Discussiones Mathematicae
Graph Theory 44 (2024) 1513-1537
https://doi.org/10.7151 /dmgt.2507

THE TURAN NUMBER OF THREE DISJOINT PATHS

JINGHUA DENG, JIANFENG HOU
AND

QINGHOU ZENG!

Center for Discrete Mathematics
Fuzhou University, Fujian 350003, China
e-mail: jinghua_deng@163.com
jthou@fzu.edu.cn
zenggh@fzu.edu.cn

Abstract

The Turdn number of a graph H, ex(n, H), is the maximum number of
edges in an n-vertex graph that does not contain H as a subgraph. Let P
denote the path on k vertices and let |J;", Py, denote the disjoint union
of P, for 1 < i < m; in particular, write U:i1 P, = mPy if k;, =k
for all 1 < 4 < m. Yuan and Zhang determined ex(n,|J]~, Px,) for all
integers n if at most one of kq,...,k, is odd. Much less is known for all
integers n if at least two of ki,...,k, are odd. Partial results such as
ex(n,mPs), ex(n, P3U Pay1), (n,2P5), ex(n,2P7) and ex(n, 3P5) have been
established by several researchers. In this paper, we develop new functions
and determine ex(n,3P;) and ex(n,2Ps; U Pyy41) for all integers n. We also
characterize all the extremal graphs. Both results contribute to a conjecture
of Yuan and Zhang.
Keywords: Turdan number, disjoint paths, extremal graph.
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1. INTRODUCTION

The Turdn number of a graph H, ex(n, H), is the maximum number of edges
in an n-vertex graph that does not contain H as a subgraph. The study of
Turdan numbers plays a central role in extremal graph theory. One of the best
known results in this area is the Erdés-Gallai Theorem [6] about the path Py on
k vertices.

!Corresponding author.
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Theorem 1 (Erdds and Gallai [6]). Let n > k > 2 and G be a graph with n
vertices. If G does not contain Py as a subgraph, then e(G) < (k — 2)n/2 with
equality if and only if n is divisible by k — 1 and G is isomorphic to the disjoint
union of Kp_1.

Faudree and Schelp [7] further extended this theorem and determined ex(n, Py)
for all integers n and k, and characterized all the extremal graphs. Given two
graphs G; and G3, denote by GG; U G5 the disjoint union of G; and G2, and by
kG the disjoint union of k copies of G1. Let K, denote the complete graph on
n vertices.

Theorem 2 (Faudree and Schelp [7]). Let n = t(k — 1) + r for some integers
t>0and 0<r<k-—2. Then

ex(n, Py) = t(k ) 1> + (;)

Moreover, the extremal graphs are characterized.

Remark. If k is odd, then the extremal graph in Theorem 2 is isomorphic to
tKp_1UK,.

Let excon(n, H) denote the maximum number of edges in an n-vertex con-
nected graph that does not contain H as a subgraph. Kopylov [13] and Balister,
Gyori, Lehel and Schelp [1] determined excon(n, Py) and characterized all the ex-
tremal graphs. For two graphs G and Gs, let G1 + G2 be the graph obtained
from G U G2 by joining each vertex of G to each vertex of G5. Denote by G
the complement graph of G.

Theorem 3 (Kopylov [13]; Balister, Gyéri, Lehel and Schelp [1]). Letn > k > 4.

Then

€Xeon(n, F) = max { (k ; 2) +(n—k+2), (VSJz— 1

L)) [ o) e

where ¢, = 1 if k is odd and cp, = 0 if k is even. Moreover, the extremal graphs
are characterized.

Remark. If k is odd, then the extremal graph in Theorem 3 is isomorphic to
K+ (Kk_g UKn_k+2) for n < (5k — 7)/4 and KLk/QJ—l + (KQ U K, —L(k+1)/2j)
for n > (5k —7)/4.

Let Ui~ Py, denote the disjoint union of Py, for 1 <4 < m; in particular,
write (" Py, = mPy if k; = k for all 1 < i < m. Erdés and Gallai [6] deter-
mined ex(n,mP,) for all integers n and m. Bushaw and Kettle [3] determined
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ex(n,mPy) for sufficiently large n. Later, Lidicky, Liu and Palmer [15] deter-
mined ex(n, | J;", Py,) for sufficiently large n. However, for small n, much less is
known for ex(n,J;~, Px,). Gorgol [11] first determined ex(n,2P3) and ex(n, 3P3)
for all integers n. Since then, Campos and Lopes [5], independently, Yuan and
Zhang [17], determined ex(n,mPs) for all integers n and m. Recently, Yuan and
Zhang [18] made a big step and determined ex(n, J!", Py,) for all integers n when
at most one of kq,...,ky, is odd.

Definition (Yuan and Zhang [18]). Let n > m > ¢ > 2 be three integers and
n=(m-—1)+t({ —1)+r witht>0and 0 <r < /¢ — 1. Define

soemo= (") (51)+ )
sonm = (B, < (3]0 (- 3] +2)

We mention that ex(n, H) = (g) for any H on more than n vertices and K,
is the unique extremal graph. It follows that we may assume n > |V(H)| when
it comes to ex(n, H).

and

Theorem 4 (Yuan and Zhang [18]). Let ky > -+ >k, > 2 andn > > " k. If
at most one of ki,...,kny is odd, then

ex (n, U Pm)
=1
= max {¢(n, ki k), d(n, ky + ko, ko), d(n, > Kiskm), ¥ <n > k) } :
=1 i=1

Moreover, if k1, ..., kn are all even, then the extremal graphs are characterized.

If at least two of k1, ..., k, are odd, then there are only few partial results
for all integers n. Bielak and Kieliszek [2], independently, Yuan and Zhang [18]
determined ex(n, 2P5); Lan, Qin and Shi [14] determined ex(n, 2P;); and recently,
Feng and Hu [8] determined ex(n,3Ps). Let M, be the graph consisting of |n/2]
independent edges and one possible isolated vertex. Yuan and Zhang [18] also
established the following theorem.

Theorem 5 (Yuan and Zhang [18]). Let n > 20+ 4 with £ > 2. Then
ex(n, P3U Pypi1) = max{¢(n,20 + 1,20 + 1), ¢(n, 20 4+ 4, 3),1(n, 20 + 3) + 1}.

Moreover, the extremal graph is isomorphic to either t Kop U K,, Kopi 3 UMy, 203
or Ky + (Kg U Kn_g_g), where n =t (20) +r with 0 <r <20 —1.
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The authors also suggested a general conjecture on disjoint union of paths as
follows.

Conjecture 6 (Yuan and Zhang [18]). Let k1 > - > ky, > 2 and n > > k;.
If at least one of k1,...,kn is not three, then

ex <n, U Pk,)
=1
— max {¢(n, R A LD DL (n > VZD ' C}’
i=1

i=1
where ¢ =1 if all of k1, ..., kn are odd, and ¢ = 0 otherwise.

For more results related to the Turan problem of graphs and hypergraphs on
paths, forests or cycles, we refer the reader to [4, 9, 10, 12, 16]. In this paper,
we consider the Turdn number of three disjoint paths on odd number of vertices
and prove the following results, which partially confirm the conjecture of Yuan
and Zhang.

Theorem 7. Let n > 21 be an integer. Then

¢(n.21,7), if n <31,

3P) =
ex(n, 3F7) {8n35, if n > 32.

Moreover, the extremal graph is isomorphic to Koy U Ky_9g for 21 < n < 26,
Koo U KgU K, _9g for 27 <n < 31 and Kg + (KQ U Kn—l()) forn > 32.

Theorem 8. Let n > 20+ 7 with ¢ > 2. Then
ex(n,2Ps U Pyypyq1) = max{op(n,20 + 1,20+ 1), ¢(n, 20 + 7,3),¢(n,20 + 4) + 1}.

Moreover, the extremal graph is isomorphic to one of the graphs t KoUK, Kopig
UM, 9 ¢ and Ky + (K2 U Kn_g_g), where n =t (20) + 1 with 0 < r < 20— 1.

This paper is organized as follows. In the remainder of this section, we
describe notation and terminology used in our proof. In Section 2, we develop
new functions and prove Theorem 7. In Section 3, we give a proof of Theorem 8.

Notation. Let G be a simple graph. For a subset S C V(G), let G[S] be the
subgraph of G induced by S and G—S = G[V(G)\ S]. For each v € V(G), denote
Ng(v) the set of neighbors of v contained in S and dg(v) the number of edges
between v and S\ {v}. When S = V(G), we simplify Ny ((v) and dy (q)(v)
as Ng(v) and dg(v), respectively. For any S, T C V(G), let eq(S) denote the
number of edges of G with both ends in S, and eq(S,T") denote the number of



THE TURAN NUMBER OF THREE DISJOINT PATHS 1517

edges of G with one end in S and the other end in 7. We will drop the reference
to G when there is no danger of confusion. For z,y € V(G), we call that z hits
y if zy € E(G) and x misses y if xy ¢ E(G). A graph is H-free if it contains no
copy of H as a subgraph. Usually, we denote C}, a cycle of length k£ and write
(k] :={1,...,k}.

2. TuURAN NUMBER OF THE GRAPH 3P

2.1. Longest cycles in graphs

In this subsection, we mainly present some useful lemmas about longest cycles
in graphs. First, we shall use the following upper bound, proved by Erdés and
Gallai [6], on the maximum number of edges in graphs without long cycles.

Lemma 9 (Erdds and Gallai [6]). Let G be a graph with n vertices. If G does
not contain any cycles of length more than ¢, then e(G) < {(n — 1)/2, where the
equality holds if and only if n — 1 is divisible by £ — 1.

We also give a simple proposition on longest cycles, which is used frequently
throughout Section 2. The proof details are omitted.

Proposition 10. Let G be a graph and Cp = xgx1---xy_1 be a longest cycle
in G. For any x € V(G)\V(Cy) and 0 < i # j < { — 1, if za;,zx; € E(G),
then |i — j| > 1 and xip12j41, vi—1xj—1 ¢ E(G), where we take all the subscripts
modulo £.

Let G be a graph and Cy = xgz1---x4—1 (£ > 3) be a longest cycle in G.
Define

V' = {ve V(G\V(CY) : de,(v) > 1}

Choose some vertex f € V* such that dc,(f) is maximum. Suppose that N¢,(f) =
{ziy,...,x;, } with 0 <4y < --- < iy <€ —1. For any j € [s], let t; denote the
number of vertices in Cy between z;; and z;,,,, and sy = [{j € [s] : t; = 1}|. We
establish a useful lemma on the number of edges in G|V (Cy)] in terms of s and s;.

Lemma 11. Let Cy = xpx1 -+ - x9_1 be a longest cycle in G. Then

€>_5%+(25€+1)51+(81)€

G(G[V(Og)]) < ff (5781) = <2 2

Proof. For any j € [s] with ¢t; = 1, it follows from Proposition 10 that

doy(Ti41) S (U —=1)—s—(s—s1—1) =L 25+ 51.
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For any j € [s] with t; > 2, we claim that
doy(Ti41) +do (i, —1) <L —1+1;.

This follows from the fact that at most one of Tpri;+1 and Tp11@;, 1 belongs to
E(G) forany p > i1 or p < i;—1. Otherwise, fz;, @i, 1+ Tp11T4, 4 1Ti; -2
Ti;+1%p - - Ti; ., fisa Cpy in G, a contradiction. Note that th>2 tj=0—5—s51.
Thus, we have

GV e < (5) ~ 5 3 (6= 1 dey(ai, )

ti=1

1
- 5 Z (2€ -2- ng(l'ij—I—l) - dCZ(mij+1—1))

t;>2
/ s1(2s—s1—1)+>, o ({—1—1;
<(,) - RBRE 2 - i),
2 2
This completes the proof. [

Remark. For any fixed integer s > 0, fy(s,s1) is increasing with respect to sj.
Note that s; < s and 2s < . If 2s = ¢, then fy(s,s1) = fu(s,s) = w as
s1 = s; if 25 < £, then fi(s,s1) < fo(s,s — 1) = (5) — % as s1 < s—1
in this situation. The exact values of fy(s,s1) for 15 < ¢ < 19 can be found in

Appendix A.

Lemma 12. Let Cy = xgx1 -+ - x¢—1 be a longest cycle in G and Py, = f1fo--- fr be
any path in G—Cy such that £ > 2k and N¢,(f1) # 0. Then de,(fi) < |£/2]+1—1i
for each i € [k]. In particular, if dc,(f1) = [£/2], then dc,(fi) = 0 for eachi > 2.

Proof. Suppose that zof; € E(G). Since Cy is a longest cycle in G, we have
zjfi ¢ E(G) for any i € [k] and j € [{JU{l —14,...,£ — 1}. It follows that
de,(fi) < [(€—2i—1)/2]+1 = |¢/2] +1—i as £ > 2k. The second part is clearly
true by the maximality of £. Thus, we complete the proof. [

2.2. Proof of Theorem 7

In this subsection, we give a proof of Theorem 7. Throughout this proof, we
may assume that n > 21. Let G* = Ky U K,,_99 for 21 < n < 26, G* =
KogUKgUK,,_96 for 27 <n <31 and G* = Kg + (Kg U Kn—lO) for n > 32 (see
Table 1). It is easy to see that G* is 3P;-free.

Let G be any 3P;-free graph with n vertices and e(G) > e(G*). Let Cp =
xoT1 - -+ Ty_1 be alongest cycle in G and write F' = G — Cy. It follows easily that
¢ < 20 as G is 3P;-free. We give all the possible values of ¢ for different n as
shown in Table 1; otherwise, e(G) < e(G*) by Lemma 9, a contradiction.
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n G* e(G¥) l

21 Koy U K4 190 20

22 Kog U Ky 191 19,20

23 Koy U K3 193 18,19,20

24 Koy U Ky 196 18,19,20

25 Kog U K5 200 17,18,19,20

26 Kog U K 205 17,18,19,20

27 Koo U KgU Ky 205 16,17,18,19,20

28 Koo U KgU Ko 206 16,17,18,19,20

29 Koo U KgU K3 208 15,16,17,18,19,20

30 Kooy U KgU Ky 211 15,16,17,18,19,20

31 KogU Kg U K5 215 15,16,17,18,19,20
>32 | Kg+ (K2 U Kn—lO) 8 — 35 | 15,16,17,18,19,20

Table 1. G* and all the possible values of ¢ for different n.

For any couple of (a,b) as shown in Table 2, it is easy to check that an+b <
e(G*) for all integers n > 21. In what follows, we show that G is isomorphic to
G*, or we have e(G) < an + b for some couple of (a,b) as shown in Table 2. This
leads to a contradiction. We proceed our proof by showing the following series of
claims.

al| 25| 3 |35 |4 |45 5 |55| 6 |65 7 7.5 8
b| 135|120 | 105 | 90 | 75 | 59 | 44 | 28 | 12 | —4 | =20 | —36

Table 2. a and b.

Claim 13. G is isomorphic to G* for £ = 20 and n < 31; Otherwise, 15 < £ < 19
and maxyey () dc, (v) > 3.

Proof. 1If £ = 20, then d¢,(v) = 0 for each v € V(F). It follows that e(G) <
(%) + ex(n — 20, P;). Since ex(n — 20, P;) < 5(n — 20)/2 by Theorem 1, this
is a contradiction for n > 32. For 21 < n < 31, we have e(G) = e(G*) =
(220) + ex(n — 20, Pr), implying that G is isomorphic to G*, as desired.

Ifdc,(v) < 2forany v € V(F), thene(G) < (5) +2(n—0)+5(n—~)/2 = 4.5n+
£(¢ —10)/2. Tt follows easily that e(G) < 4.5n+£(¢ —10)/2 < 4.5n+ 72 < e(G*)
for all 15 < ¢ < 18 by Table 2, a contradiction. Thus, it suffices to check the
case £ = 19. Since G is 3P;-free, we know that the set I consisting of all the
vertices that have neighbours in Cjg is an independent set in F'. This yields that
e(G) < (129) + 21| 4+ 5(n — |I] — 19)/2 < 2.5n + 123.5 < e(G*) by Table 2, a
contradiction. )
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Suppose that P, = f;--- fx is a longest path in F such that Ne, (f1) # 0.
Clearly, we have k + £ < 20 as G is 3P;-free. Without loss of generality, we
may assume that xof1 € F(G). In the following proofs, we will often use the
maximality of £, k and the fact that G is 3P;-free.

Claim 14. If k =1, then e(G) < e(G*). The equality holds if and only if G is
isomorphic to G* for n > 32.

Proof. Let f be a vertex in F' such that d¢,(f) is maximum. Since k = 1,
we may choose fi = f. Let V* s and s; be defined as those in Subsection
2.1. By the maximality of k, we know that V* is an independent set in G and
e(V*,V(F)\V*) = 0. It follows that

e(G) < e(GIV(CH) + Y e(v,V(Cy) +ex(n— L — [V, Py)
veV*
(1) < fe(s;s1) + sV +5(n — L= [V*])/2 < fu(s, s1) + s(n — 0),

where the last inequality follows from the fact s > 3 by Claim 13. Recall that
fe(sy81) < fo(s,s — 1) for 2s < £. Clearly, fo(s,s — 1)+ s(n — £) is monotonically
increasing with respect to s for s < n — £. Thus, by Lemma 11, we have

e(G) < fi(s,s—1)+s(n—1¥)
(2) < fo(le/2],14/2) = 1) + [£/2)(n =€)
(3) < fu(le/2], [4/2)) + [£/2)(n — £).

We use (2) if 2s < ¢, otherwise we use (3) in the coming inequalities. Therefore,
we obtain the following: (i) e(G) < Tn — 27 for £ = 15 and e(G) < 8n — 36 for
¢ =16, (ii) e(G) < ™n — 10 for £ =17 and s < 7, (iii) e(G) < 5n + 49 for £ = 18
and s < 5, and (iv) e(G) < 3n + 109 for £ = 19 and s < 3. In particular, (v)
e(G) <4n + 86 for £ =19 and s = 4; (vi) e(G) < 6n + 25 for £ = 18 and s = 6.
Thus, we have e(G) < e(G*) for any of the above cases. In what follows, we
consider the remaining cases when 17 < ¢ < 19.

Casel. £ =19 and 5 < s < 9. Note that N¢,,(v) C {zo, 2, x3, x5, X7, T9, 10,
x12, %14, %16, x17} for any v € V\{f} as zof € E(G) and G is 3P;-free. This
implies that dec,, (v) < 8 for any v € V*\{f} as at most one of z; and z;+; belongs
to Ngy,(v). Recall that Ne,(f) = {x4,..., @i, } with 0 <@y < -+ < iy <0 —1,
and t; denotes the number of vertices in Cy between z;;, and x;,,, for any j € [s].
If ;1 >1and tj41 > 1 for any j € [s] with ¢; = 1, then s; < [s/2]. Thus

e(@) < fio(s,81) + s+ min{8, s}(|V*| — 1) + 5(n — 19 — |[V*|)/2
< max{5n + 48,6n + 23, 7Tn — 8.5,8n — 35.5} < e(G").
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As a consequence, there exists j € [s| such that ¢; = ;41 = 1. This means that
{@i;, T, 42, Ti;pa) € Ney, (f). Without loss of generality, we might assume that
{zo, 17,215} C Ney, (f), then we have Ney, (v) C {z3, x5, 210, 12} for any v €
V*\{f} since G is 3P;-free. Thus, we conclude that d := max,cy«\ (7} dc, (v) < 4.
It follows that

e(G) < fig(s,81) +s+d(|[VF]—=1) +5(n—19 —|V*|)/2.

Choose s1 = s—1 and it is easy to check that e(G) < 4n+84.5 < e(G*) according
to Table 2.

Case2. { =18 and 7 < s < 9. If s € {7,8}, then we may assume that s; > 6
and [{v € V* 1 dg(v) = s} > 2; otherwise,

e(G) < max{f(s,5) +s(n —18), fo(s,s = 1) + s+ (s — 1)(n — 19)}
< max{6n + 19,7n — 7,8n — 39} < e(G").

Let doy (f') = deys (f) = s for some f/ € V\{f}, E1 = Umi,zjeNclg(f){xinjH’
mi_lmj_l} and EQ = Uﬂfi,ijNcls(f/){xi""lmj"'l’ xi—lxj—l}- Clearly, Ei ﬂE(G) = @
for any ¢ € {1,2} by Proposition 10. We first consider the case s = 7. We
may assume that No(f) = {0, x2, T4, 6, 23, T10, T12} as s1 > 6. If Ney (f) =
Ney(f), then Nej(v) = {215} for any v € Vi\{f, f'} as G is 3P;-free. This
means that e (G) < f1g(7,6) + 7 x 2+ 5(n — 20)/2 = 2.5n + 90 < e(G*). Sup-
pose that Ny (f) = {zjo, Ty, ..., @i} with z;; € Neyo(f). Therefore, at least
one of xj 1 and xj,_1 is not associated with the vertex pairs in Eq, say @j,41.
This implies xj 412,41 € Eo\E1 for each i € [6]. It follows that |Ey| > 27 and
|E2\E1| > 6. Thus e(G) < (3) — |E1| — [E2\E1| + 7(n — 18) = Tn — 6 < e(G¥).
Now, we consider the case s = 8. By symmetry, it is easy to check that
Neyo(f) is one of the following five sets M = X* U {zsg, z10, 12,14}, A = X* U
{zs, 710,712, 215}, B = X" U{ws, 210,713,715}, C = X" U{wg, 211,213,715}, D =
X*U {.1‘9,.%11,33‘13,3315}, where X* = {$0,1‘2,l‘4,3§6}. If Nclg(f/) = NC1g(f) €
(M, A, BY, then V\{f, f'} = 0. It Noy, (f') = Ny (f) € {C, D}, then Ne,, (v) C
{xo, 24,211, 213} for any v € V*\{f, f'}. Thus e(G) < f18(8,7)+8x2+4(n—20) =
4n+54 < e(G*). Suppose that Ne (f') = {xj,, @iy, - - ., Tig } with zj, & Ney (f)-
If Neyw(f) = M, then jo # 16; otherwise, Ney(v) C {xo,x16, 214} for any
v e VAL, '} and e(G) < (3) + 25+ 3(|V*| —2) +5(n — 18 — [V*)/2 < e(G*).
Thus, we have |Ej| > 35 and |Ex\Ej| > 14. If N¢(f) € {A, B,C, D}, then
|E1| > 41 and |E2\E1| > 7. In either case, we conclude that e(G) < (128) —|Ey| —
|E2\Eq| + 8(n — 18) = 8n — 39 < e(G*).

If s =9, then we may assume that Ney, (f) = {20, x2, x4, T6, s, T10, T12, T14,
x16}. Note that if viz; € E(G) for some v1 € V*\{f} and some 0 <i < ¢ —1,
then Ngy, (v) C {xq, xp, x;} with i +2 = a (mod 18) and i — 2 = b (mod 18) for
any v € V\{f,v1}. Thus e(G) < f18(9,9) +9 x 24 3(n—20) = 3n+ 75 < e(G*).
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Case 3. ¢ = 17 and s = 8. It follows from (1) that e(G) < f17(8,7) +
8(n — 17) = 8n — 35, implying e(G) < e(G*) for any 21 < n < 31. Thus,
we have e(G) = e(G*) = 8n — 35 with n > 32. This means that (i) s; =
7, (ii) e(G[Cr7]) = f17(8,7) = 101 and |V*| = n — 17, and (iii) d¢y,(v) = 8
for each v € V*. Since zof1 € E(G) and dg,,(f1) = 8, we may assume that
Ney. (f1) = {xo, 22, x4, x6, T8, T10, T12, T14}. In view of the proof of Lemma 11,
we conclude that dey, (z;) =¢ —2s+s; =8 for any i € I := {1,3,5,7,9,11,13}
and dc,,(215) + dcy, (v16) = £ — 14+ 2 = 18. Note also that z;2; ¢ E(G), except
for z15216 € E(Q), for any ¢,5 € I; U{15,16} by Proposition 10. This means that
N(x15) = NCn(fl) U {$16}’ N(xlf)') = NCI7(f1) U {x15} and N(xl) = NCI?(fl)
for any i € I;. Let Iy :={0,2,4,6,8,10,12,14}. Clearly,

> doy (1) = 2e(G[Cra]) = Y deys (1) = (deys (215) + deyy (16))

i€l i€l
=202—-7x8—18 =128.

This together with the fact that dey,(x;) < 16 for each ¢ € I implies that
Ney, (zi) = V(Cir)\{z;i} for each i € I,. Thus, N¢,,(f1) forms a copy of Ky
in G and G[V(C17)] = Kgs + (K2 U K7). Moreover, it is easy to check that
Necy,(v) = Ney, (f1) for each v € V*; otherwise, we obtain a cycle of length larger
than 17. Consequently, we obtain G = G* for n > 32, as desired. O

Let V4 be the set of all vertices in F} = F — P, that have neighbours in pg;
let V5 be the set of all vertices in V' (F7)\V; that have neighbours in V; UV (Fy);
let V3 be the set of all vertices in V(F1)\ (V4 U Va) that have neighbours in Va;
and let Vo = V(F1)\(V1 U Vo U V3). Thus

e(G) = e(GIV(CO))) + (e(V(Pe), V() + e(GIV ()
@)+ (e, V) UVIB)) +e(GVD) + (e(Va, Vi UV(BR) + e(GIVa)) )

+ (e(Va, Va UVh) + e(GWA])) + e(G Vo)),

By Lemma 12, we have
. 3 k k
V(P V(C) + GV B < Y de () + (3) < blej2 -1
=1

Let s := maxy,ey, dc,(v) and s;1 be defined as that in Subsection 2.1, where V}
plays the role of V* in the following proof. We may assume that s > 2; otherwise,
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e(G) = e(GV(Cp)]) + e(Vi, V(C)) + e(V (By), V(Cr)) + e(F)
(£> +(n—0—Fk)+k[(/2] — <k> + g(n—f)
7
2

IN

2 2
{+k—8 <k+1>
n+-————~>— ,

2 2

implying that e(G) < ™n/2 + 6 —3 < Tn/2+ 105 < e(G*) as £ + k < 20 and
k > 2, a contradiction.

Claim 15. For any k > 2, we have e(G) < e(G*).

Proof. We proceed our proof by considering the following several cases in terms
of k. We mention that 2 < s < [¢/2].

Casel. k=2and ¢ € {15,16,17,18}. By the maximality of k, we obtain that
(i) G[V1] is Ps-free and e(Vi, {f1, fo}) = 0; (ii) V2 is an independent set and V3 =
0; (iii) dv,ugy(v) < 1 and vfe ¢ E(G) for each v € V5 and e(Vo, V(F)\Vp) =
0. This together with Lemma 12 (for k& = 2) implies that e(V1, V(Cy U Py)) +
e(GIVA)) < min{s +1/2, [£/2] }[Va . Thus, by (4)

e(G) < fi(s,s1) +2[4/2] — 1 +min {s+ 1/2, [£/2]} |V1] + |Va| + 5|Vol/2
(5) < fo(s,s1)+2|€/2] =14+ min{s+1/2,|[¢/2]} (n — ¢ —2).

We first consider the case ¢ < 17. If s = 8, then ¢ € {16,17} and by the
remark after Lemma 11,

e(G) < fils, 1) +8(n —£) =1

< max{s(gsz_l) +8(n —16) — 1, (127> — @_1)2(8+2) +8(n—17)—1}

=8n — 36 < e(G").
If s <7 by (5), then

e(G) < <§)—(8_1>2(8+2)+£—1+<s+;> (n—10—2).

Note that n > 25 by Table 1. This implies that the last function is monotonically
nondecreasing with respect to the integer s < 6. Thus, e(G) < 6.5n+£2/2 — 6/ —
34 < 6.5n < e(G*) for s < 6, and e(G) < 7.5n+£2/2—70—43 < 7.5n—26 < e(G*)
for s =1T1.

Now, we consider the case ¢ = 18. If s = 5, then e(G) < 5.5n 4+ 43 < e(G¥)
by (5). If s <4, then

o(G) < <128> —(‘9_1)2(‘9+2)+17+ (s—l—;) (n—20) < 171—gs+ <s + ;) (n—20)



1524 J. DENG, J. HOU AND Q. ZENG

as s > 1. Note that n > 23 by Table 1. This implies that the last function is mono-
tonically increasing with respect to s. Thus, e(G) < 4.5n+75 < e(G*). It suffices
to assume that s > 6. Let A; be the set of all isolated vertices in V; and Ay =
Vi\A;. Since G is 3P;-free, we have N¢, (v) C {xzo, x2, 24, x7, T9, T11, T14, T16} for
any v € Ay and Ng, (v) C {zo, 24,27, 211,214} for any v € Ay. This implies that
$<8, s <s—2and e(V,V(CoUP))+e(GVi]) < s|Vi| — (s —5.5)| Aa| < s|V4|.
Thus

e(Q) < fo(s,s1) +214/2] =1+ s(n—0—2) < f(s,s —2)+ 17+ s(n — 20)

18 2+ s+12
2 2

= + 17+ s(n — 20).

It follows that e(G) < Tn — 4 < e(G*) for s = 7 and e(G) < 6n + 23 < e(G¥)
for s = 6. In what follows, we check the case s = 8 more carefully. We aim
to show that dc,(f1) + dc,(f2) < 12, implying that e(G) < f13(8,6) + 12+ 1+
8(n —20) = 8n — 36 < e(G*). This is clearly true if dc,(f1) = 9 by Lemma 12
(for k = 2). Suppose that dc,(f1) < 8. Note that there exists v € Vi N¢,(v) =
{0, 9, x4, 27,29, 211,14, 16} as s = 8. This together with the maximality of ¢
implies that N¢, (f2) € {xo, x4, x5, 27, T9, 11, T12,T14} &S Tof1 € E(G), yielding
that dc,(f2) < 6. Note also that dc,(f1) < 6 providing that zofo € E(G) by the
symmetry of f; and fa, as desired. Thus, we may assume that and zo ¢ N¢,(f2)
and dg,(f2) < 5. Clearly, de,(f1) + dc,(f2) < 8+4 =12 if de,(f2) < 4. It
suffices to check that dc,(f1) < 7 if dc,(f2) = 5. This is definitely true by the
maximality of £ as N¢,(f2) C {x4, x5, x7, 9, 11, T12, T14}, as required.

Case 2. k=3 and ¢ € {15,16,17}. By the maximality of k, there is no P
in F whose endpoints hit C; for any ¢ € {15,16,17}. Thus, we obtain that (i)
both G[V;] is Py-free and G[V5] is Ps-free, (ii) V3 is an independent set in G, and
(iii) e(u, V2) <1 for each u € V3 and e(Vp, V3) = 0.

Let A; be the set of all isolated vertices in V; and Ay = Vi\A;. Note that
e(v,Py) < 1 for each v € A; and e(As, P,) = 0 by the maximality of k. Let
Ayl = {’U € A 6(1),]5k) = 1} and Ap = Al\AH. Clearly, 6(‘/1,V(Pk)) = ’A11|
and e(G[V1]) < |Az| as G[V4] is Py-free. Thus,

e(V1,V(Co) UV (Br)) + e(GVA]) < s[Va| + |An| + |4

We also define By = {u € V2 : dy, (u) > 3}. For any u € By, it is easy to see that
Ny, (u) C A1z and Ny, (u) N Ny, (u') = 0 for any v’ € B1\{u}; otherwise, we have
a Py starting at Vi, a contradiction. Let A}y = J,cp, Nvi(u). It follows that
e(B1, V1) = S uep, dvi (u) = |Afy] < |Ar2]. Note also that e(u, P;) < 1 for each
v € Vy. Define By = {u € Va : e(u, B,) = 1}. Clearly, e(Va,V(B})) = |Bo|. By
the maximality of k, we deduce that e(Bp, V1) = 0. It follows that e(V2, V1) <
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2(|Va| = |B1]| — | Bo|) + e(B1, V1) < 2|Va| — | Bo| + |A}5]. Thus, we conclude that
e(Va, ViUV (By))+e(G[Va]) < (2|Va|—|Bo|+|A%s|) +|Bo|+|Va|/2 < 5|Va|/2+]Al,|.
Note that |A11| + |A2| + |Al5| < |Vi|. Tt follows from (4) that

e(G) < fols,s1) +31€/2] — 1+ (s|Va| + [Ann| + [A2])
+ (5Va|/2 + [Al]) + V3| + 5| Vol /2
< fo(s,s1) +314/2] =14 (s+1)(n— £ — 3).

We first consider the case ¢ = 17. Clearly, e(G) < fi7(5,4) +23+6(n—20) =
6n + 25 < e(G*) for any s < 5. Suppose that s > 6. Since G is 3Pr-free,
N¢,(v) C {xg, x3, x5, X7, T10, T12, T14} for any v € V4. This implies that s € {6, 7}
and s; < 4. Thus, e(G) < Tn—7.5 < e(G*) for s = 6 and e(G) < 8n—40 < e(G¥)
for s = 7. Now, we consider the case ¢ € {15,16}. Suppose that s < 7. Recall
that n > 27 by Table 1. It follows that the function f(s,s — 1)+ 3[¢/2] — 1+
(s +1)(n — ¢ — 3) is monotonically increasing with respect to s. Thus, e(G) <
8n + (22 — 70 — 52 < 8n — 36 < e(G*) for s < 7. Suppose that s = 8 and
¢ =16. We bound e(V1,V(Cy)) more carefully. For any v € V; with dp, (v) > 1,
we have N¢, (v) C {zo, 2, 3, T, T7, T9, T10, 13, 14} for £ = 16. The maximality
of ¢ implies that d¢,,(v) < 5 for any v € Ay U Aly. Note also that de,,(v) < 6
for any v € A1 by Lemma 12. This implies that

e(V1,V(Cie)) < 8(|A12| — [Ala]) + 6] A11] + 5(| A2| 4 A7)
= 8|Vi| — 3|Ag| — 2|Ap1| — 3| ATy
It follows that

e(G) < fo(s,s1) +34/2] — 1+ 8|Vi| — 2|Az| — |A1n1] — 2| Al
+ 5|Va|/2 + |V3| + 5[V]/2
< £4(8,8) + 23 + 8(n — 19) = 8n — 37 < e(G*).

Case 3. k=4 and ¢ € {15,16}. Since G is 3Pr-free, F} does not contain P
whose endpoints hit Cy U Py,. Thus we have (i) both G[V1] and G[Vs] are Ps-free,
(ii) V3 is an independent set in G, and (iii) e(Vp, V3) = 0. By the maximality of k,
for any v € V1, we know e(v, V(P,)) = 0 if dy, (v) > 1; otherwise, e(v, V(P,)) < 1.
It follows that

S (v, V(CrUPy) + e(GIVA]) < (s + 1)|VA.
veVy
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Similarly, we also have e(u, V(Py)) < 2, e(u, V1) < 1 and e(u, V3) < 1 for each u €
Va. It follows from (4) that Note that Ny, (v) € {xo, z2, x4, x5, 7, Tg, T11, T12,
x14} for any v € Vj and ¢ = 16. This implies that d¢,,(v) < 7 for any v € Vj.
Thus, s <7 for any ¢ € {15,16}. By (4)

e(G) < fo(s,s1) + k[£/2] — 1+ (s + 1)|Vi| + 3|Va| + | V3| + 5|Vo|/2
< fo(s,s—=1)+4[4/2] =1+ (s+1)(n—L—4).

Note that n > 27 by Table 1. This implies that the last function is monotonically
nondecreasing with respect to the integer s < 7. Thus, e(G) < 8n+¢2/2—13(/2—
60 < 8n — 36 < e(G™).

Case 4. k =5 and ¢ = 15. Since G is 3Pr-free, we have (i) both G[V;] and
G[Va] are Ps-free, (ii) V3 is an independent set in G, and (iii) e(v, V1) < 1 for each
v € Va, e(u, Va) < 1 for each u € V3 and e(Vp, V3) = 0. Moreover, e(v, V(P;)) < 2
for any v € V3 UV, by the maximality of k. Since G is 3Py-free and zo f; € E(G),
it is easy to see that Ny, (v) C {x3, 24,25, 210,211,212} for any v € V;. This
implies that s < 4. Thus

e(G) < fuls,s = 1) + k[£/2] + (s +5/2)[Vi| + 7|Val/2 + [V3] + 5] Vol /2

< (125> S VEED | s/ - 20) < 6.5m 41 < (@),

This completes the proof of this claim. O

In view of Claims 13, 14 and 15, we conclude that G is isomorphic to G* if
(i) £ =20 and n < 31, or (ii) £ = 17, k = 1 and n > 32; otherwise, we have
e(G) < e(G*), a contradiction. Thus, we complete the proof of Theorem 7. m

3. TURAN NUMBER OF THE GRAPH 2P3 U Pyyiq

3.1. Lemmas
In this subsection, we give two lemmas used frequently in our proof of Theorem 8.

Lemma 16. For an integer £ > 2, let G be a graph on n vertices that does not
contain a copy of PyUPs and e(G) > ¢(n,0+3,3). If G contains a copy of either
Cog1 or Cypa, then G is isomorphic to Kpyo U M, _¢_o.

Proof. Suppose that G does not contain a copy of P3U Py and e(G) > ¢(n, ¢ +
3,3). If G contains a copy of Cy o, then each vertex in G — Cpio cannot hit any
vertex in Cyya, and G — Cypyo consists of independent edges and isolated vertices,
which implies that G is isomorphic to Ky oUM,,_y_o. If G contains a copy of Cyy
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and does not contain a copy of Cyyo, then there is at most one edge between any
two consecutive vertices on Cpy1 and G — Cyqq. In addition, G — Cyy; consists of
independent edges and isolated vertices. Hence e(G) < (%1) + L%J + L%HJ <
(%2) + L"‘THJ = ¢(n,l + 3,3), a contradiction. [

Lemma 17. For an integer £ > 2, let G be a graph that does not contain a copy
of Py U P3. Suppose that G contains a path P = x1---xpy9 on £ + 2 vertices and
s =max{dp(v) :v € V(G)\V(P)}. Then (1) dp(z1) <L+ 1—2s, (2) there exist
2s distinct vertices xg_, ., with T € [s] in P such that dp(zg,)+dp(x,,) < +2
with v > Br > 2, and (3) e(P) < (%2) — [5”7251 Moreover, (4) if G also does
not contain Cyy1 and Cyya, then e(P) < (552) - (%].

Proof. Let © € V(G)\V(P) be such that Np(z) = {zi,,...,x;,} with i1 <
.-+ < ig. Note that G does not contain a copy of Py U Ps. It follows that (i) =
misses x1, T2, Lry1, Tet2; (i) 2 hits at most one of x; and xj41 for j € [ + 1],
and (iii) « hits at most one of z; and xj44 for j € [¢ —2]. Thus, we have
3<iq <ig+1 —1<{l—1and iqq4; —io # 4 for any a € [s — 1].

(1) Note that x1 misses x;_+1 and ;o for each o € [s]. Otherwise, we have a
copy of P3U P, by choosing xx;_ x;,—1 and x;,—2 - - - T1%;,+1 - - - Te42 for 124, 41 €
E(G), or choosing xz;_ x;,+1 and x;, 1 212,42 Tero for z1x; 11 € E(G),
a contradiction. In addition, we know that iq +2 < iq41 + 1 for each o € [s —1].
Thus dp(x1) < €+ 1—2s.

(2) We first show that either iy — 2,70 + 1,90+1 — 2,%0+1 + 1 OF iq — 2,iq +
1,941 — 1,%q+41 + 2 are four distinct numbers. In fact, if iq41 = i + 2, then
la—2<igr1 —2<ig+1 <igr1+1;ifiqr1 > iq+3,thenip —2 <in+1<
Totl — 1 < ig41 + 2. Similarly, iq — 1,404 + 2,%0+1 — 2,%a+1 + 1 are four distinct
numbers. In fact, if 2 < 441 —iq < 3, then iy — 1 < igr1 — 2 < i+ 2 <
lotl + 15 if daq41 —tq > 4, then iq — 1 < i +2 < Gg41 — 2 < tq41 + 1 as
iat+1 — ta # 4. Hence, there exist t1,...,ts € {1,2} with ¢; = 1 such that
i1 —t1,01+3—1t1,19—ta, 99+ 3 —to,...,i5s—ts,15s+ 3 —ts are 2s distinct numbers.

Now, we claim that dp(x;,—1)+dp(x;,+2) < €+2and dp(x;, —2)+dp(x;,4+1) <
¢+ 2 for a € [s]. In fact, if ;,—1 hits a vertex x; for j < iq — 1, then z;_ 4o
must miss x;41; and if x;, 1 hits a vertex z; for j > i, + 2, then z;_ 4o must
miss z;41. Otherwise, G contains a copy of P, U P3, a contradiction. In addi-
tion, z;,—1 misses x; 49 and xyy9, and x;, 49 misses 1. Hence, dp(x;, +2) <
{+1—(dp(xj,—1) —2) — 1, implying the first inequality of our claim. A similar
argument as above shows that the second inequality of our claim also holds.

For each 7 € [s], let 5, = iy — t; and v, = i + 3 — t;. Due to the above
arguments, we have 2s distinct vertices xg ,z,, with 7 € [s] in P such that
dp(xzg,) +dp(xy,) <L+2and v, > 5 > 2.
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(3) Note that 2e(P) = > ;e dp(zi) < (€+1—2s) +s({+2)+ ((+2 -
25— 1)(£+ 1) in view of (1) and (2). It follows that e(P) < (“5?) — [=£525].

(4) Tt is easy to see that dp(x1) + dp(xp+1) < £ and dp(z1) + dp(zpq2) <
¢ 4+ 1. Otherwise, it follows from the proof of Dirac’s theorem on Hamiltonian
cycles that G must contain a copy of either Cyy1 or Cyio, a contradiction. Note
that f; > 1 and either z,, # xy1; or =, # x¢19. It follows from (2) that
2¢(P) = Y ey dp(@i) < (C+1) +s(0 +2) + ({42 — 25 — 2)(¢ + 1), implying
that e(P) < (652) - {5“'72“1]. |

3.2. Proof of Theorem 8

In this subsection, we prove Theorem 8. For any integer £ > 2, let G be a graph
containing no 2P3 U Py, and

e(G) > max{p(n,20 + 1,20+ 1), p(n, 20 + 7,3),1(n,20 + 4) + 1}.

If G is Py y1-free, then e(G) = ¢(n, 20+ 1,20+ 1) and G = t Ky UK, by Theorem
2, where n = t(2¢) + r and 0 < r < 2/. Thus, we may assume that G contains
P2€+1 and

e(G) > max{¢(n,20 +7,3),¢(n,20 +4) + 1}

{2 O) o [ (U o e ).

By Theorem 5, we know that G contains P3 U Pysy1. Note that G is P3 U Popqy-
free. By Lemma 16, if there exists a copy of Caprg or Coprs in G, then G is
isomorphic to Kopyg U My,—o¢—g. In what follows, we may assume that G does
not contain Copy¢ and Copys.

Claim 18. G contains no Payi¢.

Proof. Suppose that G contains a path P = xjx2 - - - T9g16 on 2046 vertices, and
Y =V(G)\V(P). Let s = max{dp(v) : v € V(Y)}. Note that each v € Y misses
{xl, L2y T4y X5, X7y T2y XL2UY+25 L2U+3y L2U+5, x'gg_i_ﬁ} as G is 2P3 U P2g+1—free. This
implies that s < ¢ for any ¢ > 2. Recall that G is also P3 U Py 4-free containing
no Cory¢ and Corys. By Lemma 17(4), we have e(P) < (26;6) - [w—‘
Since G[Y] is Ps-free and e(G) = e(P) + e(P,Y) + e(Y), we conclude that

(6) ¢(C) < (26;—6) B {s(2£+4)2+2£+5w +S(n_%_6)+{

n—20—6
— |

If n < 30+9, we have — [(s (204 4) + 20 +5)/2]+s(n — 20 — 6) < —({+2)s—{—
3+(0+3)s < 0, then e (G) < (*50)+|2=2=C| = ¢(n,20+7,3); If n > 3(+9, then
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right side of the inequality (4) is expanded at most 202+4+9¢+9+5(n—3(—8)+n/2 <
2024-90+9+4(n—3¢—8)+n/2. So we can verify e(G) < (Zgl)+(€+1)(n—€—1)+1 =
¥(n,20 +4) + 1 for £ > 5. This leads to a contradiction in either case. In what
follows, we get a contradiction by checking more carefully for the remaining values
of /.

If ¢ = 4, then Np(y) C {x3, z¢, 9, x12} for each y € Y as G is 2P3U Py 1-free.
In addition, it is easy to check that (6) also holds unless s = 4 and there exist
at least two vertices y1,y2 € Y satisfying Np(y;) = {z3,x6, x9, 212} for i € [2].
Thus, x9 misses any vertex in {z4, x5, 7, T3, T10, T11, £13, T14} and x5 misses any
vertex in {x1, 9, X7, X8, T10, 11, T13, T14} as G is 2P U Pypiq-free, implying that
dp(x2) +dp(zs) <12 = (20 +6) — 2. Note that xg, = x2 and x,, = x5 by using
Lemma 17(2) with s = 4. According to Lemma 17(4), we have

2£+6> B F(%JFLLH%J“T
2

e(G)§< A

Thus, e(G) < ¢(n,20+7,3) for n < 22 and e(G) < (T + (L +1)(n—£—1) +1
for n > 22, a contradiction.

If £ = 3, then Np(y) C {x3,x10} for each y € Y. Clearly, s < 2. In view of
(6), e(G) < ¢(n,20 +7,3) for n < 20 and e(G) < ¥(n,2¢ +4) + 1 for n > 20, a
contradiction.

If £ = 2, then Np(y) C {z3,23} for each y € Y, and dp(y’) = 0 for each
y' €Y with dy(y') > 0. It follows that s < 2 and

¢(G) < (26;6) B [s(2£+4)2+2£+5w b s(n—20—6).

—1+s(n—2€—6)+vl_2MJ.

Thus, e(G) < ¢(n,20 +7,3) for n < 19 and e(G) < (%1) +(l+1)(n—t-1)+1
for otherwise, a contradiction. O

Claim 19. G contains a copy of Parys.

Proof. Suppose that G is Pyyys5-free. We claim that G is connected. Otherwise,
if one of the components, say C' with n; vertices, contains Ps U Poyy1 and other
components are disjoint edges or isolated vertices, then by Theorem 3

2
Smax{<2£;_3> by 23, <€;1> +(e+1)(n1—z—1)+1}

+ {”;”ﬁ < max{(n, 2 +7,3),9(n, 2 + 4) + 1},

(@) = e(C) + (G — C) < exeon(n1, Parrs) + V - "1J
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a contradiction; if one of the components, say C' with n; vertices, contains Poyy 1
but is P3 U Pyyyq-free and other components are 2Ps-free, which means e(C) <
ex(ni, P3U Pyy1) and e(G — C) < ex(n — ny,2P3), then by Theorem 5,

e(G)=¢e(C)+e(G—-C) <ex(ni, P3UPyq) +ex(n —ny,2P3)

:max{<%2+3> + V”_SK_SJ , <§> + —5)+1}
conf )5 o

< max{p(n,20+7,3),¢¥(n,20 +4) + 1},

a contradiction. Hence, G is connected. Since G is Py 5-free and connected, it
follows from Theorem 3 that

e(G) < eXeon(n, Parys)

zmax{<2£;_3) n—20-3, <€;1> +(£+1)(n—e—1)+1}

< max{@(n, 2 +7,3),8(n, 20 +4) + 1},

where the last inequality follows from (431) +l+1)(n—L—-1)+1=1(n,20+
D+1, BT +n—20-3 <yp(n,20+4)+1forn > 20 and () +n—-20-3 <
¢(n,20+7,3) for n < 352, Recall that e(G) > max{¢(n,20+7,3),9(n, 20+4) +
1}. This implies that

2
= max{¢p(n,20 +7,3),¥(n,20 + 4) + 1}.

e(G):max{(%—i—B) +n—2€—3,w(n,2€+4)+1}

Thus, we have e(G) = ¥(n,20+4)+1 and n > “74'9 in view of ¥(n,20+4)+1 <
(%;3) +n—20—-3<¢(n,20+7,3) forn < MT+9. By Theorem 3, we know that
G is isomorphic to Kyy1 + (K2 U Kn_g_g). O

Let P = x1x9 - - - 9045 be a path on 2045 vertices in G, and Y = V(G)\V (P).
Choose y* € Y such that dp(y*) is maximum, and let Np(y*) = {xi,, iy, - - ., Ti, }-
Clearly, s < £+ 2 as P is a longest path in G by Claim 18. If s = ¢ + 2, then
Np(y*) = {2, 24, ..., 29044} It follows that Np(v) = () for any v € Y\{y*} as G
is 2P3U Pyyqq-free. Then e(G) < (%;5) +(0+2)+ |22 < (26;6) +|2=2=6 o
contradiction. In addition, if s = 0, then e(G) = e(P)+e(Y) < (2@5) + | =255
a contradiction. Hence, 1 < s </ + 1.

Claim 20. For each v € Y, we have xov, x20+4v ¢ E(G).
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Proof. Suppose that there exists vg € Y such that zovg € E(G) or zopr4vp €
E(G), say zp44v9 € E(G). Let P = zjx9-- 29043 and G' := G[V(P') U
(Y\{wo})]. Since G is 2P;3 U Py, q-free, we know that G’ is P35 U Py -free.
It follows that s1 := max,cy\ (v} dp(v) < £ —1 for any v € Y'\{vo}.

If Ny (x9p44) = {vo}, then e(G") > e(G) —s—1—2(204+3) > ¢(n—3,2(+4,3)
as Ny (zopy5) = (0. This implies that G’ does not contain Copyo and Cypyg as
subgraphs by Lemma 16. It follows from Lemma 17(4) that e(P’) < (%; 3) —

[SEEYRE2 ] and o(P) < e(P) + 142020+ 3) < (¥57) - [20t2],
Hence

o(G) < <2e2+5> - F(%Héﬁuﬂ

yielding that e(G) < ¢(n,20+7,3) for n < 3¢+ +, and e(G) < 1(n, 20+4)+1
for otherwise, a contradiction.

Suppose that there exists v1 € Ny (x2p14)\{vo}. It follows that G[V(P’") U
{z2045}] is P3U Py yq-free. This implies that dp/(xopy5) < € — 1. Since G’ is also

P3 U Pyyiq-free, we have e(P’) < (%;3) - {%—‘ by Lemma 17(3) and
e(P) < e(P)+1+(20+3)+ (0 —1) < (%) — {%] — ¢~ 4. Note also

that vropry ¢ E(G) for each v € Y with dy (v) > 0 as P is a longest path in G.
Hence

_op_
+s+s1(n—20—-6)+ {MJ,

2

e(G) < (%2*5> ~ [sl(zz +21) + 251

implying that e(G) < ¢(n,20+7,3) for n < 3(+9+572; and e(G) < ¥(n, 20+4)+1
for otherwise, a contradiction. O

—‘—6—4+s+(31+1)(n—2£—6),

If s = ¢+ 1, then Np(y*) = {x3,x5,...,22+3} by Claim 20. Since G is
2P3 U Pyyyq-free, for each v € Y\{y*}, we have Np(v) C {x3, zop43} if £ > 3 and
Np(v) C {x3, 25,27} if £ = 2. Let 51 := max,ey\y,+} dp(v). Clearly, s; < 2 if
¢ >3 and s; < 3if ¢ = 2. We may assume that Np(vy) # 0 for some v; € Y\{y*};
otherwise, e(G) < (2@5) +(+1)+ |25 < (28;6) + | 2=2558 . Suppose that
x; € Np(vy) for some i € {3,20+3}if ¢ > 3 and i € {3,5,7}if £ = 2. Since vy z;y*
forms a copy of P3, we assert that x;_ix, and z;;12,41 cannot coexist in G for
p>1+1orp<i—1;otherwise, 1 - xj_1Tp - Tip1Tpy1 - Toqs for p>i+1
OF T+ TpTi—1 - Tptl - Titl - Toeps for p < i — 1 contains P3 U Pyyyq as a
subgraph, a contradiction. An argument similar to Lemma 17(2) implies that
dp(zi—1) + dp(xiy1) < 20+ 5. It follows that we can find s; pairs of vertices
(Ta,, 2p,) satistying dp(wa;) +dp(wp,;) < 20+ 5 where j € [s1] and aj, b; # 20 +5.
Note also that G does not contain Coyy5 as a subgraph. Thus, we conclude that
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e(P) < (%;5) - {w—‘ as a similar argument to Lemma 17(4), yielding
that

2£+5> B [51(2£+3)+2€+ﬂ
2

e(G)g( )

_ 90—
+s+81(n—2€—6)+{n5J.

2

If s <2, thene (G) < ¢(n,20+7,3) forn < 44+10 and e (G) < ¢ (n,2(+4)+1 for
otherwise. In particular, for £ = 2 and s; = 3, we have Np(z2) C {1, r3, z5, 28}
and Np(z4) C {x3,25,27} as G is 2P3 U Py q-free. Meanwhile, we can get
Np(z¢) C {x3,25,27} and Np(xg) C {x2, x5, 27,29} by symmetry. In addition,
Np(z1) C {xe,z3,25} and Np(xg) C {xs,x7, x5} by symmetry. It follows that
e(G) < <g) —-2x9-104+3+3(n—2x2—-6)+ VL_2>2<2_6J :

Thus e (G) < ¢(n,20+7,3) for n < 22 and e (G) < ¢¥(n,20 +4) + 1 for n > 22.
In what follows, we may assume that dp(y*) = s < £. Suppose that neither
GV (P)\{zi, zit1}] nor G[V (P)\{x;, z;—1}] contains a copy of Py 3 for any z; €
Np(y*). It follows that dp(z;—2) + dp(zi+1) < 20+ 3 and dp(zi—1) + dp(Tit2) <
20 + 3 for any x; € Np(y*). Note also that dp(z1) < 2¢ + 2 — 2s as 1 misses
Zit1,Tiye for any z; € Np(y*). An argument similar to Lemma 17(3) implies

that e(P) < (2@“5) - [%ﬂ-‘ Hence

2£+5> B [s(2€+3) + 2s
2

6<G)<< P 2

It follows that e (G) < ¢(n,20+7,3) for n < 3¢+22+7 and e (G) < 1(n, 20+4)+1
for otherwise, a contradiction.

Now, we assume that there exists x; € Np(y*) such that either G[V(P)\
{zi,zix1}] or G[V(P)\{xi, x;—1}] contains a copy of Pyyi3, say G|V (P)\{zi, zi—1}]
contains Pyyy3 as a subgraph, denoted by P'. Let s1 := max,ey\ f,+} dpr(v). Ob-
viously, G[V(P'") U {v}] is P3 U Pyyii-free for any v € Y\{y*} as G is 2P3 U
Py q-free, implying that sy < £ — 1 for £ > 3 and 57 < ¢ for £ = 2. Let
G = G[V(P)U (Y\{y*})]. Note that G’ is P3 U Pyyy1-free as y*z;x;—1 forms
a P;. Since P’ is a path of length 2¢ + 3, it follows from Lemma 17(3) that
e(P) < (24;3) _ ’781(20&-21)-1—251-"

Suppose that there are two vertices v1,v2 € Y (note that v; or ve is not
necessarily y*) and = € {z;,z;—1} such that {z,v;,vy} forms a copy of Ps. It
follows that dp/(z;—1) < € —1 (if x = x;) or dpr(x;) < L —1 (if . = ;1) as
GV (P)\{z}] is PsU Py, 1-free. This implies that e(P) < e(P’')+ 1+ (20+3) +

—‘-I-s(n—%—f))—l— V_QHJ
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((—1)< (2@5) _ ’731(22+21)+231—‘ —/— 4 Thus

¢(G) < (26;5) B {31(2£+21)+2311

_26_
At s+ (s +D)(n—20—6)+ {HJ

2

If ¢ >2and s; < £ — 1, then e(G) < ¢p(n,20 +7,3) for n < 3¢+ T + 1 and
e(G) < (n,20+4) + 1 for otherwise, a contradiction. If £ =2 and s; = ¢, then
e(P) < 23 and e(G) < 23+2+2(n—10)+| %52 |. One can easily check that e(G) <
¢(n,20+47,3) for n < 22 and e(G) < P(n,2¢0+4)+1 for n > 22, a contradiction.
Hence, we conclude that dy (y*) = 0, dy\(y=}(7:) = 0 and dy\ ;) (zi-1) < 1 as
xy* € E(G). Note that e(P) < e(P')+1+2(2(+3) < (2@5) - {w—‘
It follows that

o) < (2“5) - Fl(zeﬂ)mﬂ Bt s(n_2—T)+ {n—%—(’)J

2 2 2

If s; < (-1, then e (G) < ¢(n,20+7,3) for n < 3¢+ + 2 and e (G) < ¥(n, 20+
4) 4+ 1 for otherwise, a contradiction. It suffices to check e(G) for the case s; =
¢ =2. Let P = y1y2---y7. Recall that s; = max,cy\ (y=} dp/(v). Tt follows from
Lemma 17(1) and Lemma 17(2) that dp/(y1) < 2, dp/(y7) < 2, dpr(y2)+dp/(ys) <
7 and dp(y3) +dpr (ys) < 7, yielding that e(P) < S°1_ dpr(yi)/2+2xT+1 = 27.
Note that Np/(v) C {y3,ys} for any v € Y\{y*} and G’ is P3 U Ps-free. This
implies that dp/(v1) = dpr(vy) = 0 for any vy,vy € Y\{y*} with vive € E(G).
Therefore, e(G) < 27+ 2(n —9). It follows that e(G) < ¢(n,20+7,3) for n < 21
and e(G) < ¢(n,2¢ +4) + 1 for n > 21, a contradiction.

This completes the proof of Theorem 8. [
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APPENDIX A. THE VALUES OF fy(s,s1) FOR 15 < /¢ <19

], SN 1 2 3 4 5 6 71819
3 | 152 | 158.5] 166 | \ \ \ \ v\ ]\
4 [1425] 148 |[1545] 162 | \ \ \ RN
5 | 133 |137.5| 143 | 1495 167 | \ \ RN
19 6 [123.5] 127 |[131.5] 137 |1435] \ \ N\
7 | 114 | 1165 | 120 | 1245 130 |136.5| 144 | \ | \ | \
8 |1045| 106 |108.5| 112 |116.5] 122 |1285] 136 | \ | \
9 | 95 | 955 | 97 | 995 | 103 |107.5| 113 |119.5]127] \
3 [ 135 | 141 | 148 | \ \ \ \ VLN ]\
4 [ 126 | 131 | 137 | 144 | \ \ \ RN
5 | 117 | 121 | 126 | 132 | 139 | \ \ RN
18] 6 | 108 | 111 | 115 | 120 | 126 | 133 | \ RN
7 | 99 | 101 | 104 | 108 | 113 | 119 | 126 | \ | \ | \
8 | 90 | 9L | 93 | 96 | 100 | 105 | 11l | 118 | \ | \
9 | 81 | 81 | 82 | 84 | 87 | 91 | 96 | 102 109|117
3 [ 119 [1245] 131 | \ \ \ \ VLN ]\
4 [110.5] 115 |1205] 127 | \ \ \ RN
5 | 102 | 1055 | 110 | 1155 122 | \ \ RN
17/ 6 | 935 96 | 995 | 104 [109.5] 116 | \ ERNE
7 | 85 | 865 | 89 | 925 | 97 [1025] 109 | \ | \ | \
8 | 765 | 77 | 785 | 8L | 845 | 89 | 945 | 101 | \ | \
3 ] 104 | 109 | 115 | \ \ \ \ VTN T
1 [ 96 | 100 | 105 | 111 | \ \ \ RN
6|5 | 88 [ 91 [ 95 | 100 | 106 | \ \ RN
6 | S0 | 82 | 85 | 89 | 94 | 100 | 107 | \ | \ | \
7 | 72 | 73 | 75 | 8 | 82 | 8 | 93 [ \ |\ |\
8 | 64 | 64 | 65 | 67 | 70 | 74 | 79 | 85 |92 \
3 ] 90 | 945 ] 100 | \ \ \ \ RN
i [ 825 86 |905] 96 | \ \ \ N\
15[ 5 | 7 | 775 | 81 | 85| oL | \ \ ERNE
6 | 675 60 | 715 ]| 7 | 795 8 | \ RN
7 | 60 | 605 | 62 | 645 68 | 725 78 | \ | \ |\
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