DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

F. Devvrit

Fnu Devvrit

University of Texas at Austin

email: devvrit@cs.utexas.edu

A. Krim-Yee

Aaron Krim-Yee

McGill University

email: aaron.krim-yee@mail.mcgill.ca

N. Kumar

Nithish Kumar

Purdue University

email: kumar410@purdue.edu

G. MacGillivray

Gary MacGillivray

University of Victoria

email: gmacgill@uvic.ca

0000-0001-8123-8931

B. Seamone

Ben Seamone

Universite de Montreal and Dawson College

email: seamone@iro.umontreal.ca

V. Virgile

Virgélot Virgile

University of Victoria

email: virgilev@uvic.ca

A. Xu

AnQi Xu

Université de Montreal

email: an.qi.xu@umontreal.ca

Title:

Fractional eternal domination: securely distributing resources across a network

PDF

Source:

Discussiones Mathematicae Graph Theory 44(4) (2024) 1395-1428

Received: 2022-06-15 , Revised: 2023-05-31 , Accepted: 2023-06-03 , Available online: 2023-07-12 , https://doi.org/10.7151/dmgt.2503

Abstract:

This paper initiates the study of fractional eternal domination in graphs, a natural relaxation of the well-studied eternal domination problem. We study the connections to flows and linear programming in order to obtain results on the complexity of determining the fractional eternal domination number of a graph $G$, which we denote $\gamma^{\infty}_{f}(G)$. We study the behaviour of $\gamma^{\infty}_{f}(G)$ as it relates to other domination parameters. We also determine bounds on, and in some cases exact values for, $\gamma^{\infty}_{f}(G)$ when $G$ is a member of one of a variety of important graph classes, including trees, split graphs, strongly chordal graphs, Kneser graphs, abelian Cayley graphs, and graph products.

Keywords:

eternal domination, fractional domination

References:

  1. J. Azarija, M. Henning and S. Klavžar, $( $Total$)$ domination in prisms, Electron. J. Combin. 24(1) (2017) #P1.19.
    https://doi.org/10.37236/6288
  2. S. Bard, C. Duffy, M. Edwards, G. MacGillivray and F. Yang, Eternal domination in split graphs, J. Combin. Math. Combin. Comput. 101 (2017) 121–130.
  3. A.P. Burger, E.J. Cockayne, W.R. Gründlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach, Infinite order domination in graphs, J. Combin. Math. Combin. Comput. 50 (2004) 179–194.
  4. G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Fractional packings, coverings and irredundance in graphs, Congr. Numer. 66 (1988) 227–238.
  5. M. Farber, Domination, independent domination, and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115–130.
    https://doi.org/10.1016/0166-218X(84)90061-1
  6. W. Goddard, S.M. Hedetniemi and S.T. Hedetniemi, Eternal security in graphs, J. Combin. Math. Combin. Comput 52 (2005) 169–180.
  7. D.L. Grinstead and P.J. Slater, Fractional domination and fractional packing in graphs, Congr. Numer. 71 (1990) 153–172.
  8. T.W. Haynes, S.T. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Routledge, New York, 1998).
    https://doi.org/10.1201/9781315141428
  9. T.W. Haynes, S.T. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (CRC Press, Boca Raton, 1998).
    https://doi.org/10.1201/9781482246582
  10. R. Hill, A First Course in Coding Theory (Oxford University Press, 1986).
  11. W.F. Klostermeyer and G. MacGillivray, Eternal dominating sets in graphs, J. Combin. Math. Combin. Comput. 68 (2009) 97–111.
  12. W.F. Klostermeyer and C.M. Mynhardt, Protecting a graph with mobile guards, Appl. Anal. Discrete Math. 10 (2016) 1–29.
    https://doi.org/10.2298/AADM151109021K
  13. W.C. Shiu, On $3$-regular and $4$-regular Cayley graphs of abelian groups, Tech. Rep. (Hong Kong Baptist University, Dept. of Mathematics, 1995).

Close