Article in volume
Authors:
Title:
$k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$
PDFSource:
Discussiones Mathematicae Graph Theory 44(4) (2024) 1471-1484
Received: 2023-01-08 , Revised: 2023-06-20 , Accepted: 2023-06-20 , Available online: 2023-07-14 , https://doi.org/10.7151/dmgt.2504
Abstract:
Vertex-fault-tolerance was introduced by Hayes in 1976, and
since then it has been systematically studied in different aspects. In this
paper, we study graphs of order $cp+k$ that are $k$-vertex-fault-tolerant for
$p$ disjoint complete graphs of order $c$, i.e., graphs in which removing any
$k$ vertices leaves a graph that has $p$ disjoint complete graphs of order $c$
as a subgraph. In this paper, we analyze some properties of such graphs for any
value of $k$. The main contribution is to describe such graphs that have the
smallest possible number of edges for $k=1$, $p \geq 1$, and $c \geq 3$.
Keywords:
fault-tolerance, interconnection network, factor, algorithm, $k$-critical graph
References:
- M. Ajtai, N. Alon, J. Bruck, R. Cypher, C.T. Ho, M. Naor and E. Szemerédi, Fault tolerant graphs, perfect hash functions and disjoint paths, in: Proc. 33rd Annual Symposium on Foundations of Computer Science, (IEEE 1992) 693–702.
https://doi.org/10.1109/SFCS.1992.267781 - N. Alon and F.R.K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1988) 15–19.
https://doi.org/10.1016/j.disc.2006.03.025 - A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (SIAM, 1999).
https://doi.org/10.1137/1.9780898719796 - J. Bruck, R. Cypher and C.T. Ho, Fault-Tolerant Parallel Architectures with Minimal Numbers of Spares (IBM Research Report, 1991).
- S. Cichacz and K. Suchan, Minimum $k$-critical bipartite graphs, Discrete Appl. Math. 302 (2021) 54–66.
https://doi.org/10.1016/j.dam.2021.06.005 - R. Diestel, Graph Theory (Grad. Texts in Math., Springer Nature, Berlin, 2017).
https://doi.org/10.1007/978-3-662-53622-3 - A. Dudek, A. Szymański and M. Zwonek, $(H, k)$-stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008) 137–149.
https://doi.org/10.7151/dmgt.1397 - S. Dutt and J.P. Hayes, Designing fault-tolerant systems using automorphisms, J. Parallel Distrib. Comput. 12 (1991) 249–268.
https://doi.org/10.1016/0743-7315(91)90129-W - O. Favaron, On $k$-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996) 41–51.
https://doi.org/10.7151/dmgt.1022 - J.P. Hayes, A graph model for fault-tolerant computing systems, IEEE Trans. Comput. C-25 (1976) 875–884.
https://doi.org/10.1109/TC.1976.1674712 - L. Lovász, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar. 23 (1972) 179–195.
https://doi.org/10.1007/BF01889914 - Y. Lu, H. Salemi, B. Balasundaram and A. Buchanan, On fault-tolerant low-diameter clusters in graphs, INFORMS J. Comput. 34 (2022) 2867–3350.
https://doi.org/10.1287/ijoc.2022.1231 - F. Mahdavi Pajouh, V. Boginski and E.L. Pasiliao, Minimum vertex blocker clique problem, Networks 64 (2014) 48–64.
https://doi.org/10.1002/net.21556 - J. Przyby\l o and A. Żak, Largest component and node fault tolerance for grids, Electron. J. Combin. 28 (2021) #P1.44.
https://doi.org/10.37236/8376 - T. Yamada and S. Ueno, Optimal fault-tolerant linear arrays, in: Proc. of the Fifteenth Annual ACM Symp. on Parallel Algorithms and Architectures, (ACM 2003) 60–64.
https://doi.org/10.1145/777412.777423 - S. Ueno, A. Bagchi, S.L. Hakimi and E.F. Schmeichel, On minimum fault-tolerant networks, SIAM J. Discrete Math. 6 (1993) 565–574.
https://doi.org/10.1137/0406044 - Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993) 55–64.
- L. Zhang, Fault tolerant networks with small degree, in: Proc. of the Twelfth Annual ACM Symp. on Parallel Algorithms and Architectures, (ACM 2000) 64–69.
https://doi.org/10.1145/341800.341809 - Z.-B. Zhang, X. Zhang, D. Lou and X. Wen, Minimum size of $n$-factor-critical graphs and $k$-extendable graphs, Graphs Combin. 28 (2012) 433–448.
https://doi.org/10.1007/s00373-011-1045-y - A. Żak, {On $(K_q;k)$-stable graphs}, J. Graph Theory 74 (2013) 216–221.
https://doi.org/10.1002/jgt.21705 - A. Żak, A generalization of an independent set with application to $(K_q;k)$-stable graphs, Discrete Appl. Math. 162 (2014) 421–427.
https://doi.org/10.1016/j.dam.2013.08.036
Close