DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Sen

Jishnu Sen

National Institute of Technology Karnataka, Surathkal
Mangalore, Karnataka 575025

email: senjishnu5@gmail.com

0000-0002-8724-9583

S. R. Kola

Srinivasa Rao Kola

National Institute of Technology Karnataka, Surathkal
Mangalore, Karnataka 575025

email: srinu.iitkgp@gmail.com

0000-0003-3230-524X

Title:

Critical aspects in broadcast domination

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2022-12-10 , Revised: 2023-06-22 , Accepted: 2023-06-24 , Available online: 2023-07-19 , https://doi.org/10.7151/dmgt.2506

Abstract:

A dominating broadcast labeling of a graph $G$ is a function $f : V(G) \rightarrow \lbrace 0, 1, 2, \dots ,\text{diam}(G)\rbrace$ such that $f(v) \leqslant e(v)$ for all $v \in V(G)$ and $$ \bigcup_{\substack{v \in V(G)\\ {\small f(v) > 0}}} [\lbrace u \in V(G) : d(u,v) \leqslant f(v) \rbrace]=V(G), $$ where $e(v)$ is the eccentricity of $v$. The cost of $f$ is $\sum_{v \in V(G)} f(v)$. The minimum of costs over all the dominating broadcast labelings of $G$ is called the broadcast domination number $\gamma_{b}(G)$ of $G$. In this paper, we introduce the critical aspects in broadcast domination and study it with respect to edge deletion and edge addition. A graph $G$ is said to be $k$-$\gamma_{b}^{+}$-edge-critical ($k$-$\gamma_{b}^{-}$-edge-critical) if $\gamma_{b}(G-e) > \gamma_{b}(G)$, for every edge $e \in E(G)$ (if $\gamma_{b}(G+e) < \gamma_{b}(G)$, for every edge $e \notin E(G)$), where $\gamma_{b}(G)=k$. We give a necessary and sufficient condition for a graph to be $k$-$\gamma_{b}^{+}$-edge-critical. We characterize $k$-$\gamma_{b}^{-}$-edge-critical graphs for $k=1, 2$, and give necessary conditions of the same for $k \geqslant 3$. Further, we define the broadcast bondage number and the broadcast reinforcement number of a graph, and give tight upper bounds for them.

Keywords:

dominating broadcast labeling, broadcast domination number, critical graph, bondage number, reinforcement number

References:

  1. D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153–161.
    https://doi.org/10.1016/0012-365X(83)90085-7
  2. B. Brešar and S. Špacapan, Broadcast domination of products of graphs, Ars Combin. 92 (2009) 303–320.
  3. E.J. Cockayne, S. Herke and C.M. Mynhardt, Broadcasts and domination in trees, Discrete Math. 311 (2011) 1235–1246.
    https://doi.org/10.1016/j.disc.2009.12.012
  4. J.E. Dunbar, D.J. Erwin, T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi, Broadcasts in graphs, Discrete Appl. Math. 154 (2006) 59–75.
    https://doi.org/10.1016/j.dam.2005.07.009
  5. D.J. Erwin, Cost Domination in Graphs, Ph.D. Thesis (Department of Mathematics and Statistics, Western Michigan University, 2001).
  6. O. Favaron, D.P. Sumner and E. Wojcicka, The diameter of domination k-critical graphs, J. Graph Theory 18 (1994) 723–734.
    https://doi.org/10.1002/jgt.3190180708
  7. J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47–57.
    https://doi.org/10.1016/0012-365X(90)90348-L
  8. B.L. Hartnell and D.F. Rall, A characterization of trees in which no edge is essential to the domination number, Ars Combin. 33 (1992) 65–76.
  9. B.L. Hartnell and D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173–177.
    https://doi.org/10.1016/0012-365X(94)90111-2
  10. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Boca Raton, CRC Press, 1998).
    https://doi.org/10.1201/9781482246582
  11. P. Heggernes and D. Lokshtanov, Optimal broadcast domination in polynomial time, Discrete Math. 306 (2006) 3267–3280.
    https://doi.org/10.1016/j.disc.2006.06.013
  12. S. Herke, Dominating Broadcasts in Graphs, Master's Thesis (Department of Mathematics and Statistics, University of Victoria, 2009).
  13. S. Herke and C.M. Mynhardt, Radial trees, Discrete Math. 309 (2009) 5950–5962.
    https://doi.org/10.1016/j.disc.2009.04.024
  14. J. Kok and C.M. Mynhardt, Reinforcement in graphs, Congr. Numer. 79 (1990) 225–231.
  15. C.L. Liu, Introduction to Combinatorial Mathematics (McGraw-Hill, 1968).
  16. C.M. Mynhardt and J. Wodlinger, A class of trees with equal broadcast and domination numbers, Australas. J. Combin. 56 (2013) 3–22.
  17. C.M. Mynhardt and J. Wodlinger, Uniquely radial trees, J. Combin. Math. Combin. Comput. 93 (2015) 131–152.
  18. V. Samodivkin, The bondage number of graphs: good and bad vertices, Discuss. Math. Graph Theory 28 (2008) 453–462.
    https://doi.org/10.7151/dmgt.1419
  19. S.M. Seager, Dominating broadcasts of caterpillars, Ars Combin. 88 (2008) 307–319.
  20. D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory. Ser. B 34 (1983) 65–76.
    https://doi.org/10.1016/0095-8956(83)90007-2
  21. U. Teschner, A new upper bound for the bondage number of graphs with small domination number, Australas. J. Combin. 12 (1995) 27–36.
  22. U. Teschner, New results about the bondage number of a graph, Discrete Math. 171 (1997) 249–259.
    https://doi.org/10.1016/S0012-365X(96)00007-6
  23. H.B. Walikar and B.D. Acharya, Domination critical graphs, Nat. Acad. Sci. Lett. 2(2) (1979) 70–72.
  24. Y.-L.Wang, On the bondage number of a graph, Discrete Math. 159 (1996) 291–294.
    https://doi.org/10.1016/0012-365X(96)00347-0
  25. E. Wojcicka, Hamiltonian properties of domination-critical graphs, J. Graph Theory 14 (1990) 205–215.
    https://doi.org/10.1002/jgt.3190140209

Close