|I| + 5(n − |I| − 19)/2 ≤ 2.5n + 123.5 < e(G∗) by Table 2, a

contradiction. 2
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Suppose that P̂k = f1 · · · fk is a longest path in F such that NC`(f1) 6= ∅.
Clearly, we have k + ` ≤ 20 as G is 3P7-free. Without loss of generality, we
may assume that x0f1 ∈ E(G). In the following proofs, we will often use the
maximality of `, k and the fact that G is 3P7-free.

Claim 14. If k = 1, then e(G) ≤ e(G∗). The equality holds if and only if G is
isomorphic to G∗ for n ≥ 32.

Proof. Let f be a vertex in F such that dC`(f) is maximum. Since k = 1,
we may choose f1 = f . Let V ∗, s and s1 be defined as those in Subsection
2.1. By the maximality of k, we know that V ∗ is an independent set in G and
e(V ∗, V (F )\V ∗) = 0. It follows that

e(G) ≤ e(G[V (C`)]) +
∑
v∈V ∗

e(v, V (C`)) + ex(n− `− |V ∗|, P7)

≤ f`(s, s1) + s|V ∗|+ 5(n− `− |V ∗|)/2 ≤ f`(s, s1) + s(n− `),(1)

where the last inequality follows from the fact s ≥ 3 by Claim 13. Recall that
f`(s, s1) ≤ f`(s, s− 1) for 2s < `. Clearly, f`(s, s− 1) + s(n− `) is monotonically
increasing with respect to s for s ≤ n− `. Thus, by Lemma 11, we have

e(G) ≤ f`(s, s− 1) + s(n− `)

≤ f`(b`/2c, b`/2c − 1) + b`/2c(n− `)(2)

≤ f`(b`/2c, b`/2c) + b`/2c(n− `).(3)

We use (2) if 2s < `, otherwise we use (3) in the coming inequalities. Therefore,
we obtain the following: (i) e(G) ≤ 7n − 27 for ` = 15 and e(G) ≤ 8n − 36 for
` = 16, (ii) e(G) ≤ 7n− 10 for ` = 17 and s ≤ 7, (iii) e(G) ≤ 5n+ 49 for ` = 18
and s ≤ 5, and (iv) e(G) ≤ 3n + 109 for ` = 19 and s ≤ 3. In particular, (v)
e(G) ≤ 4n + 86 for ` = 19 and s = 4; (vi) e(G) ≤ 6n + 25 for ` = 18 and s = 6.
Thus, we have e(G) < e(G∗) for any of the above cases. In what follows, we
consider the remaining cases when 17 ≤ ` ≤ 19.

Case 1. ` = 19 and 5 ≤ s ≤ 9. Note that NC19(v) ⊆ {x0, x2, x3, x5, x7, x9, x10,
x12, x14, x16, x17} for any v ∈ V ∗\{f} as x0f ∈ E(G) and G is 3P7-free. This
implies that dC19(v) ≤ 8 for any v ∈ V ∗\{f} as at most one of xi and xi+1 belongs
to NC19(v). Recall that NC`(f) = {xi1 , . . . , xis} with 0 ≤ i1 < · · · < is ≤ ` − 1,
and tj denotes the number of vertices in C` between xij and xij+1 for any j ∈ [s].
If tj−1 > 1 and tj+1 > 1 for any j ∈ [s] with tj = 1, then s1 ≤ bs/2c. Thus

e(G) ≤ f19(s, s1) + s+ min{8, s}(|V ∗| − 1) + 5(n− 19− |V ∗|)/2

≤ max{5n+ 48, 6n+ 23, 7n− 8.5, 8n− 35.5} < e(G∗).
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As a consequence, there exists j ∈ [s] such that tj = tj+1 = 1. This means that
{xij , xij+2, xij+4} ⊆ NC19 (f). Without loss of generality, we might assume that
{x0, x17, x15} ⊆ NC19 (f), then we have NC19 (v) ⊆ {x3, x5, x10, x12} for any v ∈
V ∗\{f} since G is 3P7-free. Thus, we conclude that d := maxv∈V ∗\{f} dC`(v) ≤ 4.
It follows that

e(G) ≤ f19 (s, s1) + s+ d (|V ∗| − 1) + 5(n− 19− |V ∗|)/2.

Choose s1 = s−1 and it is easy to check that e(G) ≤ 4n+84.5 < e(G∗) according
to Table 2.

Case 2. ` = 18 and 7 ≤ s ≤ 9. If s ∈ {7, 8}, then we may assume that s1 ≥ 6
and |{v ∈ V ∗ : dC18(v) = s}| ≥ 2; otherwise,

e(G) ≤ max{f`(s, 5) + s(n− 18), f`(s, s− 1) + s+ (s− 1)(n− 19)}

≤ max{6n+ 19, 7n− 7, 8n− 39} < e(G∗).

Let dC18(f ′) = dC18(f) = s for some f ′ ∈ V ∗\{f}, E1 =
⋃
xi,xj∈NC18

(f){xi+1xj+1,

xi−1xj−1} and E2 =
⋃
xi,xj∈NC18

(f ′){xi+1xj+1, xi−1xj−1}. Clearly, Ei ∩E(G) = ∅
for any i ∈ {1, 2} by Proposition 10. We first consider the case s = 7. We
may assume that NC18(f) = {x0, x2, x4, x6, x8, x10, x12} as s1 ≥ 6. If NC18(f ′) =
NC18(f), then NC18(v) = {x15} for any v ∈ V1\{f, f ′} as G is 3P7-free. This
means that e (G) ≤ f18 (7, 6) + 7 × 2 + 5(n − 20)/2 = 2.5n + 90 < e(G∗). Sup-
pose that NC18(f ′) = {xj0 , xi1 , . . . , xi6} with xj0 /∈ NC18(f). Therefore, at least
one of xj0+1 and xj0−1 is not associated with the vertex pairs in E1, say xj0+1.
This implies xj0+1xji+1 ∈ E2\E1 for each i ∈ [6]. It follows that |E1| ≥ 27 and
|E2\E1| ≥ 6. Thus e(G) ≤

(
18
2

)
− |E1| − |E2\E1| + 7(n − 18) = 7n − 6 < e(G∗).

Now, we consider the case s = 8. By symmetry, it is easy to check that
NC18(f) is one of the following five sets M = X∗ ∪ {x8, x10, x12, x14}, A = X∗ ∪
{x8, x10, x12, x15}, B = X∗∪{x8, x10, x13, x15}, C = X∗∪{x8, x11, x13, x15}, D =
X∗ ∪ {x9, x11, x13, x15}, where X∗ = {x0, x2, x4, x6}. If NC18(f ′) = NC18(f) ∈
{M,A,B}, then V ∗\{f, f ′} = ∅. IfNC18(f ′) = NC18(f) ∈ {C,D}, thenNC19(v) ⊆
{x2, x4, x11, x13} for any v ∈ V ∗\{f, f ′}. Thus e(G) ≤ f18(8, 7)+8×2+4(n−20) =
4n+54 < e(G∗). Suppose that NC18(f ′) = {xj0 , xi1 , . . . , xi6} with xj0 /∈ NC18(f).
If NC18(f) = M , then j0 6= 16; otherwise, NC18(v) ⊆ {x0, x16, x14} for any
v ∈ V ∗\{f, f ′} and e(G) ≤

(
18
2

)
+ 2s+ 3(|V ∗| − 2) + 5(n− 18− |V ∗|)/2 < e(G∗).

Thus, we have |E1| ≥ 35 and |E2\E1| ≥ 14. If NC18(f) ∈ {A,B,C,D}, then
|E1| ≥ 41 and |E2\E1| ≥ 7. In either case, we conclude that e(G) ≤

(
18
2

)
−|E1|−

|E2\E1|+ 8(n− 18) = 8n− 39 < e(G∗).
If s = 9, then we may assume that NC18(f) = {x0, x2, x4, x6, x8, x10, x12, x14,

x16}. Note that if v1xi ∈ E(G) for some v1 ∈ V ∗\{f} and some 0 ≤ i ≤ ` − 1,
then NC18 (v) ⊆ {xa, xb, xi} with i + 2 ≡ a (mod 18) and i − 2 ≡ b (mod 18) for
any v ∈ V ∗\{f, v1}. Thus e(G) ≤ f18(9, 9) + 9×2 + 3(n−20) = 3n+ 75 < e(G∗).
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Case 3. ` = 17 and s = 8. It follows from (1) that e(G) ≤ f17(8, 7) +
8(n − 17) = 8n − 35, implying e(G) < e(G∗) for any 21 ≤ n ≤ 31. Thus,
we have e(G) = e(G∗) = 8n − 35 with n ≥ 32. This means that (i) s1 =
7, (ii) e(G[C17]) = f17(8, 7) = 101 and |V ∗| = n − 17, and (iii) dC17(v) = 8
for each v ∈ V ∗. Since x0f1 ∈ E(G) and dC17(f1) = 8, we may assume that
NC17(f1) = {x0, x2, x4, x6, x8, x10, x12, x14}. In view of the proof of Lemma 11,
we conclude that dC17(xi) = `− 2s+ s1 = 8 for any i ∈ I1 := {1, 3, 5, 7, 9, 11, 13}
and dC17(x15) + dC17(x16) = `− 1 + 2 = 18. Note also that xixj /∈ E(G), except
for x15x16 ∈ E(G), for any i, j ∈ I1∪{15, 16} by Proposition 10. This means that
N(x15) = NC17(f1) ∪ {x16}, N(x16) = NC17(f1) ∪ {x15} and N(xi) = NC17(f1)
for any i ∈ I1. Let I2 := {0, 2, 4, 6, 8, 10, 12, 14}. Clearly,

∑
i∈I2

dC17(xi) = 2e(G[C17])−
∑
i∈I1

dC17(xi)− (dC17(x15) + dC17(x16))

= 202− 7× 8− 18 = 128.

This together with the fact that dC17(xi) ≤ 16 for each i ∈ I2 implies that
NC17(xi) = V (C17)\{xi} for each i ∈ I2. Thus, NC17(f1) forms a copy of K8

in G and G[V (C17)] = K8 + (K2 ∪ K7). Moreover, it is easy to check that
NC17(v) = NC17(f1) for each v ∈ V ∗; otherwise, we obtain a cycle of length larger
than 17. Consequently, we obtain G ∼= G∗ for n ≥ 32, as desired. 2

Let V1 be the set of all vertices in F1 = F − P̂k that have neighbours in C`;
let V2 be the set of all vertices in V (F1)\V1 that have neighbours in V1 ∪ V (P̂k);
let V3 be the set of all vertices in V (F1)\(V1 ∪ V2) that have neighbours in V2;
and let V0 = V (F1)\(V1 ∪ V2 ∪ V3). Thus

e(G) = e(G[V (C`)]) +
(
e(V (P̂k), V (C`)) + e(G[V (P̂k)])

)
+
(
e(V1, V (C`) ∪ V (P̂k)) + e(G[V1])

)
+
(
e(V2, V1 ∪ V (P̂k)) + e(G[V2])

)
(4)

+
(
e(V3, V2 ∪ V0) + e(G[V3])

)
+ e(G[V0]).

By Lemma 12, we have

e(V (P̂k), V (C`)) + e(G[V (P̂k)]) ≤
k∑
i=1

dC`(fi) +

(
k

2

)
≤ kb`/2c − 1.

Let s := maxv∈V1 dC`(v) and s1 be defined as that in Subsection 2.1, where V1
plays the role of V ∗ in the following proof. We may assume that s ≥ 2; otherwise,
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e(G) = e(G[V (C`)]) + e(V1, V (C`)) + e(V (P̂k), V (C`)) + e(F )

≤
(
`

2

)
+ (n− `− k) + kb`/2c −

(
k

2

)
+

5

2
(n− `)

≤ 7

2
n+

`+ k − 8

2
`−

(
k + 1

2

)
,

implying that e(G) ≤ 7n/2 + 6` − 3 ≤ 7n/2 + 105 < e(G∗) as ` + k ≤ 20 and
k ≥ 2, a contradiction.

Claim 15. For any k ≥ 2, we have e(G) < e(G∗).

Proof. We proceed our proof by considering the following several cases in terms
of k. We mention that 2 ≤ s ≤ b`/2c.

Case 1. k = 2 and ` ∈ {15, 16, 17, 18}. By the maximality of k, we obtain that
(i) G[V1] is P3-free and e(V1, {f1, f2}) = 0; (ii) V2 is an independent set and V3 =
∅; (iii) dV1∪{f1}(v) ≤ 1 and vf2 /∈ E(G) for each v ∈ V2 and e(V0, V (F )\V0) =

0. This together with Lemma 12 (for k = 2) implies that e(V1, V (C` ∪ P̂k)) +
e(G[V1]) ≤ min{s+ 1/2, b`/2c}|V1|. Thus, by (4)

e(G) ≤ f`(s, s1) + 2b`/2c − 1 + min {s+ 1/2, b`/2c} |V1|+ |V2|+ 5|V0|/2

≤ f`(s, s1) + 2b`/2c − 1 + min {s+ 1/2, b`/2c} (n− `− 2).(5)

We first consider the case ` ≤ 17. If s = 8, then ` ∈ {16, 17} and by the
remark after Lemma 11,

e(G) ≤ f`(s, s1) + 8(n− `)− 1

≤ max

{
s(3s− 1)

2
+ 8(n− 16)− 1,

(
17

2

)
− (s− 1)(s+ 2)

2
+ 8(n−17)−1

}
= 8n− 36 < e(G∗).

If s ≤ 7 by (5), then

e(G) ≤
(
`

2

)
− (s− 1)(s+ 2)

2
+ `− 1 +

(
s+

1

2

)
(n− `− 2).

Note that n ≥ 25 by Table 1. This implies that the last function is monotonically
nondecreasing with respect to the integer s ≤ 6. Thus, e(G) ≤ 6.5n+ `2/2− 6`−
34 ≤ 6.5n < e(G∗) for s ≤ 6, and e(G) ≤ 7.5n+`2/2−7`−43 ≤ 7.5n−26 < e(G∗)
for s = 7.

Now, we consider the case ` = 18. If s = 5, then e(G) ≤ 5.5n + 43 < e(G∗)
by (5). If s ≤ 4, then

e(G) ≤
(

18

2

)
− (s− 1)(s+ 2)

2
+17+

(
s+

1

2

)
(n−20) ≤ 171−3

2
s+

(
s+

1

2

)
(n−20)
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as s > 1. Note that n ≥ 23 by Table 1. This implies that the last function is mono-
tonically increasing with respect to s. Thus, e(G) ≤ 4.5n+75 < e(G∗). It suffices
to assume that s ≥ 6. Let A1 be the set of all isolated vertices in V1 and A2 =
V1\A1. Since G is 3P7-free, we have NC` (v) ⊆ {x0, x2, x4, x7, x9, x11, x14, x16} for
any v ∈ A1 and NC` (v) ⊆ {x0, x4, x7, x11, x14} for any v ∈ A2. This implies that
s ≤ 8, s1 ≤ s− 2 and e(V1, V (C` ∪ P̂k)) + e(G[V1]) ≤ s|V1| − (s− 5.5)|A2| ≤ s|V1|.
Thus

e(G) ≤ f`(s, s1) + 2b`/2c − 1 + s(n− `− 2) ≤ f(s, s− 2) + 17 + s(n− 20)

=

(
18

2

)
− s2 + s+ 12

2
+ 17 + s(n− 20).

It follows that e(G) ≤ 7n − 4 < e(G∗) for s = 7 and e(G) ≤ 6n + 23 < e(G∗)
for s = 6. In what follows, we check the case s = 8 more carefully. We aim
to show that dC`(f1) + dC`(f2) ≤ 12, implying that e(G) ≤ f18(8, 6) + 12 + 1 +
8(n − 20) = 8n − 36 < e(G∗). This is clearly true if dC`(f1) = 9 by Lemma 12
(for k = 2). Suppose that dC`(f1) ≤ 8. Note that there exists v ∈ V1 NC`(v) =
{x0, x2, x4, x7, x9, x11, x14, x16} as s = 8. This together with the maximality of `
implies that NC`(f2) ⊆ {x0, x4, x5, x7, x9, x11, x12, x14} as x0f1 ∈ E(G), yielding
that dC`(f2) ≤ 6. Note also that dC`(f1) ≤ 6 providing that x0f2 ∈ E(G) by the
symmetry of f1 and f2, as desired. Thus, we may assume that and x0 /∈ NC`(f2)
and dC`(f2) ≤ 5. Clearly, dC`(f1) + dC`(f2) ≤ 8 + 4 = 12 if dC`(f2) ≤ 4. It
suffices to check that dC`(f1) ≤ 7 if dC`(f2) = 5. This is definitely true by the
maximality of ` as NC`(f2) ⊆ {x4, x5, x7, x9, x11, x12, x14}, as required.

Case 2. k = 3 and ` ∈ {15, 16, 17}. By the maximality of k, there is no P4

in F1 whose endpoints hit C` for any ` ∈ {15, 16, 17}. Thus, we obtain that (i)
both G[V1] is P4-free and G[V2] is P3-free, (ii) V3 is an independent set in G, and
(iii) e(u, V2) ≤ 1 for each u ∈ V3 and e(V0, V3) = 0.

Let A1 be the set of all isolated vertices in V1 and A2 = V1\A1. Note that
e(v, P̂k) ≤ 1 for each v ∈ A1 and e(A2, P̂k) = 0 by the maximality of k. Let
A11 = {v ∈ A1 : e(v, P̂k) = 1} and A12 = A1\A11. Clearly, e(V1, V (P̂k)) = |A11|
and e(G[V1]) ≤ |A2| as G[V1] is P4-free. Thus,

e(V1, V (C`) ∪ V (P̂k)) + e(G[V1]) ≤ s|V1|+ |A11|+ |A2|.

We also define B1 = {u ∈ V2 : dV1(u) ≥ 3}. For any u ∈ B1, it is easy to see that
NV1(u) ⊂ A12 and NV1(u)∩NV1(u′) = ∅ for any u′ ∈ B1\{u}; otherwise, we have
a P4 starting at V1, a contradiction. Let A′12 =

⋃
u∈B1

NV1(u). It follows that

e(B1, V1) =
∑

u∈B1
dV1(u) = |A′12| ≤ |A12|. Note also that e(u, P̂k) ≤ 1 for each

v ∈ V2. Define B0 = {u ∈ V2 : e(u, P̂k) = 1}. Clearly, e(V2, V (P̂k)) = |B0|. By
the maximality of k, we deduce that e(B0, V1) = 0. It follows that e(V2, V1) ≤
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2(|V2| − |B1| − |B0|) + e(B1, V1) ≤ 2|V2| − |B0|+ |A′12|. Thus, we conclude that

e(V2, V1∪V (P̂k))+e(G[V2]) ≤ (2|V2|−|B0|+|A′12|)+|B0|+|V2|/2 ≤ 5|V2|/2+|A′12|.

Note that |A11|+ |A2|+ |A′12| ≤ |V1|. It follows from (4) that

e(G) ≤ f`(s, s1) + 3b`/2c − 1 + (s|V1|+ |A11|+ |A2|)

+ (5|V2|/2 + |A′12|) + |V3|+ 5|V0|/2

≤ f`(s, s1) + 3b`/2c − 1 + (s+ 1)(n− `− 3).

We first consider the case ` = 17. Clearly, e(G) ≤ f17(5, 4)+23+6(n−20) =
6n + 25 < e(G∗) for any s ≤ 5. Suppose that s ≥ 6. Since G is 3P7-free,
NC`(v) ⊆ {x0, x3, x5, x7, x10, x12, x14} for any v ∈ V1. This implies that s ∈ {6, 7}
and s1 ≤ 4. Thus, e(G) ≤ 7n−7.5 < e(G∗) for s = 6 and e(G) ≤ 8n−40 < e(G∗)
for s = 7. Now, we consider the case ` ∈ {15, 16}. Suppose that s ≤ 7. Recall
that n ≥ 27 by Table 1. It follows that the function f(s, s − 1) + 3b`/2c − 1 +
(s + 1)(n − ` − 3) is monotonically increasing with respect to s. Thus, e(G) ≤
8n + `2/2 − 7` − 52 ≤ 8n − 36 < e(G∗) for s ≤ 7. Suppose that s = 8 and
` = 16. We bound e(V1, V (C`)) more carefully. For any v ∈ V1 with dF1(v) ≥ 1,
we have NC`(v) ⊆ {x0, x2, x3, x6, x7, x9, x10, x13, x14} for ` = 16. The maximality
of ` implies that dC16(v) ≤ 5 for any v ∈ A2 ∪ A′12. Note also that dC16(v) ≤ 6
for any v ∈ A11 by Lemma 12. This implies that

e(V1, V (C16)) ≤ 8(|A12| − |A′12|) + 6|A11|+ 5(|A2|+ |A′12|)

= 8|V1| − 3|A2| − 2|A11| − 3|A′12|.

It follows that

e(G) ≤ f`(s, s1) + 3b`/2c − 1 + 8|V1| − 2|A2| − |A11| − 2|A′12|

+ 5|V2|/2 + |V3|+ 5|V0|/2

≤ f`(8, 8) + 23 + 8(n− 19) = 8n− 37 < e(G∗).

Case 3. k = 4 and ` ∈ {15, 16}. Since G is 3P7-free, F1 does not contain P3

whose endpoints hit C` ∪ P̂k. Thus we have (i) both G[V1] and G[V2] are P3-free,
(ii) V3 is an independent set in G, and (iii) e(V0, V3) = 0. By the maximality of k,
for any v ∈ V1, we know e(v, V (P̂4)) = 0 if dV1(v) ≥ 1; otherwise, e(v, V (P̂4)) ≤ 1.
It follows that ∑

v∈V1

e(v, V (C` ∪ P̂4)) + e(G[V1]) ≤ (s+ 1)|V1|.
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Similarly, we also have e(u, V (P̂4)) ≤ 2, e(u, V1) ≤ 1 and e(u, V3) ≤ 1 for each u ∈
V2. It follows from (4) that Note that NC16(v) ⊆ {x0, x2, x4, x5, x7, x9, x11, x12,
x14} for any v ∈ V1 and ` = 16. This implies that dC16(v) ≤ 7 for any v ∈ V1.
Thus, s ≤ 7 for any ` ∈ {15, 16}. By (4)

e(G) ≤ f`(s, s1) + kb`/2c − 1 + (s+ 1)|V1|+ 3|V2|+ |V3|+ 5|V0|/2

≤ f`(s, s− 1) + 4b`/2c − 1 + (s+ 1)(n− `− 4).

Note that n ≥ 27 by Table 1. This implies that the last function is monotonically
nondecreasing with respect to the integer s ≤ 7. Thus, e(G) ≤ 8n+`2/2−13`/2−
60 ≤ 8n− 36 < e(G∗).

Case 4. k = 5 and ` = 15. Since G is 3P7-free, we have (i) both G[V1] and
G[V2] are P3-free, (ii) V3 is an independent set in G, and (iii) e(v, V1) ≤ 1 for each
v ∈ V2, e(u, V2) ≤ 1 for each u ∈ V3 and e(V0, V3) = 0. Moreover, e(v, V (P̂k)) ≤ 2
for any v ∈ V1∪V2 by the maximality of k. Since G is 3P7-free and x0f1 ∈ E(G),
it is easy to see that NC15(v) ⊆ {x3, x4, x5, x10, x11, x12} for any v ∈ V1. This
implies that s ≤ 4. Thus

e(G) ≤ f`(s, s− 1) + kb`/2c+ (s+ 5/2)|V1|+ 7|V2|/2 + |V3|+ 5|V0|/2

≤
(

15

2

)
− (s− 1)(s+ 2)

2
+ (s+ 5/2)(n− 20) ≤ 6.5n+ 1 < e(G∗).

This completes the proof of this claim. 2

In view of Claims 13, 14 and 15, we conclude that G is isomorphic to G∗ if
(i) ` = 20 and n ≤ 31, or (ii) ` = 17, k = 1 and n ≥ 32; otherwise, we have
e(G) < e(G∗), a contradiction. Thus, we complete the proof of Theorem 7.

3. Turán Number of the Graph 2P3 ∪ P2`+1

3.1. Lemmas

In this subsection, we give two lemmas used frequently in our proof of Theorem 8.

Lemma 16. For an integer ` ≥ 2, let G be a graph on n vertices that does not
contain a copy of P`∪P3 and e(G) ≥ φ(n, `+3, 3). If G contains a copy of either
C`+1 or C`+2, then G is isomorphic to K`+2 ∪Mn−`−2.

Proof. Suppose that G does not contain a copy of P3 ∪ P` and e(G) ≥ φ(n, `+
3, 3). If G contains a copy of C`+2, then each vertex in G− C`+2 cannot hit any
vertex in C`+2, and G−C`+2 consists of independent edges and isolated vertices,
which implies that G is isomorphic to K`+2∪Mn−`−2. If G contains a copy of C`+1
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and does not contain a copy of C`+2, then there is at most one edge between any
two consecutive vertices on C`+1 and G−C`+1. In addition, G−C`+1 consists of
independent edges and isolated vertices. Hence e(G) ≤

(
`+1
2

)
+
⌊
`
2

⌋
+
⌊
n−`−1

2

⌋
<(

`+2
2

)
+
⌊
n−`−2

2

⌋
= φ(n, `+ 3, 3), a contradiction.

Lemma 17. For an integer ` ≥ 2, let G be a graph that does not contain a copy
of P` ∪ P3. Suppose that G contains a path P = x1 · · ·x`+2 on `+ 2 vertices and
s = max{dP (v) : v ∈ V (G)\V (P )}. Then (1) dP (x1) ≤ `+ 1− 2s, (2) there exist
2s distinct vertices xβτ , xγτ with τ ∈ [s] in P such that dP (xβτ ) +dP (xγτ ) ≤ `+ 2

with γτ > βτ ≥ 2, and (3) e(P ) ≤
(
`+2
2

)
−
⌈
s`+2s

2

⌉
. Moreover, (4) if G also does

not contain C`+1 and C`+2, then e(P ) ≤
(
`+2
2

)
−
⌈
s`+`+1

2

⌉
.

Proof. Let x ∈ V (G)\V (P ) be such that NP (x) = {xi1 , . . . , xis} with i1 <
· · · < is. Note that G does not contain a copy of P` ∪ P3. It follows that (i) x
misses x1, x2, x`+1, x`+2; (ii) x hits at most one of xj and xj+1 for j ∈ [` + 1],
and (iii) x hits at most one of xj and xj+4 for j ∈ [` − 2]. Thus, we have
3 ≤ iα < iα+1 − 1 ≤ `− 1 and iα+1 − iα 6= 4 for any α ∈ [s− 1].

(1) Note that x1 misses xiα+1 and xiα+2 for each α ∈ [s]. Otherwise, we have a
copy of P3∪P` by choosing xxiαxiα−1 and xiα−2 · · ·x1xiα+1 · · ·x`+2 for x1xiα+1 ∈
E(G), or choosing xxiαxiα+1 and xiα−1 · · ·x1xiα+2 · · ·x`+2 for x1xiα+1 ∈ E(G),
a contradiction. In addition, we know that iα + 2 < iα+1 + 1 for each α ∈ [s− 1].
Thus dP (x1) ≤ `+ 1− 2s.

(2) We first show that either iα − 2, iα + 1, iα+1 − 2, iα+1 + 1 or iα − 2, iα +
1, iα+1 − 1, iα+1 + 2 are four distinct numbers. In fact, if iα+1 = iα + 2, then
iα − 2 < iα+1 − 2 < iα + 1 < iα+1 + 1; if iα+1 ≥ iα + 3, then iα − 2 < iα + 1 <
iα+1 − 1 < iα+1 + 2. Similarly, iα − 1, iα + 2, iα+1 − 2, iα+1 + 1 are four distinct
numbers. In fact, if 2 ≤ iα+1 − iα ≤ 3, then iα − 1 < iα+1 − 2 < iα + 2 <
iα+1 + 1; if iα+1 − iα ≥ 4, then iα − 1 < iα + 2 < iα+1 − 2 < iα+1 + 1 as
iα+1 − iα 6= 4. Hence, there exist t1, . . . , ts ∈ {1, 2} with t1 = 1 such that
i1− t1, i1 + 3− t1, i2− t2, i2 + 3− t2, . . . , is− ts, is+ 3− ts are 2s distinct numbers.

Now, we claim that dP (xiα−1)+dP (xiα+2) ≤ `+2 and dP (xiα−2)+dP (xiα+1) ≤
` + 2 for α ∈ [s]. In fact, if xiα−1 hits a vertex xj for j < iα − 1, then xiα+2

must miss xj+1; and if xiα−1 hits a vertex xj for j > iα + 2, then xiα+2 must
miss xj+1. Otherwise, G contains a copy of P` ∪ P3, a contradiction. In addi-
tion, xiα−1 misses xiα+2 and x`+2, and xiα+2 misses x1. Hence, dP (xiα+2) ≤
`+ 1− (dP (xiα−1)− 2)− 1, implying the first inequality of our claim. A similar
argument as above shows that the second inequality of our claim also holds.

For each τ ∈ [s], let βτ = iτ − tτ and γτ = iτ + 3 − tτ . Due to the above
arguments, we have 2s distinct vertices xβτ , xγτ with τ ∈ [s] in P such that
dP (xβτ ) + dP (xγτ ) ≤ `+ 2 and γτ > βτ ≥ 2.
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(3) Note that 2e(P ) =
∑

i∈[`+2] dP (xi) ≤ (` + 1 − 2s) + s(` + 2) + (` + 2 −
2s− 1)(`+ 1) in view of (1) and (2). It follows that e(P ) ≤

(
`+2
2

)
−
⌈
s`+2s

2

⌉
.

(4) It is easy to see that dP (x1) + dP (x`+1) ≤ ` and dP (x1) + dP (x`+2) ≤
` + 1. Otherwise, it follows from the proof of Dirac’s theorem on Hamiltonian
cycles that G must contain a copy of either C`+1 or C`+2, a contradiction. Note
that β1 > 1 and either xγs 6= x`+1 or xγs 6= x`+2. It follows from (2) that
2e(P ) =

∑
i∈[`+2] dP (xi) ≤ (` + 1) + s(` + 2) + (` + 2 − 2s − 2)(` + 1), implying

that e(P ) ≤
(
`+2
2

)
−
⌈
s`+`+1

2

⌉
.

3.2. Proof of Theorem 8

In this subsection, we prove Theorem 8. For any integer ` ≥ 2, let G be a graph
containing no 2P3 ∪ P2`+1, and

e(G) ≥ max{φ(n, 2`+ 1, 2`+ 1), φ(n, 2`+ 7, 3), ψ(n, 2`+ 4) + 1}.

If G is P2`+1-free, then e(G) = φ(n, 2`+1, 2`+1) and G ∼= tK2`∪Kr by Theorem
2, where n = t(2`) + r and 0 ≤ r < 2`. Thus, we may assume that G contains
P2`+1 and

e(G) ≥ max{φ(n, 2`+ 7, 3), ψ(n, 2`+ 4) + 1}

= max

{(
2`+ 6

2

)
+

⌊
n− 2`− 6

2

⌋
,

(
`+ 1

2

)
+ (`+ 1)(n− `− 1) + 1

}
.

By Theorem 5, we know that G contains P3 ∪ P2`+1. Note that G is P3 ∪ P2`+4-
free. By Lemma 16, if there exists a copy of C2`+6 or C2`+5 in G, then G is
isomorphic to K2`+6 ∪Mn−2`−6. In what follows, we may assume that G does
not contain C2`+6 and C2`+5.

Claim 18. G contains no P2`+6.

Proof. Suppose that G contains a path P = x1x2 · · ·x2`+6 on 2`+6 vertices, and
Y = V (G)\V (P ). Let s = max{dP (v) : v ∈ V (Y )}. Note that each v ∈ Y misses
{x1, x2, x4, x5, x7, x2`, x2`+2, x2`+3, x2`+5, x2`+6} as G is 2P3 ∪ P2`+1-free. This
implies that s ≤ ` for any ` ≥ 2. Recall that G is also P3 ∪ P2`+4-free containing

no C2`+6 and C2`+5. By Lemma 17(4), we have e(P ) ≤
(
2`+6
2

)
−
⌈
s(2`+4)+2`+5

2

⌉
.

Since G[Y ] is P3-free and e(G) = e(P ) + e(P, Y ) + e(Y ), we conclude that

e(G) ≤
(

2`+ 6

2

)
−
⌈
s (2`+ 4) + 2`+ 5

2

⌉
+ s (n− 2`− 6) +

⌊
n− 2`− 6

2

⌋
.(6)

If n ≤ 3`+9, we have −d(s (2`+ 4) + 2`+ 5)/2e+s (n− 2`− 6) ≤ −(`+2)s−`−
3+(`+3)s < 0, then e (G) <

(
2`+6
2

)
+
⌊
n−2`−6

2

⌋
= φ(n, 2`+7, 3); If n ≥ 3`+9, then
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right side of the inequality (4) is expanded at most 2`2+9`+9+s(n−3`−8)+n/2 ≤
2`2+9`+9+`(n−3`−8)+n/2. So we can verify e(G) <

(
`+1
2

)
+(`+1)(n−`−1)+1 =

ψ(n, 2` + 4) + 1 for ` ≥ 5. This leads to a contradiction in either case. In what
follows, we get a contradiction by checking more carefully for the remaining values
of `.

If ` = 4, then NP (y) ⊆ {x3, x6, x9, x12} for each y ∈ Y as G is 2P3∪P2`+1-free.
In addition, it is easy to check that (6) also holds unless s = 4 and there exist
at least two vertices y1, y2 ∈ Y satisfying NP (yi) = {x3, x6, x9, x12} for i ∈ [2].
Thus, x2 misses any vertex in {x4, x5, x7, x8, x10, x11, x13, x14} and x5 misses any
vertex in {x1, x2, x7, x8, x10, x11, x13, x14} as G is 2P3 ∪ P2`+1-free, implying that
dP (x2) + dP (x5) ≤ 12 = (2`+ 6)− 2. Note that xβ1 = x2 and xγ1 = x5 by using
Lemma 17(2) with s = 4. According to Lemma 17(4), we have

e(G) ≤
(

2`+ 6

2

)
−
⌈
s (2`+ 4) + 2`+ 5

2

⌉
− 1 + s (n− 2`− 6) +

⌊
n− 2`− 6

2

⌋
.

Thus, e(G) < φ(n, 2`+ 7, 3) for n < 22 and e(G) <
(
`+1
2

)
+ (`+ 1)(n− `− 1) + 1

for n ≥ 22, a contradiction.

If ` = 3, then NP (y) ⊆ {x3, x10} for each y ∈ Y . Clearly, s ≤ 2. In view of
(6), e(G) < φ(n, 2` + 7, 3) for n < 20 and e(G) < ψ(n, 2` + 4) + 1 for n ≥ 20, a
contradiction.

If ` = 2, then NP (y) ⊆ {x3, x8} for each y ∈ Y , and dP (y′) = 0 for each
y′ ∈ Y with dY (y′) > 0. It follows that s ≤ 2 and

e(G) ≤
(

2`+ 6

2

)
−
⌈
s (2`+ 4) + 2`+ 5

2

⌉
+ s (n− 2`− 6) .

Thus, e(G) < φ(n, 2`+ 7, 3) for n < 19 and e(G) <
(
`+1
2

)
+ (`+ 1)(n− `− 1) + 1

for otherwise, a contradiction. 2

Claim 19. G contains a copy of P2`+5.

Proof. Suppose that G is P2`+5-free. We claim that G is connected. Otherwise,
if one of the components, say C with n1 vertices, contains P3 ∪ P2`+1 and other
components are disjoint edges or isolated vertices, then by Theorem 3

e(G) = e(C) + e(G− C) ≤ excon(n1, P2`+5) +

⌊
n− n1

2

⌋
≤ max

{(
2`+ 3

2

)
+ n1 − 2`− 3,

(
`+ 1

2

)
+ (`+ 1)(n1 − `− 1) + 1

}
+

⌊
n− n1

2

⌋
< max{φ(n, 2`+ 7, 3), ψ(n, 2`+ 4) + 1},
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a contradiction; if one of the components, say C with n1 vertices, contains P2`+1

but is P3 ∪ P2`+1-free and other components are 2P3-free, which means e(C) ≤
ex(n1, P3 ∪ P2`+1) and e(G− C) ≤ ex(n− n1, 2P3), then by Theorem 5,

e(G) = e(C) + e(G− C) ≤ ex(n1, P3 ∪ P2`+1) + ex(n− n1, 2P3)

= max

{(
2`+ 3

2

)
+

⌊
n1 − 2`− 3

2

⌋
,

(
`

2

)
+ `(n1 − `) + 1

}
+ max

{(
5

2

)
+

⌊
n− n1 − 5

2

⌋
, n− n1

}
< max{φ(n, 2`+ 7, 3), ψ(n, 2`+ 4) + 1},

a contradiction. Hence, G is connected. Since G is P2`+5-free and connected, it
follows from Theorem 3 that

e(G) ≤ excon(n, P2`+5)

= max

{(
2`+ 3

2

)
+ n− 2`− 3,

(
`+ 1

2

)
+ (`+ 1) (n− `− 1) + 1

}
≤ max{φ(n, 2`+ 7, 3), ψ(n, 2`+ 4) + 1},

where the last inequality follows from
(
`+1
2

)
+ (`+ 1) (n− `− 1) + 1 = ψ(n, 2`+

4)+1,
(
2`+3
2

)
+n−2`−3 ≤ ψ(n, 2`+4)+1 for n ≥ 5`+9

2 , and
(
2`+3
2

)
+n−2`−3 <

φ(n, 2`+7, 3) for n < 5`+9
2 . Recall that e(G) ≥ max{φ(n, 2`+7, 3), ψ(n, 2`+4)+

1}. This implies that

e(G) = max

{(
2`+ 3

2

)
+ n− 2`− 3, ψ(n, 2`+ 4) + 1

}
= max{φ(n, 2`+ 7, 3), ψ(n, 2`+ 4) + 1}.

Thus, we have e(G) = ψ(n, 2`+ 4) + 1 and n ≥ 5`+9
2 in view of ψ(n, 2`+ 4) + 1 <(

2`+3
2

)
+ n− 2`− 3 < φ(n, 2`+ 7, 3) for n < 5`+9

2 . By Theorem 3, we know that
G is isomorphic to K`+1 +

(
K2 ∪Kn−`−3

)
. 2

Let P = x1x2 · · ·x2`+5 be a path on 2`+5 vertices in G, and Y = V (G)\V (P ).
Choose y∗ ∈ Y such that dP (y∗) is maximum, and letNP (y∗) = {xi1 , xi2 , . . . , xis}.
Clearly, s ≤ ` + 2 as P is a longest path in G by Claim 18. If s = ` + 2, then
NP (y∗) = {x2, x4, . . . , x2`+4}. It follows that NP (v) = ∅ for any v ∈ Y \{y∗} as G
is 2P3∪P2`+1-free. Then e(G) ≤

(
2`+5
2

)
+(`+2)+

⌊
n−2`−5

2

⌋
<
(
2`+6
2

)
+
⌊
n−2`−6

2

⌋
, a

contradiction. In addition, if s = 0, then e(G) = e(P )+e(Y ) ≤
(
2`+5
2

)
+
⌊
n−2`−5

2

⌋
,

a contradiction. Hence, 1 ≤ s ≤ `+ 1.

Claim 20. For each v ∈ Y , we have x2v, x2`+4v /∈ E(G).
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Proof. Suppose that there exists v0 ∈ Y such that x2v0 ∈ E(G) or x2`+4v0 ∈
E(G), say x2`+4v0 ∈ E(G). Let P ′ = x1x2 · · ·x2`+3 and G′ := G[V (P ′) ∪
(Y \{v0})]. Since G is 2P3 ∪ P2`+1-free, we know that G′ is P3 ∪ P2`+1-free.
It follows that s1 := maxv∈Y \{v0} dP ′(v) ≤ `− 1 for any v ∈ Y \{v0}.

If NY (x2`+4) = {v0}, then e(G′) ≥ e(G)−s−1−2(2`+3) > φ(n−3, 2`+4, 3)
as NY (x2`+5) = ∅. This implies that G′ does not contain C2`+2 and C2`+3 as
subgraphs by Lemma 16. It follows from Lemma 17(4) that e(P ′) ≤

(
2`+3
2

)
−⌈

s1(2`+1)+2`+2
2

⌉
and e(P ) ≤ e(P ′) + 1 + 2(2` + 3) ≤

(
2`+5
2

)
−
⌈
s1(2`+1)+2`+2

2

⌉
.

Hence

e(G) ≤
(

2`+ 5

2

)
−
⌈
s1(2`+ 1) + 2`+ 2

2

⌉
+ s+ s1(n− 2`− 6) +

⌊
n− 2`− 6

2

⌋
,

yielding that e(G) < φ(n, 2`+7, 3) for n < 3`+ 17
2 + 7

`−1 and e(G) < ψ(n, 2`+4)+1
for otherwise, a contradiction.

Suppose that there exists v1 ∈ NY (x2`+4)\{v0}. It follows that G[V (P ′) ∪
{x2`+5}] is P3 ∪P2`+1-free. This implies that dP ′(x2`+5) ≤ `− 1. Since G′ is also

P3 ∪ P2`+1-free, we have e(P ′) ≤
(
2`+3
2

)
−
⌈
s1(2`+1)+2s1

2

⌉
by Lemma 17(3) and

e(P ) ≤ e(P ′) + 1 + (2`+ 3) + (`− 1) ≤
(
2`+5
2

)
−
⌈
s1(2`+1)+2s1

2

⌉
− `− 4. Note also

that vx2`+4 /∈ E(G) for each v ∈ Y with dY (v) > 0 as P is a longest path in G.
Hence

e(G) ≤
(

2`+ 5

2

)
−
⌈
s1(2`+ 1) + 2s1

2

⌉
− `− 4 + s+ (s1 + 1)(n− 2`− 6),

implying that e(G) < φ(n, 2`+7, 3) for n < 3`+9+ 15
2`−1 and e(G) < ψ(n, 2`+4)+1

for otherwise, a contradiction. 2

If s = ` + 1, then NP (y∗) = {x3, x5, . . . , x2`+3} by Claim 20. Since G is
2P3 ∪ P2`+1-free, for each v ∈ Y \{y∗}, we have NP (v) ⊆ {x3, x2`+3} if ` ≥ 3 and
NP (v) ⊆ {x3, x5, x7} if ` = 2. Let s1 := maxv∈Y \{y∗} dP (v). Clearly, s1 ≤ 2 if
` ≥ 3 and s1 ≤ 3 if ` = 2. We may assume that NP (v1) 6= ∅ for some v1 ∈ Y \{y∗};
otherwise, e(G) ≤

(
2`+5
2

)
+ (`+ 1) +

⌊
n−2`−5

2

⌋
<
(
2`+6
2

)
+
⌊
n−2`−6

2

⌋
. Suppose that

xi ∈ NP (v1) for some i ∈ {3, 2`+3} if ` ≥ 3 and i ∈ {3, 5, 7} if ` = 2. Since v1xiy
∗

forms a copy of P3, we assert that xi−1xp and xi+1xp+1 cannot coexist in G for
p > i+ 1 or p < i− 1; otherwise, x1 · · ·xi−1xp · · ·xi+1xp+1 · · ·x2`+5 for p > i+ 1
or x1 · · ·xpxi−1 · · ·xp+1 · · ·xi+1 · · ·x2`+5 for p < i − 1 contains P3 ∪ P2`+1 as a
subgraph, a contradiction. An argument similar to Lemma 17(2) implies that
dP (xi−1) + dP (xi+1) ≤ 2` + 5. It follows that we can find s1 pairs of vertices
(xaj , xbj ) satisfying dP (xaj ) + dP (xbj ) ≤ 2`+ 5 where j ∈ [s1] and aj , bj 6= 2`+ 5.
Note also that G does not contain C2`+5 as a subgraph. Thus, we conclude that
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e(P ) ≤
(
2`+5
2

)
−
⌈
s1(2`+3)+2`+4

2

⌉
as a similar argument to Lemma 17(4), yielding

that

e(G) ≤
(

2`+ 5

2

)
−
⌈
s1(2`+ 3) + 2`+ 4

2

⌉
+ s+ s1 (n− 2`− 6) +

⌊
n− 2`− 5

2

⌋
.

If s1 ≤ 2, then e (G) < φ(n, 2`+7, 3) for n < 4`+10 and e (G) < ψ(n, 2`+4)+1 for
otherwise. In particular, for ` = 2 and s1 = 3, we have NP (x2) ⊆ {x1, x3, x5, x8}
and NP (x4) ⊆ {x3, x5, x7} as G is 2P3 ∪ P2`+1-free. Meanwhile, we can get
NP (x6) ⊆ {x3, x5, x7} and NP (x8) ⊆ {x2, x5, x7, x9} by symmetry. In addition,
NP (x1) ⊆ {x2, x3, x5} and NP (x9) ⊆ {x8, x7, x5} by symmetry. It follows that

e(G) ≤
(

9

2

)
− 2× 9− 10 + 3 + 3 (n− 2× 2− 6) +

⌊
n− 2× 2− 6

2

⌋
.

Thus e (G) < φ(n, 2`+ 7, 3) for n < 22 and e (G) < ψ(n, 2`+ 4) + 1 for n ≥ 22.

In what follows, we may assume that dP (y∗) = s ≤ `. Suppose that neither
G[V (P )\{xi, xi+1}] nor G[V (P )\{xi, xi−1}] contains a copy of P2`+3 for any xi ∈
NP (y∗). It follows that dP (xi−2) + dP (xi+1) ≤ 2`+ 3 and dP (xi−1) + dP (xi+2) ≤
2` + 3 for any xi ∈ NP (y∗). Note also that dP (x1) ≤ 2` + 2 − 2s as x1 misses
xi+1, xi+2 for any xi ∈ NP (y∗). An argument similar to Lemma 17(3) implies

that e(P ) ≤
(
2`+5
2

)
−
⌈
s(2`+3)+2s

2

⌉
. Hence

e(G) ≤
(

2`+ 5

2

)
−
⌈
s(2`+ 3) + 2s

2

⌉
+ s(n− 2`− 5) +

⌊
n− 2`− 5

2

⌋
.

It follows that e (G) < φ(n, 2`+7, 3) for n < 3`+ 19
2 + 4

` and e (G) < ψ(n, 2`+4)+1
for otherwise, a contradiction.

Now, we assume that there exists xi ∈ NP (y∗) such that either G[V (P )\
{xi, xi+1}] orG[V (P )\{xi, xi−1}] contains a copy of P2`+3, sayG[V (P )\{xi, xi−1}]
contains P2`+3 as a subgraph, denoted by P ′. Let s1 := maxv∈Y \{y∗} dP ′(v). Ob-
viously, G[V (P ′) ∪ {v}] is P3 ∪ P2`+1-free for any v ∈ Y \{y∗} as G is 2P3 ∪
P2`+1-free, implying that s1 ≤ ` − 1 for ` ≥ 3 and s1 ≤ ` for ` = 2. Let
G′ := G[V (P ′) ∪ (Y \{y∗})]. Note that G′ is P3 ∪ P2`+1-free as y∗xixi−1 forms
a P3. Since P ′ is a path of length 2` + 3, it follows from Lemma 17(3) that

e(P ′) ≤
(
2`+3
2

)
−
⌈
s1(2`+1)+2s1

2

⌉
.

Suppose that there are two vertices v1, v2 ∈ Y (note that v1 or v2 is not
necessarily y∗) and x ∈ {xi, xi−1} such that {x, v1, v2} forms a copy of P3. It
follows that dP ′(xi−1) ≤ ` − 1 (if x = xi) or dP ′(xi) ≤ ` − 1 (if x = xi−1) as
G[V (P )\{x}] is P3 ∪ P2`+1-free. This implies that e(P ) ≤ e(P ′) + 1 + (2`+ 3) +
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(`− 1) ≤
(
2`+5
2

)
−
⌈
s1(2`+1)+2s1

2

⌉
− `− 4. Thus

e(G) ≤
(

2`+ 5

2

)
−
⌈
s1(2`+ 1) + 2s1

2

⌉
− `− 4 + s+ (s1 + 1)(n− 2`− 6) +

⌊
n− 2`− 5

2

⌋
.

If ` ≥ 2 and s1 ≤ ` − 1, then e (G) < φ(n, 2` + 7, 3) for n < 3` + 17
2 + 13

2` and
e (G) < ψ(n, 2`+ 4) + 1 for otherwise, a contradiction. If ` = 2 and s1 = `, then
e(P ) ≤ 23 and e(G) ≤ 23+2+2(n−10)+

⌊
n−9
2

⌋
. One can easily check that e(G) <

φ(n, 2`+ 7, 3) for n < 22 and e(G) < ψ(n, 2`+ 4) + 1 for n ≥ 22, a contradiction.
Hence, we conclude that dY (y∗) = 0, dY \{y∗}(xi) = 0 and dY \{y∗}(xi−1) ≤ 1 as

xiy
∗ ∈ E(G). Note that e(P ) ≤ e(P ′) + 1 + 2(2` + 3) ≤

(
2`+5
2

)
−
⌈
s1(2`+1)+2s1

2

⌉
.

It follows that

e(G) ≤
(

2`+ 5

2

)
−
⌈
s1(2`+ 1) + 2s1

2

⌉
+ 2s+ s1(n− 2`− 7) +

⌊
n− 2`− 6

2

⌋
.

If s1 ≤ `−1, then e (G) < φ(n, 2`+7, 3) for n < 3`+ 17
2 + 5

`−1 and e (G) < ψ(n, 2`+
4) + 1 for otherwise, a contradiction. It suffices to check e(G) for the case s1 =
` = 2. Let P ′ = y1y2 · · · y7. Recall that s1 = maxv∈Y \{y∗} dP ′(v). It follows from
Lemma 17(1) and Lemma 17(2) that dP ′(y1) ≤ 2, dP ′(y7) ≤ 2, dP ′(y2)+dP ′(y5) ≤
7 and dP ′(y3)+dP ′(y6) ≤ 7, yielding that e(P ) ≤

∑7
i=1 dP ′(yi)/2+2×7+1 = 27.

Note that NP ′(v) ⊆ {y3, y5} for any v ∈ Y \{y∗} and G′ is P3 ∪ P5-free. This
implies that dP ′(v1) = dP ′(v2) = 0 for any v1, v2 ∈ Y \{y∗} with v1v2 ∈ E(G).
Therefore, e(G) ≤ 27 + 2(n− 9). It follows that e(G) < φ(n, 2`+ 7, 3) for n < 21
and e(G) < ψ(n, 2`+ 4) + 1 for n ≥ 21, a contradiction.

This completes the proof of Theorem 8.
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Appendix A. The Values of f`(s, s1) for 15 ≤ ` ≤ 19

`
s

s1 0 1 2 3 4 5 6 7 8 9

19

3 152 158.5 166 \ \ \ \ \ \ \
4 142.5 148 154.5 162 \ \ \ \ \ \
5 133 137.5 143 149.5 157 \ \ \ \ \
6 123.5 127 131.5 137 143.5 \ \ \ \ \
7 114 116.5 120 124.5 130 136.5 144 \ \ \
8 104.5 106 108.5 112 116.5 122 128.5 136 \ \
9 95 95.5 97 99.5 103 107.5 113 119.5 127 \

18

3 135 141 148 \ \ \ \ \ \ \
4 126 131 137 144 \ \ \ \ \ \
5 117 121 126 132 139 \ \ \ \ \
6 108 111 115 120 126 133 \ \ \ \
7 99 101 104 108 113 119 126 \ \ \
8 90 91 93 96 100 105 111 118 \ \
9 81 81 82 84 87 91 96 102 109 117

17

3 119 124.5 131 \ \ \ \ \ \ \
4 110.5 115 120.5 127 \ \ \ \ \ \
5 102 105.5 110 115.5 122 \ \ \ \ \
6 93.5 96 99.5 104 109.5 116 \ \ \ \
7 85 86.5 89 92.5 97 102.5 109 \ \ \
8 76.5 77 78.5 81 84.5 89 94.5 101 \ \

16

3 104 109 115 \ \ \ \ \ \ \
4 96 100 105 111 \ \ \ \ \ \
5 88 91 95 100 106 \ \ \ \ \
6 80 82 85 89 94 100 107 \ \ \
7 72 73 75 78 82 87 93 \ \ \
8 64 64 65 67 70 74 79 85 92 \

15

3 90 94.5 100 \ \ \ \ \ \ \
4 82.5 86 90.5 96 \ \ \ \ \ \
5 75 77.5 81 85.5 91 \ \ \ \ \
6 67.5 69 71.5 75 79.5 85 \ \ \ \
7 60 60.5 62 64.5 68 72.5 78 \ \ \
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